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Abstract
In this paper, we consider the existence of periodic solutions for a class of
nonautonomous second-order discrete Hamiltonian systems in case the sum on the
time variable of potential is periodic. The tools used in our paper are the direct
variational minimizing method and Rabinowitz’s saddle point theorem.
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1 Introduction and main results
Consider the following discrete Hamiltonian system:

�u(t – ) + ∇F
(
t, u(t)

)
= , t ∈ Z, (.)

where �u(t) = �(�u(t)), and ∇F(t, x) denotes the gradient of F(t, x) in x. In this paper,
we always suppose that the following condition is satisfied:

(A) F(t, x) ∈ C(RN ,R) for any t ∈ Z, and F(t + T , x) = F(t, x) for (t, x) ∈ Z×R
N , where

T >  is a integer.
In the last years, a great deal of work has been devoted to the study of the existence and

multiplicity of periodic solutions for discrete Hamiltonian system (.); see [–] and the
references therein. In particular, Guo and Yu [] considered the existence of one periodic
solution to system (.) in case ∇F(t, x) is bounded. Xue and Tang [, ] generalized
these results when the gradient of potential energy does not exceed sublinear growth.

Tang and Zhang [] completed and extended the results obtained in [, ] under a
more weaker assumption on F(t, x).

Recently, Yan et al. [] obtained multiple periodic solutions for system (.) when the
growth of ∇F(t, x) is sublinear and there exists an integer r ∈ [, N] such that:

(i) F(t, x) is Ti-periodic in xi,  ≤ i ≤ r.
(ii)

|x|–α

T∑

t=

F(t, x) → ±∞ as |x| → ∞, x ∈ {} ×R
N–r.
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In this paper, motivated by the results mentioned and [], we further study the existence
of periodic solutions to the discrete Hamiltonian system (.).

Our main results are the following theorems.

Theorem . Suppose that (A) holds and

(H)
∑T

t= F(t, x + Tiei) =
∑T

t= F(t, x),  ≤ i ≤ N , where Ti > , and {ei| ≤ i ≤ N} is an
orthogonal basis in R

N ;
(H) there exist  < C <  sin π

T and C >  such that

∣∣F(t, x)
∣∣ ≤ C|x| + C.

Then system (.) has at least one T-periodic solution.

Corollary . Let F(t, x) = –a cos x – e(t)x. If e(t) satisfies

e(t + T) = e(t),
T∑

t=

e(t) = ,

then system (.) has at least one T-periodic solution.

Remark . When F(t, x) = –a cos x–e(t)x (a ≥ ), system (.) is a discrete form of forced
equations studied by Mawhin and Willem [–], in which they require the assumption
that the forced potential is periodic on spatial variables. So, our results, Theorem . and
Corollary ., generalize their results in discrete situation.

Theorem . Suppose that (A) and (H) hold and

(H) there exist μ <  and μ ∈R such that

(∇F(t, x), x
) ≤ μF(t, x) + μ;

(H) there exists δ >  such that, for t ∈ Z, we have

F(t, x) > δ, |x| → +∞;

(H) there exists  < b <  sin π
T such that

F(t, x) ≤ b|x|.

Then system (.) has at least one T-periodic solution. Furthermore, system (.) has at
least one nonconstant T-periodic solution if

∑T
t= F(t, x) ≥  for all x ∈R

N .

2 Some important lemmas
Let

HT =
{

u : Z →R
N | u(t) = u(t + T) for all t ∈ Z

}
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with norm

‖u‖ =

( T∑

t=

∣
∣�u(t)

∣
∣

) 


+

∣
∣∣
∣∣

T∑

t=

u(t)

∣
∣∣
∣∣
.

Set

�(u) =



T∑

t=

∣
∣�u(t)

∣
∣ –

T∑

t=

F
(
t, u(t)

)

and

〈
�′(u), v

〉
=

T∑

t=

(�u(t),�v(t)
)

–
T∑

t=

(∇F
(
t, u(t)

)
, v(t)

)

for u, v ∈ HT .
According to assumption (A), it is well known that � is continuously differentiable and

the T-periodic solutions of problem (.) correspond to the critical points of the func-
tional �.

Definition . ([]) Assume that X is a Banach space and f ∈ C(X,R). If {un} ⊂ X sat-
isfies

f (un) → C,
(
 + ‖un‖

)
f ′(un) → ,

then we say that {un} is a (CPS)C sequence of f . For any (CPS)C sequence {un}, if there
exists a subsequence of {un} convergent in X, then we say that f satisfies (CPS)C condition.

Lemma . ([, ]) Assume that X is a Banach space and f ∈ C(X,R). Let X = X ⊕ X

and

dim X < +∞, sup
S

R

f < inf
X

f ,

where S
R = {u ∈ X | |u| = R}.

Set B
R = {u ∈ X, |u| ≤ R}, M = {g ∈ C(B

R, X) | g(s) = s, s ∈ S
R},

C = inf
g∈M

max
s∈B

R

f
(
g(s)

)
.

Then C > infX f . Furthermore, if f satisfies (CPS)C condition, then C is a critical value
of f .

Lemma . ([]) If u ∈ HT and
∑T

t= u(t) = , then

T∑

t=

∣∣u(t)
∣∣ ≤ 

 sin π
T

T∑

t=

∣∣�u(t)
∣∣
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and

‖u‖
∞ :=

(
max

t∈Z[,T]

∣
∣u(t)

∣
∣
) ≤ T – 

T

T∑

t=

∣
∣�u(t)

∣
∣.

3 Proof of main results
Proof of Theorem . Let

HT = R
N ⊕ H̃T ,

where H̃T = {u ∈ HT : u = 
T

∑T
t= u(t) = }.

For any u ∈ HT , there are ũ ∈ H̃T and u ∈R
N such that u = ũ + u.

According to (H), we have that

�(ũ) =



T∑

t=

∣∣�ũ(t)
∣∣ –

T∑

t=

F
(
t, ũ(t)

)

≥ 


T∑

t=

∣∣�ũ(t)
∣∣ – C

T∑

t=

∣∣ũ(t)
∣∣ – TC

≥ 


T∑

t=

∣∣�ũ(t)
∣∣ –

C

 sin π
T

T∑

t=

∣∣�ũ(t)
∣∣ – TC

=
(




–
C

 sin π
T

) T∑

t=

∣
∣�ũ(t)

∣
∣ – TC.

So,

�(ũ) → +∞ as ‖ũ‖ → ∞. (.)

Suppose that {uk} is a minimizing sequence for �, that is,

�(uk) → inf�, k → ∞.

Then uk = ũk + uk , where ũk ∈ H̃T , uk ∈ R
N . By (.) there exists c >  such that

‖ũk‖ ≤ c. (.)

By (H) we have that

�(u + Tiei) = �(u), u ∈ HT ,  ≤ i ≤ N .

Hence, if {uk} is a minimizing sequence for �, then

(ũk · e + uk · e + kT, . . . , ũk · eN + uk · eN + kN TN )

is also a minimizing sequence of �.
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Therefore, we can assume that

 ≤ uk · ei ≤ Ti,  ≤ i ≤ N . (.)

By (.) and (.), {uk} is a bounded minimizing sequence of � in HT .
Going to a subsequence if necessary, since HT is finite dimensional, we can assume that

{uk} converges to some u ∈ HT .
Since � is continuously differentiable, we have

�(u) = inf�(u), �′(u) = .

Therefore, the proof is finished. �

Proof of Theorem . For the proof, we will apply Rabinowitz’s saddle point theorem. First,
to prove that � satisfies the (CPS)C condition. Suppose that for C, a sequence {uk} ∈ HT

satisfies

�(uk) → C,
(
 + ‖uk‖

)
�′(uk) → .

Since �(uk) → C, we have that




T∑

t=

∣∣�uk(t)
∣∣ –

T∑

t=

F
(
t, uk(t)

) → C. (.)

From (H) we have that

〈
�′(uk), uk

〉
=

T∑

t=

∣∣�uk(t)
∣∣ –

T∑

t=

(∇F
(
t, uk(t)

)
, uk(t)

)

≥
T∑

t=

∣∣�uk(t)
∣∣ – μ

T∑

t=

F
(
t, uk(t)

)
– μT .

By (.) we have that

–
T∑

t=

F
(
t, uk(t)

)
= C –




T∑

t=

∣
∣�uk(t)

∣
∣ + ε.

So, we have

〈
�′(uk), uk

〉
=

T∑

t=

∣
∣�uk(t)

∣
∣ –

T∑

t=

(∇F
(
t, uk(t)

)
, uk(t)

)

≥
(

 –
μ



) T∑

t=

∣
∣�uk(t)

∣
∣ + Cμ – μT + ε.

Therefore,

(
 –

μ



) T∑

t=

∣∣�uk(t)
∣∣ + Cμ – μT ≤ .
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From this inequality we have that
∑T

t= | � uk(t)| is bounded.
By (H) we have that

�(u + Tiei) = �(u), u ∈ HT ,  ≤ i ≤ N .

Therefore, if {uk} is a (CPS)C sequence of �, then

(ũk · e + uk · e + kT, . . . , ũk · eN + uk · eN + kN TN )

is also a (CPS)C sequence of �.
So, we can assume that

 ≤ uk · ei ≤ Ti,  ≤ i ≤ N ,

that is, |uk| is bounded.
From these results we have that {uk} is bounded.
Since HT is a finite-dimensional Banach space, it is easy to see that � satisfies the (CPS)C

condition.
We now prove that the conditions of Rabinowitz’s saddle point theorem are satisfied.
Let

X = R
N , X =

{

u ∈ HT :
T∑

t=

u(t) = 

}

.

For any u ∈ X, by (H) and Lemma . we have that

�(u) =



T∑

t=

∣∣�u(t)
∣∣ –

T∑

t=

F
(
t, u(t)

)

≥ 


T∑

t=

∣∣�u(t)
∣∣ – b

T∑

t=

∣∣u(t)
∣∣

≥ 


T∑

t=

∣∣�u(t)
∣∣ –

b
 sin π

T

T∑

t=

∣∣�u(t)
∣∣

=
(




–
b

 sin π
T

) T∑

t=

∣
∣�u(t)

∣
∣

≥ .

On the other hand, for any u ∈ X, by (H) we have that

�(u) = –
T∑

t=

F
(
t, u(t)

) ≤ –δ, |u| → +∞.

From this it follows that the conditions of Rabinowitz’s saddle point theorem are all
satisfied.
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So, by Lemma . there exists a periodic solution of system (.). Furthermore, if
∑T

t= F(t, x) ≥ , then there exists a nonconstant periodic solution u of system (.) such
that �(u) = C > infX ≥  since otherwise we would have a contradiction with the fact that
�(u) = –

∑T
t= F(t, u(t)) ≤ .

Therefore, the proof is finished. �
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