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Abstract
In the year 2014, Kim et al. computed a kind of new sums of the products of an
arbitrary number of the classical Bernoulli and Euler polynomials by using the Euler
basis for the vector space of polynomials of bounded degree. Inspired by their work,
in this paper, we establish some new formulas for such a kind of sums of the products
of an arbitrary number of the Apostol-Bernoulli, Euler, and Genocchi polynomials by
making use of the generating function methods and summation transform
techniques. The results derived here are generalizations of the corresponding known
formulas involving the classical Bernoulli, Euler, and Genocchi polynomials.
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1 Introduction
The classical Bernoulli polynomials Bn(x), Euler polynomials En(x), and Genocchi poly-
nomials Gn(x) are usually defined by the following generating functions:
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The rational numbers Bn, the integers En, and the rational numbers Gn given by

Bn = Bn(), En = nEn

(



)
, and Gn = Gn()

are called the classical Bernoulli numbers, Euler numbers, and Genocchi numbers, re-
spectively. These polynomials and numbers play important roles in many different areas
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of mathematics, such as number theory, combinatorics, special functions and analysis.
Numerous interesting properties for them can be found in many books and papers (see,
for example, [–]).

Some widely investigated analogs of the above classical Bernoulli, Euler and Genocchi
polynomials are the Apostol-Bernoulli polynomials Bn(x;λ), Apostol-Euler polynomials
En(x;λ) and Apostol-Genocchi polynomials Gn(x;λ), which are usually defined by means
of the following generating functions (see, e.g., [–]):
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In particular, Bn(λ), En(λ), and Gn(λ) given by

Bn(λ) = Bn(;λ), En(λ) = nEn

(



;λ
)

, and Gn(λ) = Gn(;λ)

are called the Apostol-Bernoulli numbers, Apostol-Euler numbers, and Apostol-Genocchi
numbers, respectively. Obviously, Bn(x;λ), En(x;λ), and Gn(x;λ) reduce, respectively, to
Bn(x), En(x), and Gn(x) when λ = . It is worth mentioning that the Apostol-Bernoulli
polynomials were first introduced by Apostol [] (see also Srivastava [] for a system-
atic further study) in order to evaluate the value of the Hurwitz-Lerch zeta function. Since
the publication of the work by Luo and Srivastava [–], some interesting properties for
the Apostol-Bernoulli, Euler and Genocchi polynomials have been well explored by many
authors (see, for example, [–]).

The present paper is concerned with the sums of the products of an arbitrary num-
ber of the above-mentioned polynomials and numbers. The best known such formula is
Dilcher’s result on the following sums of the products of an arbitrary number of the clas-
sical Bernoulli polynomials (see, for details, []):
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where n and k are positive integers (with n � k),
( n

i,...,ik

)
denotes the multinomial coeffi-

cients given by

(
n

i, . . . , ik

)
=

n!
i! · · · ik !

, (.)

s(n, k) are the Stirling numbers of the first kind and

y = x + · · · + xk .

We refer to [–] for some extensions of (.) in different directions. In the year ,
Kim et al. [] considered and computed the following kind of new sums of the products
of an arbitrary number of the classical Bernoulli and Euler polynomials by making use of
the Euler basis for the vector space of polynomials of bounded degree:
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where n, r, and s are positive integers,

∑

Ir+Js=n

(.)

denotes the sum over all non-negative integers i, . . . , ir and j, . . . , js such that

i + · · · + ir + j + · · · + js = n,

and αn,k(r, s) is a rational number determined by

αn,k(r, s) =
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Motivated and inspired by the work of Kim et al. [], in this paper, we establish some
new formulas for such a kind of sums of the products of an arbitrary number of the
Apostol-Bernoulli, Euler and Genocchi polynomials by making use of the generating func-
tion methods and summation transform techniques. As applications, some known results
for the classical Bernoulli, Euler, and Genocchi polynomials are shown to be derivable as
special cases of our product formulas.

