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Abstract
Nonlinear differential equations with non-instantaneous impulses are studied. The
impulses start abruptly at some points and their actions continue on given finite
intervals. We pursue the study of Lipschitz stability using Lyapunov functions. Some
sufficient conditions for Lipschitz stability, uniform Lipschitz stability, and uniform
global Lipschitz stability are obtained. Examples are given to illustrate the results.
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1 Introduction
The problems of stability of solutions of differential equations via Lyapunov functions have
been successfully investigated in the past. One type of stability, very useful in real world
problems, is the so-called Lipschitz stability. Dannan and Elaydi [] introduced the notion
of Lipschitz stability for ordinary differential equations. As is mentioned in [] this type of
stability is important only for nonlinear problems, since it coincides with uniform stability
in linear systems.

There are a few different real life processes and phenomena that are characterized by
rapid changes in their state. We will emphasize two main types of such kind of changes:

- The duration of these changes is relatively short compared to the overall duration of
the whole process and the changes turn out to be irrelevant to the development of the
studied process. The mathematical models in such cases can be adequately created
with the help of impulsive equations (see, for example, [–], the monographs [, ]
and the references therein).

- The duration of these changes is not negligible short, i.e. these changes start
impulsively at arbitrary fixed points and remain active on finite initially time intervals.
The model of this situation is the non-instantaneous impulsive differential equation.
Hernandez and O’Regan [] introduced this new class of differential equations where
the impulses are not instantaneous and they investigated the existence of mild and
classical solutions. We refer the reader for some recent results such as existence to
[, ], to stability [–], to periodic boundary value problems [, ].

Some examples of such processes can be found in physics, biology, population
dynamics, ecology, pharmacokinetics, and others.
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In this paper Lipschitz stability of solutions of nonlinear non-instantaneous impulsive
differential equations is defined and studied. Several sufficient conditions for Lipschitz
stability, uniform Lipschitz stability, and global uniform Lipschitz stability are obtained.
Some examples illustrating the results are given. Note that non-instantaneous impulsive
differential equations are natural generalizations of impulsive differential equations and
some of the obtained sufficient conditions are a generalization of some results in [].
Also, Lipschitz stability of impulsive functional-differential equations is studied in [].

2 Preliminaries
In this paper we assume two increasing sequences of points {ti}∞i= and {si}∞i= are given
such that  < s < ti < si < ti+ < si+, i = , , . . . , and limk→∞ tk = ∞.

Let t ∈ ⋃∞
k=[sk , tk+) be a given arbitrary point. Without loss of generality we will as-

sume that t ∈ [, s).
Consider the initial value problem (IVP) for the system of non-instantaneous impulsive

differential equation (NIDE)

x′ = f (t, x) for t ∈
∞⋃

k=

(tk , sk],

x(t) = �k
(
t, x(t), x(sk – )

)
for t ∈ (sk , tk+], k = , , , . . . , ()

x(t) = x,

where x, x ∈R
n, f :

⋃∞
k=[tk , sk] ×R

n →R
n, �k : [sk , tk+] ×R

n ×R
n →R

n (k = , , , . . .).

Remark  The functions �k are called impulsive functions and the intervals (sk , tk+], k =
, , , . . . are called intervals of non-instantaneous impulses.

Remark  In the partial case sk = tk+, k = , , , . . . each interval of non-instantaneous
impulses is reduced to a point, and the problem () is reduced to an IVP for an impulsive
differential equation with points of jump tk and impulsive condition x(tk + ) = Ik(x(tk –
)) ≡ �k(tk , x(tk – ), x(tk – )).

The solution x(t; t, x) of IVP for NIDE () is given by

x(t; t, x) =

{
Xk(t) for t ∈ (tk , sk], k = , , , . . . ,
�k(t, x(t; t, x), Xk(sk – )) for t ∈ (sk , tk+], k = , , , . . . ,

()

where
- for any k = , , , . . . the function Xk(t), t ∈ [tk , sk] is a solution of the initial value

problem for ODE x′ = f (t, x), x(tk) = x(tk ; t, x), respectively;
- on any interval (sk , tk+], k = , , , . . . the solution x(t; t, x) satisfies the algebraic

equation x(t; t, x) = �k(t, x(t; t, x), Xk(t – )).
Let J ⊂R

+ be a given interval. Introduce the following classes of functions:

NPC(J) =

{

u : J →R
n : u ∈ C

(

J
/ ∞⋃

k=

{sk},Rn

)

:

u(sk) = u(sk – ) = lim
t↑sk

u(t) < ∞, u(sk + ) = lim
t↓sk

u(t) < ∞, k : sk ∈ J

}

,
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NPC(J) =

{

u : J →R
n : u ∈ NPC(J), u ∈ C

(

J
/ ∞⋃

k=

{sk},Rn

)

:

u′(sk) = u′(sk – ) = lim
t↑sk

u′(t) < ∞, k : sk ∈ J

}

.

Remark  According to the above description any solution of () might have a disconti-
nuity at any point sk , k = , , , . . . .

Now we will illustrate the influence of the impulsive condition on the behavior of the
solution.

Example  Consider the IVP for the NIDE

x′ = –x for t ∈
∞⋃

k=

(k, k + ],

x(t) = �k
(
t, x(t), x(k +  – )

)
for t ∈ (k + , k + ], k = , , , . . . , ()

x() = x.

Case . Let �k(t, x, y) = y. Then the impulsive condition is x(t) = x(k +  – ) and the
solution of () is

x(t; , x) =

{
kxe–t+k for t ∈ (k, k + ], k = , , , . . . ,
kxe–k for t ∈ (k – , k], k = , , . . . .

()

The graph of the solutions of () on [, ] with various initial values x = ., x = ,
x = . is given in Figure .

Case . Let �k(t, x, y) = x. Then the impulsive condition is x(t) = x(t) for t ∈ (k –, k],
k = , , . . . with a solution x(t) ≡ , t ∈ (k – , k], k = , , . . . . The solution of () with the
new impulsive condition is

x(t; , x) =

{
xe–t for t ∈ (, ],
 for t ≥ .

()

Figure 1 Graphs of solutions of (3) for various x0.
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Case . Let �k(t, x, y) = t – x. Then the impulsive condition is x(t) = t – x(t) for t ∈ (k –
, k], k = , , . . . with a solution x(t) = .t, t ∈ (k – , k], k = , , . . . . The solution of ()
with the new impulsive condition is

x(t; , x) =

⎧
⎪⎨

⎪⎩

xe–t for t ∈ (, ],
.t for t ∈ (k – , k], k = , , . . . ,
ke–t+k for t ∈ (k, k + ], k = , , . . . .

()

Therefore, if any impulsive function �k(t, x, y) do not depend on y the solution does not
depend on the initial value x for t > sk (see Cases  and ).

Remark  Note in some papers (see, for example []) the functions of non-instantaneous
impulses are given in the form gk(t, x(t)), i.e. they do not depend on the value of the solution
before the jump x(sk – ). Then the solution will depend on the initial value only on the
interval [t, s]. Then the meaning of the stability as well dependence of the solution on
the initial value is lost.

Introduce the following condition.
(H) The function f ∈ C(

⋃∞
k=[tk , sk] ×R

n,Rn) and f (t, ) ≡ .
(H) For any k = , , , . . . and any fixed t ∈ [sk , tk+] and y ∈R

n the algebraic equation
x = �k(t, x, y) has unique solution x = φk(t, y) with φk ∈ C([sk , tk+] ×R

n,Rn) and
φk(t, ) ≡ .

If condition (H) is satisfied then IVP for NIDE () could be written in the form

x′ = f (t, x) for t ∈
∞⋃

k=

(tk , sk],

x(t) = φk
(
t, x(tk – )

)
for t ∈ (sk , tk+], k = , , , . . . , ()

x(t) = x.

Let J ⊂R+,  ∈ J , ρ > . Introduce the following sets:

M(J) =
{

a ∈ C
[
J ,R+]

: a() = , a(r) is strictly increasing in J , and

a–(αr) ≤ rqa(α) for some function qa : qa(α) ≥ , if α ≥ 
}

,

K(J) =
{

a ∈ C
[
J ,R+]

: a() = , a(r) is strictly increasing in J , and

a(r) ≤ Kar for some constant Ka > 
}

,

Sρ =
{

x ∈R
n : ‖x‖ ≤ ρ

}
.

Remark  The function a(u) = Ku, K ∈ (, ] is from the class K(R+) with q(u) ≡ u. The
function a(u) = Ku, K >  is from the class M([, ]).

We will use the class � of Lyapunov-like functions, defined and used for impulsive dif-
ferential equations in [].

Definition  Let J ⊂ R+ be a given interval, and � ⊂ R
n be a given set. We will say that

the function V (t, x) : J × � →R+, belongs to the class �(J ,�) if:
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- the function V (t, x) is a continuous on J/{tk ∈ J} × � and it is locally Lipschitz with
respect to its second argument;

- for each sk ∈ J and x ∈ � there exist finite limits

V (sk , x) = V (sk – , x) = lim
t↑sk

V (t, x) and V (sk + , x) = lim
t↓sk

V (t, x).

For any t ∈ (tk , sk), k = , , , . . . , we define the Dini derivative of the function V (t, x) ∈
�(J ,�) by

D+V (t, x) = lim
h→+

sup

h
{

V (t, x) – V
(
t – h, x – hf (t, x)

)}
,

where x ∈ �, and for any t ∈ (tk , sk) there exists ht > : t – h ∈ (tk , sk), x – hf (t, x) ∈ � for
 < h < ht .

3 Main results
We define Lipschitz stability [] of systems of differential equations with non-instanta-
neous impulses.

Definition  (Lipschitz stability) The zero solution of () is said to be:
- Lipschitz stable if there exists M ≥  and for every t ≥  there exists δ = δ(t) >  such

that, for any x ∈R
n, the inequality |x| < δ implies |x(t; t, x)| ≤ M|x| for t ≥ t;

- uniformly Lipschitz stable if there exist M ≥  and δ >  such that for any t ≥  and
x ∈R

n the inequality |x| < δ implies |x(t; t, x)| ≤ M|x| for t ≥ t;
- globally uniformly Lipschitz stable if there exists M ≥  such that for any t ≥  and

x ∈R
n the inequality |x| < ∞ implies |x(t; t, x)| ≤ M|x| for t ≥ t.

Example  Let t ≥  be an arbitrary point and without loss of generality we can assume
 ≤ t < s. Consider the IVP for the NIDE

x′ =
x

( + t) for t ∈
∞⋃

k=

(tk , sk],

x(t) = �k
(
t, x(t), x(sk – )

)
for t ∈ (sk–, tk], k = , , . . . , ()

x() = x.

The solution of ODE x′ = x
(+t) , x(τ) = x is x(t) = xe


+τ

– 
+t , t ≥ τ. Note, for any finite

initial value x the inequality |x(t)| = xe


+τ
– 

+t ≤ M|x| for t ≥ τ holds with M = e, i.e.
the zero solution of ODE is globally Lipschitz stable but not asymptotically stable (see the
graphs for τ = , x = ., ., , . in Figure ).

Case . Let �k(t, x, y) = xy, k = , , , . . . . Then the impulsive condition is x(t) = x(t)x(sk –
) which unique solution is x(t) =  since x(sk – ) = xe


+t

– 
+s =  iff x =  and t < s.

Then the solution of NIDE () will be

x(t; t, x) =

{
xe


+t

– 
+t for t ∈ (t, s],

 for t > s.
()

The zero solution is globally Lipschitz stable, since xe


+t
– 

+t ≤ M|x| for t ≥ t with
M = e


+t

– 
+t = e > . In this case the solution is also asymptotically stable.
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Figure 2 Graphs of solutions of (8), Case 1, for various x0.

Figure 3 Graphs of solutions of (8), Case 2, for various x0.

Case . Let �k(t, x, y) = y, k = , , , . . . . Then the impulsive condition is x(t) = x(sk – )
and the solution of () is

x(t; t, x) =

⎧
⎨

⎩

x(
∏k–

i= e


+ti
– 

+si )e


+tk
– 

+t for t ∈ (tk , sk], k = , , , . . . ,
x

∏k–
i= e


+ti

– 
+si for t ∈ (sk–, tk], k = , , . . . .

()

The solution is a continuous function. The graphs of solutions for t = , sk = k –, tk = k,
k = , , . . . and various initial values x are given in Figure . There exists M = e >  such
that x(t) < M|x|, t ≥ t for any finite value of x. Therefore the zero solution of () is
globally uniformly Lipschitz stable but not asymptotically stable.

Case . Let �k(t, x, y) = y – x, k = , , , . . . . Then the impulsive condition is x(t) = x(sk –
) – x(t) which unique solution is x(t) = .x(sk – ). The solution of () is

x(t; t, x) =

⎧
⎨

⎩

x.k–(
∏k–

i= e


+ti
– 

+si )e


+tk
– 

+t for t ∈ (tk , sk], k = , , , . . . ,
x.k ∏k

i= e


+ti
– 

+si for t ∈ (sk–, tk], k = , , . . . .
()
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Figure 4 Graphs of solutions of (8), Case 3, for various x0.

The graphs of solutions for t = , sk = k – , tk = k, k = , , . . . , and various initial values
x are given in Figure . There exists M = e >  such that x(t) < M|x|, t ≥ t for any finite
value of x. Therefore the zero solution of () is globally uniformly Lipschitz stable. Also
it is asymptotically stable.

The above example shows the presence of non-instantaneous impulses and the type of
impulsive functions that have influence on the behavior of the solution.

We study the Lipschitz stability using the following scalar comparison differential equa-
tion with non-instantaneous impulses:

u′ = g(t, u) for t ∈
∞⋃

k=

(tk , sk],

u(t) = ψk
(
t, u(sk – )

)
for t ∈ (sk , tk+], k = , , , . . . , ()

u(t) = u,

where u, u ∈ R, g :
⋃∞

k=[tk , sk] ×R→R, ψk : [sk , tk+] ×R →R (k = , , , , . . .).
We introduce the following condition.
(H) The function g(t, u) ∈ C(

⋃∞
k=[tk , sk] ×R+,R), g(t, ) = , and for any k = , , , . . .

the functions ψk : [sk , tk+] ×R+ →R+ are nondecreasing with respect to their
second argument and ψk(t, ) = .

In the main study we will use the following result.

Proposition  (Theorem .. []) Let the function V ∈ C([t, T] × R
n,R+) and V (t, x)

be locally Lipschitz in x and D+V (t, x) ≤ g(t, V (t, x)) for (t, x) ∈ [t, T] × R
n, where g ∈

C([t, T] × R+,R). Let r̃(t) = r(t; t, u) be the maximal solution of the scalar differen-
tial equation u′ = g(t, u) with initial condition u(t) = u ≥ , existing on [t, T]. If x(t) =
x(t; t, x) is any solution of the IVP for ODE x′ = f (t, x), x(t) = x existing on [t, T] such
that V (t, x) ≤ u, then the inequality V (t, x(t)) ≤ r̃(t) for t ∈ [t, T] holds.

Lemma  Assume the following conditions are satisfied:
. Conditions (H), (H), and (H) are satisfied.
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. The function x∗(t) = x(t; t, x) ∈ NPC([t, T],�) is a solution of (), where T ≥ t is
a given constants, � ⊂R

n.
. The function V ∈ �([t, T],�) is such that:

(i) the inequality D+V (t, x∗(t)) ≤ g(t, V (t, x∗(t))) for t ∈ [t, T] ∩ (
⋃∞

k=(tk , sk)) holds;
(ii) for all k = , , , , . . . the inequality

V
(
t,φk

(
t, x∗(sk – )

)) ≤ ψk
(
t, V

(
sk – , x∗(sk – )

))
for t ∈ [t, T] ∩ (sk , tk+]

holds.
If V (t, x) ≤ u, then the inequality V (t, x∗(t)) ≤ r(t) for t ∈ [t, T] holds, where r(t) =

r(t; t, u) is the maximal solution of () with u ≥ .

Proof We use induction to prove Lemma .
The function x∗(t) ∈ C([t, s] ∩ [t, T],�). According to condition (i) and Proposi-

tion  applied to the interval [t, s] ∩ [t, T] the inequality

V
(
t, x∗(t)

) ≤ r(t; t, u) ()

holds.
Let T > s and t ∈ (s, t] ∩ [t, T]. From condition (ii)

V
(
t,φ

(
t, x∗(s – )

)) ≤ ψ
(
t, V

(
s – , x∗(s – )

))
.

From the inequality () we get V (s – , x∗(s – )) ≤ r(s – ; t, u) and the monotonic-
ity of ψ we get

ψ
(
t, V

(
s – , x∗(s – )

)) ≤ ψ
(
t, r(s – ; t, u)

)
= r(t; t, u),

i.e. V (t, x∗(t)) ≤ r(t; t, u) for t ∈ (s, t] ∩ [t, T].
Let T > t and t ∈ (t, s] ∩ [t, T]. Consider the function x(t) = x∗(t) for t ∈ (t, s] and

x(t) = x∗(t) = φ(t, x∗(s – )). Since limt→t+ x(t) = x(t + ) = φ(t, x(s – )) = x(t +
), x(t) ∈ C([t, s],�). From condition (ii) for the interval [t, s] ∩ [t, T] and the proof
above we obtain

V
(
t, x(t)

)
= V

(
t,φ

(
t, x∗(s – )

))

≤ ψ
(
t, V

(
s – , x∗(s – )

))

≤ ψ
(
t, r(s – ; t, u)

)

= r(t; t, u).

Apply Proposition  to the interval [t, s] ∩ [t, T] with the initial value u = r(t; t, u)
and V (t, x(t)) ≤ r(t; t, u) and we obtain V (t, x(t)) ≤ r(t), t ∈ [t, s] ∩ [t, T]. Therefore
V (t, x∗(t)) ≤ r(t; t, u), t ∈ (t, s] ∩ [t, T].

Let T > s and t ∈ (s, t] ∩ [t, T]. From condition (ii)

V
(
t,φ

(
t, x∗(s – )

)) ≤ ψ
(
t, V

(
s – , x∗(s – )

))
.
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From the proof above and monotonicity of ψ we get

ψ
(
t, V

(
s – , x∗(s – )

)) ≤ ψ
(
t, r(s – ; t, u)

)
= r(t; t, u),

i.e. V (t, x∗(t)) ≤ r(t; t, u) for t ∈ (s, t] ∩ [t, T].
Continue this process and an induction argument proves the claim of Lemma  is true

for t ∈ [t, T]. �

Remark  Proposition  and Lemma  are true for T = ∞ for the interval [t,∞).

Theorem  Let the following conditions be satisfied:
. Conditions (H)-(H) are fulfilled.
. There exists a function V (t, x) ∈ �(R+,Rn) with Lipschitz constant L in Sρ ,

V (t, ) = , and:
(i) the inequality

b
(‖x‖) ≤ V (t, x), x ∈ R

n, t ∈R+,

holds, where b ∈ K(R+);
(ii) the inequality D+V (t, x) ≤ g(t, V (t, x)), t ∈ ⋃∞

k=(tk , sk), x ∈R
n, holds;

(iii) for any k = , , . . . the inequality

V
(
t,φk(t, y)

) ≤ ψk
(
t, V (sk – , y)

)
, t ∈ (sk , tk+], y ∈ R

n,

holds.
. The zero solution of () is Lipschitz stable.
Then the zero solution of () is Lipschitz stable.

Proof Let t ≥  be an arbitrary. Without loss of generality we assume t ∈ [, s). From
condition  there exist M ≥ , δ = δ(t, M) >  such that for any u ∈ R : |u| < δ the
inequality

∣
∣u(t; t, u)

∣
∣ ≤ M|u| for t ≥ t ()

holds, where u(t; t, u) is a solution of ().
Since V (t, ) =  there exists a δ = δ(t, δ) >  such that V (t, x) < δ for ‖x‖ < δ. The

function V (t, x) is Lipschitz on Sρ then ‖x‖ < ρ implies |V (t, x)| = |V (t, x)–V (t, )| ≤ L‖x‖.
Let δ = min{δ, δ,ρ} and choose M ≥  such that M > ML and let M = q(M). Note

since M ≥  we have M ≥  and δ depends on t and M, therefore on M.
Now let the initial value be such that ‖x‖ < δ. Consider a solution x(t) = x(t; t, x) of

system (). Let u∗
 = V (t, x). Then from the choice of x it follows that u∗

 = V (t, x) <
δ for ‖x‖ < δ. Therefore, the function u∗(t) satisfies () for t ≥ t with u = u∗

, where
u∗(t) = u(t; t, u∗

) is a solution of ().
Using condition (ii) and applying Lemma  for � = R

n, T = ∞ we get

V
(
t, x∗(t)

) ≤ u∗(t) for t ≥ t. ()
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From inequalities (), (), Lipschitz property of V (t, x), condition (i), and Lemma  we
obtain, for any t ≥ t,

b
(∥
∥x∗(t)

∥
∥
) ≤ V

(
t, x∗(t)

) ≤ ∣
∣u∗(t)

∣
∣ ≤ M

∣
∣u∗


∣
∣ = MV (t, x)

≤ ML‖x‖ < M‖x‖. ()

From the properties of b ∈ K and M >  it follows that b–(Mu) < Mq(u), and

∥
∥x∗(t)

∥
∥ ≤ b–(M‖x‖

) ≤ ‖x‖q(M) = M‖x‖.

From M ≥  its follows that q(M) ≥  and therefore

∥
∥x∗(t; t, x)

∥
∥ ≤ M|x|, t ