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Abstract
We consider the integrable generalization of the nonlinear Schrödinger equation that
arises as a model for nonlinear pulse propagation in monomode optical fibers. The
existent conditions for its modulational instability to form the rogue waves is given
from its plane-wave solutions. We propose a generalized (n,N – n)-fold Darboux
transformation for this system by using the Nth-order Darboux matrix, Taylor
expansion, and a limit procedure. As an application, we use the generalized
perturbation (1,N – 1)-fold Darboux transformation to generate higher-order rogue
wave solutions of this system. The dynamics behavior of the first-, second-, and
third-order rouge wave solutions are shown graphically. These results may be useful
for understanding some physical phenomena in optical fibers.
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modulational instability; generalized (n,N – n)-fold Darboux transformation (DT);
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1 Introduction
Recently, rogue waves (RWs) have attracted more and more theoretical and experimental
attention []. The RWs were first observed in deep oceans, and later these studies gradu-
ally extended to other fields, such as fiber optics, Bose-Einstein condensates, and capillary
waves [–]. In fact, RWs are taken as a new type of explicit rational solutions of nonlin-
ear wave equations. The nonlinear Schrödinger equation is one of the most fundamental
modes admitting RWs []. Until now, many nonlinear Schrödinger-type equations have
been reported to have rogue wave solutions [–]. In [], multirogue wave solutions of a
Schrödinger equation with higher-order terms employing the generalized DT and some
related properties of the nonautonomous rogue waves are investigated analytically. Based
on the similarity transformation, several families of nonautonomous wave solutions have
been studied for the generalized coupled cubic-quintic nonlinear Schrödinger equation
with group-velocity dispersion, fiber gain-or-loss, and nonlinearity coefficient functions,
which describes the evolution of a slowly varying wave packet envelope in the inhomo-
geneous optical fiber []. The N th-order rogue wave solutions have been obtained for a
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higher-order variable coefficients nonlinear Schrödinger equation, which plays an impor-
tant role in the control of the ultrashort optical pulse propagation in nonlinear optical
systems []. Based on the N th-iterated generalized DT formula, the vector bright soliton
solution and vector rogue wave solution have been systematically derived for the coher-
ently coupled nonlinear Schrödinger system []. In [, ], the authors have presented
some soliton, breather, and rogue wave solutions for the ( + )-dimensional derivative
nonlinear Schrödinger equation and ( + )-dimensional nonlinear Schrödinger equation
via the N th-order generalized Darboux transformation. In the present paper, based on
our proposed generalized (n, N – n)-fold DT method by using the Taylor expansion of the
Darboux matrix [, ], which is different from the iterated generalized DT in [, , –],
we will investigate the following integrable generalization of the nonlinear Schrödinger
equation (gNLS) [–]:

uxt + αβu – iαβux – αuxx – iαβ|u|ux = , ()

where u = u(x, t) is the slowly varying complex envelope of the wave, α and β are real
constants, and i is the imaginary number unit (i = –). Equation () may model nonlinear
pulse propagation in monomode optical fibers. In [], an N-fold DT is constructed for Eq.
(), one- and two-soliton solutions are obtained from the trivial solution, and two classes
of new explicit solutions are given explicitly from a plane wave solution as the seeding
solution. For some relevant research results on Eq. (), we refer the reader to [–] and
references therein. However, Eq. () is different from other NLS equation and its gener-
alization forms [, , –, –] owing to the term uxt ; to the best of our knowledge,
the modulational instability, generalized (n, N – n)-fold DT, and higher-order rogue wave
solutions for Eq. () have not been studied yet.

So, in this paper, we make further investigation on Eq. () via our proposed generalized
(n, N – n)-fold DT technique [, ]. The rest of the paper is as follows. In Section , the
modulational instability of Eq. () is investigated. In Section , based on the DT in [],
we give a brief introduction to the N-fold DT of Eq. (). In Section , we construct the
generalized (n, N – n)-fold DT of Eq. (). In Section , based on the generalized (, N – )-
fold DT, we give some higher-order rogue wave solutions, and the dynamics behavior of
those solutions are shown by some figures. Finally, we address the conclusions in Section .

2 Modulational instability of plane wave states
Before we study higher-order RW solutions of Eq. (), we investigate the modulational
instability of Eq. (). We start with its plane wave solution in the form

u = cei[ax+(αa+αβ+αβc+ αβ
a )t], ()

where c is a real amplitude, and a is a real wave number. Substituting the perturbation solu-
tion u(x, t) = [c + εU(x, t)]ei[ax+(αa+αβ+αβc+ αβ

a )t] into Eq. () yields the linearized equation
(only considering the linear term of ε)

Ux,t + αβU + iUt + iαβUx – iαUx + αβU∗
x – αUxx = . ()
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Figure 1 Gain spectra of modulation instability for the
different parameter values c = 0.5; 0.75; 1; 1.5; 2. (Color online.)

We consider the solution to Eq. () with the wave number k and frequency ω in the form

U = F cos(kx – ωt) + iG sin(kx – ωt), ()

where F and G are real amplitudes. Substituting () into () yields the following dispersion
relation for the perturbations, obtained as the condition for the existence of nontrivial
solutions for F and G (i.e., FG �= ):

ω =
αk(ak – a + aβc + aβ ± β

√
ac + ac + k)

a(a – k)
. ()

When ac + ac + k < , the frequency ω becomes complex, and the disturbance grows
with time exponentially. In the following, we consider the gain spectrum of modulational
instability. The power gain is obtained from () by

g(k) = Im(ω) =
|αkβ|√–ac – ac – k

|a(a – k)| , ()

where g(k) stands for the gain with ac + ac + k < . In what follows, we assume that
α = β =  and a = – 

c and choose different values of the parameter c, showing the gain
spectra at five power levels in Figure .

3 The N-fold DT for Eq. (1)
In this part, we give a brief introduction of the N-fold DT for Eq. (). According to [],
the Lax pair for Eq. () is as follows:

ϕx = Uϕn =

(
–i 

λ
ux
λ

– u∗
x
λ

i 
λ

)
ϕ, ()

ϕt = Vϕn =

(
i
αβ|u| – iμ α

λ
ux + i

αβu
– α

λ
u∗

x + i
αβu∗ – i

αβ|u| + iμ

)
ϕ, ()

where ∗ represents the complex conjugation, ϕ = (φ,ψ)T (the superscript T denotes the
vector transpose) is the vector eigenfunction, λ is the spectral parameter, and μ =

√
α( 

λ
–


βλ). Here, to construct RW solutions for Eq. (), it is worth pointing out that we have
changed the spectral parameter of Lax pair from λ to 

λ
in []. The compatibility condition
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Ut – Vx + UV – VU =  between Eqs. () and () gives rise to Eq. (). In the following,
we proceed by establishing the N-fold DT of Eq. (). For this reason, we introduce the
transformation

ϕ̃ = Tϕ, ()

where ϕ̃ is required to satisfy Eqs. () and () with U and V replaced by Ũ and Ṽ , that is,

ϕ̃ = Ũϕ̃, Ũ = (Tt + TU)T–, ()

ϕ̃t = Ṽ ϕ̃, Ṽ = (Tt + TV )T–. ()

Hereby, we assume that theN th-order Darboux matrix T is of the form

T =

(
A B
C D

)
=

(
λN +

∑N–
j= A(j)λj ∑N–

j= B(j+)λj+

–
∑N–

j= B(j+)∗λj+ λN +
∑N–

j= A(j)∗λj

)
()

with the complex functions A(j) and B(j+) (j = , , , . . . , N – ) solving the linear system
T(λk)ϕ(λk) =  (k = , , . . . , N ), that is,

(
λN +

N–∑
j=

A(j)λj

)
φ +

(N–∑
j=

B(j+)λj+

)
ψ = ,

(
–

N–∑
j=

B(j+)∗λj+

)
φ +

(
λN +

N–∑
j=

A(j)∗λj

)
ψ = ,

()

where ϕ(λk) = (φ(λk),ψ(λk))T = (φk ,ψk) is a basic solution of Eqs. () and () for the given
spectral parameter λk and seed solution u. Of course, it should be noted that the Darboux
matrix () here is a little different from that in [], owing to the variation of the spectral
parameter λ in Lax pair. The N nonzero variables A(j) and B(j+) can be determined by
N equations in () when the spectral parameters λk are suitably chosen.

According to the steps in [], the usual N-fold Darboux transformation of Eq. () is
given by

ũN– = u + B(N–), ()

where B(N–)(x, t) = 
B(N–)


N
with


N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ
(N–)
 φ λ

(N–)φ · · · φ λ
N–ψ λN–

 ψ · · · λψ

λ
(N–)
 φ λ

(N–)φ · · · φ λ
N–ψ λN–

 ψ · · · λψ

· · · · · · · · · · · · · · · · · · · · · · · ·
λ

(N–)
N φN λN

(N–)φN · · · φN λN
N–ψN λN–

N ψN · · · λNψN

λ
∗(N–)
 ψ∗

 λ
∗(N–)ψ∗

 · · · ψ∗
 –λ

∗(N–)
 φ –λ

∗(N–)
 φ∗

 · · · –λ∗
 φ

∗


λ
∗(N–)
 ψ∗

 λ
∗(N–)ψ∗

 · · · ψ∗
 –λ

∗(N–)
 φ –λ

∗(N–)
 φ∗

 · · · –λ∗
φ

∗


· · · · · · · · · · · · · · · · · · · · · · · ·
λ

∗(N–)
N ψ∗

N λN
∗(N–)ψ∗

N · · · ψ∗
N –λ

∗(N–)
N φN –λ

∗(N–)
N φ∗

N · · · –λ∗
Nφ∗

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and 
B(N–) is given by the determinant 
N by replacing its (N + )th column by the
column vector (–λN

 φ, –λN
 φ, . . . , –λN

N φN , –λ
∗(N)
 ψ∗

 , –λ
∗(N)
 ψ∗

 , . . . , –λ
∗(N)
N ψ∗

N )T.
For the proof of the form invariance for Ũ , Ṽ and U , V , we refer to [, , ] and ref-

erences therein, where the proof process is similar. The aim of this paper is to construct
the generalized (n, N – n)-fold DT and higher-order rogue wave solutions in terms of de-
terminants. Hereby, the proof is omitted for simplicity. Transformations () and () are
called an N-DT of Eq. (). By applying the N-fold DT, higher-order soliton solutions (or
higher-order breather solutions) for Eq. () are obtained by choosing the constant seed
solution (or plane wave solutions) [].

4 Generalized (n, N – n)-fold DT for Eq. (1)
For the N-fold DT with N distinct spectral parameters, we can derive a N-soliton solu-
tion in terms of the determinant representation. However, for the generalized (n, N – n)-
fold DT for Eq. (), the main difference is that we can adjust the number of the spectral
parameter: the least may be , and the most may be N . Here, we consider the case with n
distinct spectral parameters λi (i = , , . . . , n),  ≤ n ≤ N .

Here we still consider the Darboux matrix (), but with n spectral parameters λi (i =
, , . . . , n),  ≤ n ≤ N , and not with N (N > ) distinct spectral parameters, in which the
condition T(λi)ϕ(λi) =  leads to the linear algebraic system with only n equations

[
λN

i +
N–∑
j=

A(j)λ
j
i

]
φ(λi) +

N–∑
j=

B(j+)λ
j+
 ψ(λi) = ,

[
λ

∗(N)
i +

N–∑
j=

A(j)λ
∗(j)
i

]
ψ∗(λi) –

N–∑
j=

B(j+)λ
∗(j+)
i φ∗(λi) = ,

()

where ϕ(λi) = (φ(λi),ψ(λi))T is a solution of the linear spectral problem () and () with
one spectral parameter λ = λi and the initial solution u of Eq. (). When n < N , we only
have n above-given algebraic constraints () for N unknown functions A(j) and B(j+)

(j = , , . . . , N – ). This means that the number of the unknown variables A(j) and B(j+)

is greater than that of equations, so that we have some free functions. To determine these
N unknown functions A(j) and B(j+), we need to find additional (N – n) equations
for N functions A(j) and B(j+) so that we would have N equations for N functions
A(j) and B(j+). Determining these N functions A(j) and B(j+), we then can obtain ‘new’
solutions of Eq. () in terms of DT.

To generate ‘new’ additional (N – n) equations from T(λi)ϕ(λi) = , we consider the
Taylor expansion of T(λi + ε)ϕ(λi + ε) (i = , , . . . , n) at ε = . We know that

ϕ(λi + ε) = ϕ()(λi) + ϕ()(λi)ε + ϕ()(λi)ε + · · · , ()

where ϕ(k)(λi) = 
k!

∂k

∂λk
i
ϕ(λi) = ( 

k!
∂k

∂λk
i
φ(λi), 

k!
∂k

∂λk
i
ψ(λi))T with ϕ()(λi) = ϕ(λi) = (φ(λi),

ψ(λi))T (k = , , , . . .), and

T(λi + ε) = T(λi) +
N∑
k=

T (k)(λi)εk . ()
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Thus, we have

T(λi + ε)ϕ(λi + ε) =
+∞∑
k=

k∑
j=

T (j)(λ)ϕ(k–j)(λi)εk , ()

where ϕ
(k)
i (λi) = 

k!
∂k

∂λk
i
ϕi(λ)|λ=λi , and ε is a small parameter.

It follows from Eq. () and

lim
ε→

T(λi + ε)ϕ(λi + ε)
εki

=  ()

for i = , , . . . , n and ki = , , . . . , mi that we obtain the linear algebraic system with N
equations (N = n +

∑n
i= mi, i = , , . . . , n):

T ()(λi)ϕ()(λi) = ,

T ()(λi)ϕ()(λi) + T ()(λi)ϕ()(λi) = ,

. . . ,

mi∑
j=

T (j)(λi)ϕ(mi–j)(λi) = ,

()

in which we have some first systems for every index i, that is, T ()(λi)ϕ()(λi) = T(λi)ϕ(λi) =
 are just ones in system (), but they are different if there exist at least one index mi �= .
Here the number mi (mi = , , , . . .) is the highest order perturbation derivatives corre-
sponding to λi (i = , , . . . , n), where the nonnegative integers n, mi are required to satisfy
N = n +

∑n
i= mi, and N is the same as in the Darboux matrix T ().

Therefore, we have obtained system () containing N algebraic equations with N
unknowns functions A(j) and B(j+) (j = , , . . . , N – ). When the eigenvalue λi is suit-
ably chosen so that the determinant of the coefficients for system () is nonzero, the
transformation matrix T is uniquely determined by system (). It can be shown that the
above N-fold DT still holds for the Darboux matrix () with A(j), B(j+) (j = , , . . . , N – )
determined by system (). Owing to new distinct functions A(j), B(j+) obtained in the
N th-order Darboux matrix T , we can derive the ‘new’ DT with the n eigenvalues λ = λi.
We call Eqs. () and () associated with new functions A(j), B(j+) determined by system
() a generalized (n, N – n)-fold DT. So we have the following theorem for the generalized
(n, N – n)-fold DT of Eq. ().

Theorem  The spectral problem ()-() is covariant with respect to the transformations
(), and

ũN = u + B(N–), ()
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with B(N–) = 
ε(n)B(N–)



ε(n)
N

defined by solving the linear algebraic system () in terms of the

Cramer rule, where 

ε(n)
N = det([
() · · ·
(n)]T) with


(i)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi
N–φ

()
i λi

N–φ
()
i · · · φ

()
i λi

N–ψ
()
i λi

N–ψ
()
i · · · λiψ

()
i



(i)
, 


(i)
, · · · φ

()
i 


(i)
,N+ 


(i)
,N+ · · · 


(i)
,N

...
...

. . .
...

...
...

. . .
...



(i)
mi+, 


(i)
mi+, · · · φ

(mi )
i 


(i)
mi+,N+ 


(i)
mi+,N+ · · · 


(i)
mi+,N

λ∗
i

(N–)ψ
()
i

∗
λ∗

i
(N–)ψ

()
i

∗ · · · ψ
()
i

∗
–λ∗

i
(N–)φ

()
i

∗
–λ∗

i
(N–)φ

()
i

∗ · · · –λ∗
i φ

()
i

∗



(i)
mi+, 


(i)
mi+, · · · ψ

()
i

∗



(i)
mi+,N+ 


(i)
mi+,N+ · · · 


(i)
mi+,N

...
...

. . .
...

...
...

. . .
...



(i)
(mi+), 


(i)
(mi+), · · · ψ

(mi )
i

∗



(i)
(mi+),N+ 


(i)
(mi+),N+ · · · 


(i)
(mi+),N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

()

and 

(i)
j,s ( ≤ j ≤ (mi + ),  ≤ s ≤ N i = , , . . . , n) given by the following formulae:



(i)
j,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑j–
k= Ck

N–sλi
N–s–kφ

(j––k)
i for  ≤ j ≤ mi + ,

 ≤ s ≤ N ,∑j–
k= Ck

N–s+λi
N–s+–kψ

(j––k)
i for  ≤ j ≤ mi + ,

N +  ≤ s ≤ N ,∑j–(N+)
k= Ck

N–sλi
∗(N–s–k)ψ

(j–N––k)∗
i for mi +  ≤ j ≤ (mi + ),

 ≤ s ≤ N ,

–
∑j–(N+)

k= Ck
N–s+λi

∗(N–s+–k)φ
(j–N––k)∗
i for mi +  ≤ j ≤ (mi + ),

N +  ≤ s ≤ N ,

()

and 
εB(N–) is formed from the determinant 

ε(n)
N by replacing its (N + )th column by

the column vector (b() · · ·b(n))T with b(i) = (b(i)
j )(mi+)× and

b(i)
j =

⎧⎨
⎩–

∑j–
k= Ck

Nλi
N–kφ

(j––k)
i for  ≤ j ≤ mi + ,

–
∑j–(N+)

k= Ck
Nλi

∗(N–k)ψ
(j–N––k)∗
i for mi +  ≤ j ≤ (mi + ).

()

Notice that when n = N (i.e., mi = ,  ≤ i ≤ N ), Theorem  reduces to the N-fold DT;
when n =  and m = N – , Theorem  reduces to the (, N – )-fold DT. Here, we remark
that system () in the generalized (n, N – n)-fold DT is very important; its role is similar
to that of Eqs. () of the N-fold DT; both of them can determine the N unknown func-
tions A(j), B(j+) ( ≤ j ≤ N – ), but they are different from each other: Eqs. () have N
spectral parameters, whereas system () only has n spectral parameters. Owing to dif-
ferent A(j), B(j+) ( ≤ j ≤ N – ), the former can lead to the N-soliton solutions, whereas
the latter may generate higher-order rogue wave solutions. In the following, we will use
the generalized perturbation (, N – )-fold Darboux transformation to investigate higher-
order rogue wave solutions of the gNLS equation () from the initial plane wave solution.

5 Higher-order RWs of Eq. (1)
In this section, we give some rogue wave solutions in terms of determinants of Eq. () using
the generalized (, N – )-fold DT in Theorem  with n = . Starting from the seed solution
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u = cei[ax+(αa+αβ+αβc+ αβ
a )t] of Eq. (), we can give a basic solution of Lax pair () and ()

as follows:

ϕ =

(
(Ce–A + CeA)eB

(–CeA + Ce–A)e–B

)
()

with

C =

√
( + λa) +

√
aλ +  + λa + acλ

acλ
,

C =

√
–( + λa) +

√
aλ +  + λa + acλ

acλ
,

B =
i


[
ax +

(
αa + αβc + αβ +

αβ

a

)
t
]

,

A =
i
√

aλ +  + λa + aλc(ax + (aα + αβλ)t + (ε))
λa

,

(ε) =
N∑

k=

(bk + dki)εk ,

where ε is a small parameter, and bk , dk (k = , , . . . , N ) are real free parameters that can
control different rogue wave structures.

Next, we fix λ = –
√

–a(+ac+
√

ac+ac)
a and set λ = λ + ε in (). Then we expand the

vector function ϕ in () as Taylor series at ε = . Because the expansion expression of
ϕ(ε) is too complicated, in the following discussions, we may set a = – 

c to simplify our
calculation process at the same time, that is, λ = c( + i). Therefore, we obtain

ϕ
(
ε) = ϕ() + ϕ()ε + ϕ()ε + ϕ()ε + · · · , ()

where

ϕ() =

(
φ()

ψ ()

)
=

(
e i

 (–x–αt+αβt)√
–ie– i

 (–x–αt+αβt)√

)
,

ϕ() =

(
φ()

ψ ()

)
, ϕ() =

(
φ()

ψ ()

)
, ϕ() =

(
φ()

ψ ()

)
, . . . ,

()

and ϕ(i) = (φ(i),ψ (i))T (i = , , ) are listed in the Appendix.
In the following, we discuss the higher-order rogue wave solutions of the four cases with

N = , , ,  for Eq. (). It is particularly worth pointing out that we only derive the trivial
solution for the case N = , which is omitted here. Relevant structure figures for other
three cases N = , ,  are shown in Figures -.

(I) When N = , solving the linear algebraic system () leads to

B() =

B()



()
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Figure 2 First-order rogue wave solution (30) with different parameters. (a1)-(a2) c = 1, α = 1, β = 1;
(b1)-(b2) c = 4, α = 1, β = 1; (c1)-(c2) c = 1, α = –1, β = 1; (d1)-(d2) c = 1, α = 4, β = 1; (e1)-(e2) c = 1, α = 1,
β = 4. (Color online.)

Figure 3 Second-order rogue wave solution ũ2 with c = α = β = 1 given by Eq. (32) at different values
of b1, d1. (a1)-(a2) b1 = d1 = 0; (b1)-(b2) b1 = 1,000, d1 = 0; (c1)-(c2) b1 = –1,000, d1 = 0; (d1)-(d2) b1 = 0,
d1 = 1,000; (e1)-(e2) b1 = d1 = 1,000. (Color online.)

with


 =

∣∣∣∣∣∣∣∣∣

λφ() φ() λψ () ψ ()

λφ() + λφ() φ() λψ () + λψ () λψ () + ψ ()

λ∗ψ ()∗ ψ ()∗ –λ∗φ()∗ –λ∗φ()∗

λ∗ψ ()∗ + λ∗ψ ()∗ ψ ()∗ –λ∗φ()∗ – λ∗φ()∗ –λ∗φ()∗ – φ()∗

∣∣∣∣∣∣∣∣∣
and


B() =

∣∣∣∣∣∣∣∣∣

λφ() φ() –λφ() ψ ()

λφ() + λφ() φ() –λφ() – λφ() λψ () + ψ ()

λ∗ψ ()∗ ψ ()∗ –λ∗ψ ()∗ –λ∗φ()∗

λ∗ψ ()∗ + λ∗ψ ()∗ ψ ()∗ –λ∗ψ ()∗ – λ∗ψ ()∗ –λ∗φ()∗ – φ()∗

∣∣∣∣∣∣∣∣∣
.
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Figure 4 Third-order rogue wave solution ũ3 with c = α = 1, β = 2 given by Eq. (33) at different values
of bi , di (i = 1, 2). (a1)-(a2) b1 = d1 = b2 = d2 = 0; (b1)-(b2) b1 = 1,000, d1 = b2 = d2 = 0; (c1)-(c2) b2 = 10,000,
b1 = d1 = d2 = 0; (d1)-(d2) b1 = 90, b2 = –1,080, d1 = d2 = 0; (e1)-(e2) b1 = –140, b2 = 2,300, d1 = d2 = 0. (Color
online.)

Based on the generalized perturbation (, )-fold DT, we can obtain the first-order rogue
wave solution with three free constant parameters α, β , c of Eq. ():

ũ = u + B() = cei[ax+(αa+αβ+αβc+ αβ
a )t] + B(), ()

and the analytical expression of solution () with a = – 
c is

ũ = c
(

 +
c + icαt + icx

–αt – αtβc – c – x + icαtβ – icx – xαt – icαt

)

× e
i(–x–αt+αβct)

c . ()

By a simple calculation it is easy to find that the RW ũ reaches the amplitude |c| at
(x, t) = (, ), the two holes locate on (x, t) = (±

√
(cβ+)
βc ,∓ 

√


αβc ), the width (the dis-

tance of its two holes) is
√

(+αcβ+αcβ+α)√
|α|βc , its minimum value is zero, and ũ → |c|

as |x| → ∞. From the previous analysis we see that the parameters α, β , c can change
the width and direction of the RW, the parameter c determines the amplitude of RW, so
we can control rogue waves by changing parameters α, β , c. Next, we discuss the RW ũ

by choosing different parameters α, β , c; the related RW structure figures are displayed
in Figure . From Figure , and regardless of choosing α, β , c, the solution ũ always has
the maximum amplitude at (x, t) = (, ), the minimum amplitude is always zero, and the
maximum amplitude depends on the parameter c, so we can see that the maximum am-
plitude is  when c =  (see Figure (b)), and the maximum amplitude is  when c = 
(see Figure (a), (c), (d), (e)). When c = , α = , β = , the minimum amplitude is zero
at (x, t) = (± 

√


 ,∓ 
√


 ), and the width of the RW is

√
 ≈ . (see Figure (a)-(a));

When c = , α = , β = , the minimum amplitude is zero at (x, t) = (± 
√


 ,∓ 

√


 ), and
the width of the RW is

√
,

 ≈ . (see Figure (b)-(b)); When c = , α = –, β = ,
the minimum amplitude is zero at (x, t) = (± 

√


 ,± 
√


 ), and the width is

√
 ≈ .

(see Figure (c)-(c)). When c = , α = , β = , the minimum amplitude is zero at
(x, t) = (± 

√


 ,∓ 
√


 ), and the width is

√

 ≈ . (see Figure (d)-(d)); When c = ,



Wen Advances in Difference Equations  (2016) 2016:311 Page 11 of 17

α = , β = , the minimum amplitude is zero at (x, t) = (± 
√


 ,∓ 

√


 ), and the width is√

 ≈ . (see Figure (e)-(e)). In addition, it is easy to observe the effect of the

parameters α, β , c on the RW structure by comparing their values in Figure .
(II) When N = , solving the linear algebraic system () leads to

B() =

B()



()

with


 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λφ() λφ() φ() λψ () λψ () ψ ()


, 
, φ() 
, 
, λψ () + ψ ()


, 
, φ() 
, 
, λψ () + ψ ()

λ∗ψ ()∗ λ∗ψ ()∗ ψ ()∗ –λ∗φ()∗ –λ∗φ()∗ –λ∗φ()∗


, 
, ψ ()∗ 
, 
, –λ∗φ()∗ – φ()∗


, 
, ψ ()∗ 
, 
, –λ∗φ()∗ – φ()∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,


B() =

∣∣∣∣∣∣∣∣∣∣∣∣

λφ() λφ() φ() –λφ() λψ () ψ ()


, 
, φ() –λφ() – λφ() 
, λψ () + ψ ()


, 
, φ() –λφ() – λφ() – λφ() 
, λψ () + ψ ()

λ∗ψ ()∗ λ∗ψ ()∗ ψ ()∗ –λ∗ψ ()∗ –λ∗φ()∗ –λ∗φ()∗


, 
, ψ ()∗ –λ∗ψ ()∗ – λ∗ψ ()∗ 
, –λ∗φ()∗ – φ()∗


, 
, ψ ()∗ –λ∗ψ ()∗ – λ∗ψ ()∗ – λ∗φ()∗ 
, –λ∗φ()∗ – φ()∗

∣∣∣∣∣∣∣∣∣∣∣∣
,

where 
, = λφ() + λφ(), 
, = λφ() + λφ(), 
, = λψ () + λψ (), 
, =
λψ () + λψ (), 
, = λφ() + λφ() + λφ(), 
, = λφ() + λφ() + φ(), 
, =
λψ () + λψ () + λψ (), 
, = λψ () + λψ () + λψ (), 
, = λ∗ψ ()∗ + λ∗ψ ()∗,

, = λ∗ψ ()∗ + λ∗ψ ()∗, 
, = –λ∗φ()∗ – λ∗φ()∗, 
, = –λ∗φ()∗ – λ∗φ()∗, 
, =
λ∗ψ ()∗ + λ∗ψ ()∗ + λ∗ψ ()∗, 
, = λ∗ψ ()∗ + λ∗ψ ()∗ + ψ ()∗, 
, = –λ∗φ()∗ –
λ∗φ()∗ – λ∗φ()∗, 
, = –λ∗φ()∗ – λ∗φ()∗ – λ∗φ()∗.

Based on the generalized perturbation (, )-fold DT, we can derive the second-order
RW solution with four arbitrary constant parameters α, β , c, b, d of Eq. ():

ũ = u + B() = cei[ax+(αa+αβ+αβc+ αβ
a )t] + B(), ()

the analytical expression of solution () with a = – 
c is too complicated and therefore is

omitted here. Next, we discuss some special structures of the second-order RW for the
following two cases:

• For solution ũ with parameters c = α = β =  and b = d = , we see that ũ →  as
x → ∞ and t → ∞ and that the second-order RW generates the strong interaction
and crowd around the origin; the corresponding wave profiles are shown in
Figure (a)-(a).

• For solution ũ with parameters c = α = β = , d = , and b �=  (e.g., b = ,) or
c = α = β = , b = , and d �=  (e.g., d = ,), we see that ũ →  as x → ∞ and
t → ∞, the second-order RW generates a weak interaction, and, at the same time, it is
split into three first-order RWs with a triangle array structure (see Figure (b)-(b),
(d)-(d)), and the triangle structure becomes larger as |b| or |d| increases. When
b = –, or d = –,, the triangle structure rotates  degrees with respect to
the origin (see Figure (c)-(c)). When parameters c = α = β =  and bd �=  (e.g.,
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b = ,, d = ,), the second-order RW is also split into three first-order RWs
with a triangle array structure (see Figure (e)-(e)), and comparing Figure (e)-(e)
with Figure (b)-(b), (d)-(d), we see that the triangle structure also rotates.

(III) When N = , based on the generalized perturbation (, )-fold DT, we can derive
the third-order RW solution with seven arbitrary constant parameters α, β , c, b, d, b, d:

ũ = u + B() = cei[ax+(αa+αβ+αβc+ αβ
a )t] + B(), ()

where the determinant form of B() is omitted here. The analytical expression of ũ with
a = – 

c is very complicated and therefore is omitted here. Next, we discuss some special
structures of the third-order RW for the following four cases:

• For solution ũ with parameters c = α = , β = , b = d = b = d = , we see that
ũ →  as x → ∞ and t → ∞ and that the third-order RW generates a strong
interaction and crowd round the origin; the corresponding wave profiles are shown in
Figure (a)-(a).

• For solution ũ with parameters c = α = , β = , d = b = d = , b �=  (e.g.,
b = ,) or c = α = β = , b = b = d = , d �=  (see Figure (b)-(b)), we see that
ũ →  as x → ∞ and t → ∞, the third-order RW generates a weak interaction, and,
at the same time, it is split into six first-order RWs with a regular triangle array
structure, and the triangle structure becomes larger as |b| or |d| increases.

• For solution ũ with parameters c = α = , β = , b = d = d = , b �=  (e.g.,
b = ,) or c = α = β = , b = d = b = , d �=  (see Figure (c)-(c)), we see
that ũ →  as x → ∞ and t → ∞, the third-order RW generate the weak interaction,
and, at the same time, the third-order RW is split into six first-order RWs with a
regular pentagon array structure, and the pentagon structure becomes larger as |b| or
|d| increases.

• For solution ũ with parameters c = α = β =  and bb �= , d = d =  or bd �= ,
d = b =  or db �= , b = d =  or dd �= , b = b = , solution ũ →  as x → ∞
and t → ∞, the third-order RW may be split into six first-order RWs (or one
second-order RW and three first-order RWs or two second-order RWs) with a static
irregular array structure. When c = α = , β = , b = , b = –,, d = d =  or
c = α = , β = , b = –, b = ,, d = d = , the third-order RW with weak
interaction has an irregular structure; the corresponding wave profiles are shown in
Figure (d)-(d), (e)-(e). However, it is obvious that the influences for two sets of
parameters are different through comparing Figure (d)-(d) with Figure (e)-(e);
different parameters can change the space arrangement of the third-order RW.

With the aid of symbolic computation Maple, solutions (), () and () have been
verified by substituting them into Eq. ().

6 Conclusions
Equation () can model nonlinear pulse propagation in monomode optical fibers. In this
paper, we have constructed the perturbation (n; N – n)-fold DT for Eq. (). As an applica-
tion, the generalized perturbation (, N – )-fold DT method with the same one spectral
parameter allows us to calculate the higher-order RWs in terms of determinants for Eq. ()
in a unified way without complicated iteration procedure. Specifically, the first-, second-,
and third-order RW structures are shown graphically: Figure  shows the first-order RW
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structures with N = ; Figure  exhibits the second-order RW interaction structures with
N = ; Figure  exhibits the third-order RW interaction structures with N = . Solutions
and figures obtained in this paper might be helpful for understanding physical phenomena
in optical fibers described by Eq. (). We hope that our results are useful for understanding
the generation mechanism and finding possible application of RWs. We believe that the
method in this paper can be generalized to seek for some other types of nonlinear wave
models, and we will carry out a further investigation in the future.

Appendix

φ() = –



e
i
 (–x–tα+tαβ)√

(
–itα – tα + tα + x +  + i + xtα

– ixtα – ixtαβ + itαβ – tαβ – x + iαβt

– itαβ – xtαβ – αβt – ix),

ψ () =
i


e– i
 (–x–tα+tαβ)√

(
x + x – itα +  + i

– ixtα + tα + tα – itαβ – xtαβ – αβt

– ixtαβ + iαβt + xtα – itαβ – ix – tαβ),

φ() = –



e

i
 (–x–tα+tαβ)√

(
– + tαβ + x – xtα + itαβ + tα

+ itαβ – tαβ + tαβ + xtα + xtα – tαβ + b

– ixtαβ + ixtα – xtαβ – xtαβ – xtαβ + αβt

+ tα – x – tα + xtαβ + tαβb – tαβd + xtαβ

+ xtαβ – tαβx + xtαβ – bx – xd – tαb – tαd

+ tαβ + tαβ – tαβ + ix – ixtαβ + itαβd

– ixtαβ – ixtαβ – itαβ + itαβ – ixtα + x

– ixtα + id + itαβb + ix + ixtα + itαb + ixtαβ

+ ixtαβ + itαβ – ix + i – ix + itαβ – itαd

– itαβ + ixtα + itαβ + itα + ibx + itα

– itα – itα – ixd + itαx
)
,

ψ () =
i


e– i

 (–x–tα+tαβ)√
(
– + tαβ – x – xtα – tα + tαβ

– tαβ – xtα – xtα + tαβ – b – itαβ + itαx

+ xtαβ + xtαβ + xtαβ – αβt – tα – x – tα

+ xtαβ + tαβb – tαβd + xtαβ + xtαβ – tαβx

+ xtαβ – bx – xd – tαb – tαd + tαβ + tαβ

– tαβ – ixtαβ + ixtα + itαβb – itαd + itαb

+ itαβ – ixtαβ + itα + ibx – itαβ + ixtα
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+ ixtαβ + itαβ + ix – ixtαβ + itαβ + ixtα

+ ix – x – itαβ + itαβd + ix – id + ixtα

+ i + ixtαβ + itαβ + itα – itαβ + ixtα + ix

+ itα – ixd + itα + ixtαβ),

φ() = –


,
e

i
 (–x–tα+tαβ)√

(
– – ,xd – ,bx – ,ixd

+ tαβ – tαβ + itα – ,tαβ – ,xtα + ,x

– tαβ – ,ib
 + ,id

 + ,ix – ix – ,ix – ,ix

+ ,id + ix – ,itαβb – ,tαb – ,xtα + ,ibx

– tαx + ,tαβ + itαβx – ,ixtαb – ,xtα

– ,itα – ,ixd + tα – ,ixdtα + ,itαβd

+ ,itαβb – ,itαdβ
 + ,itαβbx – ,ixtαb

– ,ixtαβd – ,ixdtαβ – ixtαβ – ,ixtαβ

+ ,idb – itαβx + ixtαβ + itαβx + ixtαβ

+ ,itαβx – itαβx + ixtαβ + ixtαβ

+ ixtαβ + ixtαβ + ,ixtαβ + ,ixtαβ + ,ixtαβ

+ ,ixtαβ + ixtαβ – itαβx – ixtαβ

+ itαβx – ,ibx – ,ixtαβ – ,ixtαβ – ,xtα

+ ,ibxtαβ + ,itαbβ
 + ,tαβ + ,tαβ + xtα

+ xtα – tαβ + ,ix – ,b – ,d + ,b

– ,tαd – ixb – itαβx – itα + ,ixtαβ

+ ,ibx + ,itα – xtαβ + ,xtαβ + ,xtαβ

+ ,αβt + ,ixd + ,tα – ,itα – ,x – ,tα

– xtα + ,ixtα – ,xtαβ – ,tαβb + ,tαβd

– ,xtαβ – ,xtαβ + ,tαβx – tαβx – ,xtαβ

+ ,xtαβ – ,tα + ,bx + ,xd – ,x + tαβ

+ ,tαb + ,tαd + ,tαβ – ,tαβ – tαβ

+ itαβ – itαβ + ixtα + ,itα + ,ixtα

– ,xtαβd – ,itαd + ixtα + itαx + itαβ

– ,itαx – ,ixtα – ,ixtα + ,itαβ + ,itαd

+ itαβ – ,ixtα – ,tαb + tαβ – tαβ

+ tαβ – ,tαd + xd – ,bx – ,xd + ,db

+ ,b
 – x – ,d

 + ,tαβb – ,tαβd + ,xtαd
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+ ,xtαd – ,tαβd – ,tαβb + tαβb – xtαβ

+ tαβ – tαx – tαx – tαβ + tαd – xtα

+ tαβ – ,xtαβb – ,xtαβb – ,xtαβd – tα

– tαβx + tαβx – xtαβ – xtαβ + xtαβ

– xtαβ + xtαβ + xtαβ + tαβx + tαβx

– tαβx – tαβx + xtαβ – tαβx – ,itαb

– itαb + ,ixtαβ + ixtαβ + ,itαβ – ixtα

+ ,itαb – itαx – itαx – ixtα – itαx – itαβ

+ itαβ + xtαβ – ,xtαb – ,tαβd + itαβ

+ ,itαβ + ,itαβ – itαβ + itαβ – itαβ

+ itαx + ,itαβ – ,itαd + itαβ + ,itαb

+ x + ,itαβd + ,ixtαβd – ,itαβb + ,tαβb

– ,xtαd + ,tαβb + ,tαβd + xtαβ

+ ,xtαβ + xtαβ – tαβx – tαβx – ,id

– ,itαβd + ,itαβb + ,ibxtα – ,i + ,ib

+ ,xtαβb + itαβd – itαβx + ,itαβd
)
,

ψ () =
i

,
e– i

 (–x–tα+tαβ)√
(
– + itαβ + ,xd + ,bx

+ tαβ – tαβ – ,tαβ – ,xtα – ,x

+ ixtαβ – tαβ – ,ib
 – ,ixdtαβ – ,ixd

– ,tαb – ,xtα + ,idb – ,ixtαb – tαx

+ ,tαβ – ,xtα + ,ixtαβ + itαβx – ,itα

– tα – ,ixtαβd – ,ix – ,xtα – ,tαβ

– ,tαβ – xtα – xtα + tαβ + ,itαb + ,b

+ ,d – ,b – ,tαd + ,ibx + ,ixtαβ – ,ixtα

– itαβ – itαβx – ,itαβd – ,itαx – ,itαβb

+ xtαβ – ,xtαβ – ,xtαβ – ,αβt – ,tα – itα

– ,x – ,tα – xtα + ixtαβ + itαβx

– ,xtαβ – ,tαβb + ,tαβd – ,xtαβ – ,xtαβ

+ ,tαβx – tαβx – ,xtαβ + ,xtαβ – ,tα

+ ,bx + ,xd – ,x + tαβ + ,tαb + ,tαd

+ ,tαβ – ,tαβ – tαβ + ,xtαβd – itαβx

– itαx + ,ixtαβ – ,ibx – itα + ,tαb
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– tαβ + tαβ – tαβ + ,tαd + xd – ,bx

– ,xd + ,db + ,b
 – x – ,d

 + ,tαβb

– ,tαβd + ,xtαd + ,xtαd – ,tαβd

– ,tαβb + tαβb – xtαβ + tαβ – tαx

– tαx – tαβ + tαd – xtα + tαβ – ,xtαβb

– ,xtαβb – ,xtαβd – tα – tαβx + tαβx

– ,itα – xtαβ – xtαβ + xtαβ – xtαβ

+ xtαβ + xtαβ + tαβx + tαβx – tαβx

– tαβx + xtαβ – tαβx + ixtαβ + ,ixtαβ

+ itαβ + itαβ – ,itαdβ
 + ,ixtαβ – ix

– itαβ – xtαβ + ,xtαb + ,tαβd – itαβx

– itαβx + ,ixtαβ – itαb + ,itαβbx – ix

– ,ixtα + ,itαβ – x – ixtα + itαβd

+ itαβ + ,itαd – ,ibx – ,itαb + ,itαβd

+ ,ixtαβ – ,ibxtαβ + ,ixtαβ – ,tαβb

+ ,xtαd – ,tαβb – ,tαβd – xtαβ

– ,xtαβ – xtαβ + tαβx + tαβx + ixtαβ

– itαx – ,itα + ,ixtαβ – ,ixtαb + itαβ

– ,ib – ,ixtαβd – itαβ – ,itαd – itαβ

– ,ix + ,itαβx – ixtα + ,ixd + ,itαβ

– ,ixtα – ,itαβd – ,itαβd + ,itαβb

– ,xtαβb + ixtαβ + ixtαβ – itαx – ,ixtα

+ ixtαβ – ,ibxtα – ,itα – ,ix + ,itαd

– ,id + itαβ + ,ixdtα + ixtαβ – ,itαbβ


– ixtα + itαβ – itαx + ,ixd + ,itαβb

+ ,itαβb + ixtαβ – ,itαb – itαβx – itαx

+ ixtαβ + ,itαβ – ,ix – ,i + ,id
 + ,id

– ,ixtα – ixb + ,itαβ – itαβx

– ixtα + ,itαβ).
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