Our paper is organized as follows. In Section , we give several new formulas for the
products of the Apostol-Bernoulli, Euler, and Genocchi polynomials. Various corollaries
and consequences of these main results are also considered in Section  itself. Section 
is devoted to the proofs of the main results.
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2 Statements of the main results
Let r and s be positive integers and let

λ, . . . ,λr and μ, . . . ,μs

be r + s parameters. For convenience, in the following, we always denote by λ a parameter
given by

λ =
r∏

k=

λk

s∏

k=

μk , (.)

with

∑

Ir+Js=n

the same as in (.), and by Ma, Nb, and Tb three sequences of polynomials given (for
positive integers a and b) with
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s∏

k=b+

Gjk (yk – yb;μk), (.)

respectively. We also write, for subsets R ⊆ {, . . . , r} and S ⊆ {, . . . , s}, |R| as the cardinality
of R and |S| as the cardinality of S, R = {, . . . , r}\R and S = {, . . . , s}\S for positive integers r
and s. In particular, if |R| = a and |S| = b for positive integers a and b, we denote s, . . . , sr–a ∈
R and r, . . . , rs–b ∈ S.

We now state our results as follows.

Theorem  Let r and s be positive integers. Also let s be an even integer. Then, for every
non-negative integer n,
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Furthermore, if s is an odd positive integer, then, for every positive integer n,
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We now deduce some special cases of Theorem . Since the Apostol-Bernoulli and
Apostol-Euler polynomials satisfy the following difference equations (see, e.g., []):

λBn(x + ,λ) – Bn(x,λ) = nxn– (n � ) (.)

and

λEn(x + ,λ) + En(x,λ) = xn (n � ), (.)

respectively, so we find from (.) and (.) that
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Hence, by setting

x = · · · = xr = x and y = · · · = ys = y

in Theorem , in view of (.) and (.), we obtain the following result.

Corollary  Let r and s be positive integers. Also let s be an even integer. Then, for every
non-negative integer n,
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Moreover, if s is an odd positive integer, then, for every positive integer n,
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Since the Apostol-Bernoulli polynomials satisfy the following symmetric distribution
(see, e.g., []):
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(
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λ

)
(n � ), (.)

by setting

λ = · · · = λr =  and μ = · · · = μs = 

in Corollary , we get the following formulas for the products of an arbitrary number of
the classical Bernoulli polynomials and the classical Euler polynomials.

Corollary  Let r and s be positive integers. If s is an even positive integer, then, for every
non-negative integer n,
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Furthermore, if s is an odd positive integer, then, for every positive integer n,
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In the special case when x = y, Corollary  yields the corresponding new expressions
for the above-mentioned sums of the products of an arbitrary number of the classical
Bernoulli polynomials and the classical Euler polynomials considered by Kim et al. [].
If we take r = s =  in Corollary , in light of (.), we obtain the following result.

Corollary  Let n be a positive integer. Then

n∑

k=

Bk(x;λ)En–k(y;μ)
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)
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In particular, since (see, e.g., [])

En() = 
(
 – n+) Bn+

n + 
(n � ),

by setting

x = y and λ = μ = 

in Corollary , we find for every positive integer n �  that
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k + 

)(
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)Bk

k
En–k(x)

= (n + )En(x), (.)

which was derived by Pan and Sun [] by using the finite difference calculus and differ-
entiation.



He et al. Advances in Difference Equations  (2016) 2016:287 Page 8 of 18

Theorem  Let r and s be positive integers. Then, for every non-negative integer n,

(n + r + s)
∑
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∑
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}
, (.)

where Pn(x;λ) is given by

Pn(x;λ) =

⎧
⎨

⎩
Bn(x;λ) ( | s),

– 
Gn(x;λ) ( � s).

We now deduce some special cases of Theorem . Since the Apostol-Genocchi polyno-
mials satisfy the following difference equation (see, e.g., []):

λGn(x + ,λ) + Gn(x,λ) = nxn– (n � ), (.)

by applying (.), we have

b–∏

k=

{
–μkGjk (yk – yb + ,μk)

}

=
∑

T⊆{,...,b–}

∏

k∈T

Gjk (yk – yb,μk)
∏

k∈T

{
–jk(yk – yb)jk –}. (.)

Hence, by setting

x = · · · = xr = x and y = · · · = ys = y

in Theorem , and in view of (.) and (.), we obtain the following result.

Corollary  Let r and s be positive integers. Then, for every non-negative integer n,

(n + r + s)
∑
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r∏

k=

Bik (x;λk)
s∏

k=

Gjk (y;μk)

=
r∑
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∑
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∑
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(
n + r + s
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)
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·
r–a∏
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Bik (λsk )
s∏

k=

Gjk (y – x;μk)
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+
s∑

b=

∑

|S|=b

(–)b
∑

Ir+j+Js–b=n+–b

(
n + r + s

j

)
Pj (y;λ)

·
s–b∏

k=

Gjk (μrk )
r∏

k=

{
λkBik (x – y + ;λk)

}
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Upon setting

λ = · · · = λr =  and μ = · · · = μs = 

in Corollary , if we make use of (.), we obtain the following formula for the products
of an arbitrary number of the classical Bernoulli and Genocchi polynomials.

Corollary  Let r and s be positive integers. Then, for every non-negative integer n,

(n + r + s)
∑

Ir+Js=n

r∏

k=

Bik (x)
s∏

k=

Gjk (y)

=
r∑

a=

(
r
a

) ∑

Ir–a+i+Js=n+–a

(
n + r + s

i

)
Pi (x)

r–a∏

k=

Bik

s∏

k=

Gjk (y – x)

+
s∑

b=

(
s
b

)
(–)b

∑

Ir+j+Js–b=n+–b

(
n + r + s

j

)
(–)Ir Pj (y)

·
s–b∏

k=

Gjk

r∏

k=

Bik (y – x), (.)

where Pn(x) is given by

Pn(x) =

⎧
⎨

⎩
Bn(x) ( | s),

– 
 Gn(x) ( � s).

If we take r = s =  in Corollary , in light of (.), we get the following result.

Corollary  Let n be a non-negative integer. Then

n∑

k=

Bk(x;λ)Gn–k(y;μ)

= –



n∑

k=


k

(
n + 
k – 

)[
Gk(x;λμ)Gn–k(y – x;μ)

]

+
n∑

k=


k

(
n + 
k – 

)(
Gk(y;λμ)

[
Bn–k(x – y;λ) + (n – k)(x – y)n–k–]). (.)

Since the classical Genocchi polynomials can be expressed in terms of the classical
Bernoulli polynomials as follows:

Gn(x) = Bn(x) – n+Bn

(
x


)
(n � ), (.)
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by setting λ = μ =  and x = y in Corollary , and in light of the fact that (see, e.g., [, ])

B = , B = –



and G(x) = ,

we find for every positive integer n �  that

n–∑

k=

Bk(x)Gn–k(x) –
n–∑

k=


k

(
n + 
k – 

)[
n–kGk(x)Bn–k

]

=



(n – )Gn(x), (.)

which was derived by Agoh [] by applying some short and intelligible ideas. For some
convolution formulas similar to (.) and (.), the interested reader may be referred to
[–].

3 Proofs of Theorems 1 and 2
In our proofs of Theorems  and , we need the following auxiliary result described in
[, ].

Lemma  Let n be a positive integer with n �  and let �n be the n-dimensional space (or
the standard simplex in Rn) defined by

�n :=
{

(t, . . . , tn) : tk �  (k = , . . . , n) and t + · · · + tn � 
}

.

Then the multivariable Beta function B(α, . . . ,αn) is given by the following Dirichlet inte-
gral:

B(α, . . . ,αn) =
�(α) · · ·�(αn)
�(α + · · · + αn)

=
∫

· · ·
∫

�n–

tα–
 · · · tαn––

n–

· ( – t – · · · – tn–)αn– dt · · · dtn–
(
min

{�(α), . . . ,�(αn)
}

> 
)
. (.)

Proof of Theorem  We first recall the following elementary and beautiful idea:

( + x)( + x)( + x) · · ·
= ( + x) + x( + x) + x( + x)( + x) + · · · , (.)

which was used by Euler to give the proof of his famous pentagonal number theorem (see,
e.g., [, ]). Obviously, the finite form of (.) can be expressed as follows:

( + x) · · · ( + xn)

= ( + x) + x( + x) + · · · + xn( + x) · · · ( + xn–). (.)
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For  � k � n, if we write xk –  for xk in (.), we get

x · · ·xn –  =
n∑

k=

(xk – )x · · ·xk–, (.)

where the product x · · ·xk– is assumed to be equal to  when k = . Let εk be a piecewise
function of k given by

εk =

⎧
⎨

⎩
λk ( � k � r),

–μk–r (r +  � k � r + s).
(.)

By replacing n by r + s and taking xk = εketk in (.), we find that

(–)sλet+···+tr+s – 

=
r∑

k=

(
εketk – 

) k–∏

i=

εieti +
s∑

k=

(
εr+ketr+k – 

) r+k–∏

i=

εieti , (.)

which, together with (.), yields

(–)sλet+···+tr+s – 

=
r∑

a=

(
λaeta – 

) a–∏

i=

λieti +
s∑

b=

(–)b(μbetr+b + 
) b–∏

i=

μietr+i
r∏

i=

λieti . (.)

It follows from (.) that

r∏

k=

tkexk tk

λketk – 

s∏

k=

eyk tr+k

μketr+k + 

=


(–)sλet+···+tr+s – 

( r∑

a=

(
λaeta – 

) a–∏

i=

λieti

·
r∏

k=

tkexk tk

λketk – 

s∏

k=

eyk tr+k

μketr+k + 

+
s∑

b=

(–)b(μbetr+b + 
) b–∏

i=

μietr+i

·
r∏

k=

λk
tke(xk +)tk

λketk – 

s∏

k=

eyk tr+k

μketr+k + 

)
. (.)

We now observe that

(
λaeta – 

) a–∏

i=

λieti
r∏

k=

tkexk tk

λketk – 

= taexa(t+···+tr)
a–∏

k=

λk
tke(xk –xa+)tk

λketk – 

r∏

k=a+

tke(xk –xa)tk

λketk – 
(.)
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and

(
μbetr+b + 

) b–∏

i=

μietr+i
s∏

k=

eyk tr+k

μketr+k + 

= eyb(tr++···+tr+s)
b–∏

k=

μk
e(yk –yb+)tr+k

μketr+k + 

s∏

k=b+

e(yk –yb)tr+k

μketr+k + 
. (.)

Thus, by applying (.) and (.) to (.), we obtain

r∏

k=

tkexk tk

λketk – 

s∏

k=

eyk tr+k

μketr+k + 

=
r∑

a=

taexa(t+···+tr+s)

(–)sλet+···+tr+s – 

a–∏

k=

λk
tke(xk –xa+)tk

λketk – 

·
r∏

k=a+

tke(xk –xa)tk

λketk – 

s∏

k=

e(yk –xa)tr+k

μketr+k + 

+
s∑

b=

(–)b eyb(t+···+tr+s)

(–)sλet+···+tr+s – 

b–∏

k=

μk
e(yk –yb+)tr+k

μketr+k + 

·
s∏

k=b+

e(yk –yb)tr+k

μketr+k + 

r∏

k=

λk
tke(xk –yb+)tk

λketk – 
. (.)

For convenience, let
[

tn

n!

]
f (t)

denote the coefficient of tn

n! in the power-series expansion of f (t). For  � k � r + s, if we
substitute ukt for tk with

u + · · · + ur+s = 

into both sides of (.), we find that

[
tn

n!

]( r∏

k=

uktexk uk t

λkeuk t – 

s∏

k=

eyk ur+k t

μkeur+k t + 

)

=
[

tn

n!

]( r∑

a=

uatexat

(–)sλet – 

a–∏

k=

λk
ukte(xk –xa+)uk t

λkeuk t – 

·
r∏

k=a+

ukte(xk –xa)uk t

λkeuk t – 

s∏

k=

e(yk –xa)ur+k t

μkeur+k t + 

)

+
[

tn

n!

]( s∑

b=

(–)b eybt

(–)sλet – 

b–∏

k=

μk
e(yk –yb+)ur+k t

μkeur+k t + 

·
s∏

k=b+

e(yk –yb)ur+k t

μkeur+k t + 

r∏

k=

λk
ukte(xk –yb+)uk t

λkeuk t – 

)
=: M + M. (.)
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The left-hand side of (.) can easily be rewritten as follows:

[
tn

n!

]( r∏

k=

uktexk uk t

λkeuk t – 

s∏

k=

eyk ur+k t

μkeur+k t + 

)

= n! ·
∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
uik

k
ik !

s∏

k=

Ejk (yk ;μk)
ujk

r+k
jk !

. (.)

Moreover, M and M on the right-hand side of (.) can be rewritten as follows:

M = n! ·
∑

Ir+Js=n+ε

r∑

a=

Fia (xa;λ)
ua

ia!

a–∏

k=

λkBik (xk – xa + ;λk)
uik

k
ik !

·
r∏

k=a+

Bik (xk – xa;λk)
uik

k
ik !

s∏

k=

Ejk (yk – xa;μk)
ujk

r+k
jk !

(.)

and

M =  · n! ·
∑

Ir+Js=n++ε

s∑

b=

(–)bFjb (yb;λ)
u

r+b
jb!

·
b–∏

k=

μkEjk (yk – yb + ;μk)
ujk

r+k
jk !

s∏

k=b+

Ejk (yk – yb;μk)
ujk

r+k
jk !

·
r∏

k=

λkBik (xk – yb + ;λk)
uik

k
ik !

, (.)

where

ε =

⎧
⎨

⎩
 (s = , , , . . .),

– (s = , , , . . .),

and Fn(x;λ) is determined by

Fn(x;λ) =

⎧
⎨

⎩
Bn(x;λ) ( | s),

– 
En(x;λ) ( � s).

(.)

It follows from (.) to (.) that

∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
uik

k
ik !

s∏

k=

Ejk (yk ;μk)
ujk

r+k
jk !

=
∑

Ir+Js=n+ε

r∑

a=

Fia (xa;λ)
ua

ia!

a–∏

k=

λkBik (xk – xa + ;λk)
uik

k
ik !

·
r∏

k=a+

Bik (xk – xa;λk)
uik

k
ik !

s∏

k=

Ejk (yk – xa;μk)
ujk

r+k
jk !



He et al. Advances in Difference Equations  (2016) 2016:287 Page 14 of 18

+ 
∑

Ir+Js=n++ε

s∑

b=

(–)bFjb (yb;λ)
u

r+b
jb!

·
b–∏

k=

μkEjk (yk – yb + ;μk)
ujk

r+k
jk !

s∏

k=b+

Ejk (yk – yb;μk)
ujk

r+k
jk !

·
r∏

k=

λkBik (xk – yb + ;λk)
uik

k
ik !

. (.)

We note that, for complex numbers α, . . . ,αr+s with

min
{�(α), . . . ,�(αr+s)

}
> –,

if we use Lemma , we find for

u + · · · + ur+s = 

that
∫

· · ·
∫

�r+s–

uα
 · · ·uαr+s

r+s du · · · dur+s–

=
�(α + ) · · ·�(αr+s + )
�(α + · · · + αr+s + r + s)

. (.)

Consequently, by the following operation:
∫

· · ·
∫

�r+s–

(· · · ) du · · · dur+s–

applied to both sides of (.), and with the help of (.), we get


(n + r + s – )!

∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
s∏

k=

Ejk (yk ;μk)

=
∑

Ir+Js=n+ε

r∑

a=

Fia (xa;λ)
ia! · (n + ε – ia + r + s)!

a–∏

k=

λkBik (xk – xa + ;λk)

·
r∏

k=a+

Bik (xk – xa;λk)
s∏

k=

Ejk (yk – xa;μk)

+ 
∑

Ir+Js=n++ε

s∑

b=

(–)b Fjb (yb;λ)
jb! · (n + ε – jb + r + s)!

·
b–∏

k=

μkEjk (yk – yb + ;μk)

·
s∏

k=b+

Ejk (yk – yb;μk)
r∏

k=

λkBik (xk – yb + ;λk), (.)

which, together with (.), yields the desired results (.) and (.). This completes the
proof of Theorem . �
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Proof of Theorem  Let u, . . . , ur+s be r + s variables with

u + · · · + ur+s = .

For  � k � s, if we substitute ur+kteyk ur+k t for eyk ur+k t in both sides of (.), we find
that

[
tn

n!

]( r∏

k=

uktexk uk t

λkeuk t – 

s∏

k=

ur+kteyk ur+k t

μkeur+k t + 

)

=
[

tn

n!

]( r∑

a=

uatexat

(–)sλet – 

a–∏

k=

λk
ukte(xk –xa+)uk t

λkeuk t – 

·
r∏

k=a+

ukte(xk –xa)uk t

λkeuk t – 

s∏

k=

ur+kte(yk –xa)ur+k t

μkeur+k t + 

)

+
[

tn

n!

]( s∑

b=

(–)b ur+bteybt

(–)sλet – 

b–∏

k=

μk
ur+kte(yk –yb+)ur+k t

μkeur+k t + 

·
s∏

k=b+

ur+kte(yk –yb)ur+k t

μkeur+k t + 

r∏

k=

λk
ukte(xk –yb+)uk t

λkeuk t – 

)
= N + N, (.)

say. It is trivial to obtain

[
tn

n!

]( r∏

k=

uktexk uk t

λkeuk t – 

s∏

k=

ur+kteyk ur+k t

μkeur+k t + 

)

= n! ·
∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
uik

k
ik !

s∏

k=

Gjk (yk ;μk)
ujk

r+k
jk !

, (.)

and N and N in the right-hand side of (.) can be rewritten as

N = n! ·
∑

Ir+Js=n

r∑

a=

Pia (xa;λ)
ua

ia!

a–∏

k=

λkBik (xk – xa + ;λk)
uik

k
ik !

·
r∏

k=a+

Bik (xk – xa;λk)
uik

k
ik !

s∏

k=

Gjk (yk – xa;μk)
ujk

r+k
jk !

(.)

and

N =  · n! ·
∑

Ir+Js=n

s∑

b=

(–)bPjb (yb;λ)
ur+b

jb!

·
b–∏

k=

μkGjk (yk – yb + ;μk)
ujk

r+k
jk !

s∏

k=b+

Gjk (yk – yb;μk)
ujk

r+k
jk !

·
r∏

k=

λkBik (xk – yb + ;λk)
uik

k
ik !

. (.)
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It follows from (.)-(.) that

∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
uik

k
ik !

s∏

k=

Gjk (yk ;μk)
ujk

r+k
jk !

=
∑

Ir+Js=n

r∑

a=

Pia (xa;λ)
ua

ia!

a–∏

k=

λkBik (xk – xa + ;λk)
uik

k
ik !

·
r∏

k=a+

Bik (xk – xa;λk)
uik

k
ik !

s∏

k=

Gjk (yk – xa;μk)
ujk

r+k
jk !

+ 
∑

Ir+Js=n

s∑

b=

(–)bPjb (yb;λ)
ur+b

jb!

·
b–∏

k=

μkGjk (yk – yb + ;μk)
ujk

r+k
jk !

s∏

k=b+

Gjk (yk – yb;μk)
ujk

r+k
jk !

·
r∏

k=

λkBik (xk – yb + ;λk)
uik

k
ik !

. (.)

By making the operation
∫ · · · ∫

�r+s–
· du · · · dur+s– in both sides of (.), with the help

of (.), we get


(n + r + s – )!

∑

Ir+Js=n

r∏

k=

Bik (xk ;λk)
s∏

k=

Gjk (yk ;μk)

=
∑

Ir+Js=n

r∑

a=

Pia (xa;λ)
ia! · (n – ia + r + s)!

a–∏

k=

λkBik (xk – xa + ;λk)

·
r∏

k=a+

Bik (xk – xa;λk)
s∏

k=

Gjk (yk – xa;μk)

+ 
∑

Ir+Js=n

s∑

b=

(–)b Pjb (yb;λ)
jb! · (n – jb + r + s)!

·
b–∏

k=

μkGjk (yk – yb + ;μk)

·
s∏

k=b+

Gjk (yk – yb;μk)
r∏

k=

λkBik (xk – yb + ;λk), (.)

as desired. This concludes the proof of Theorem . �
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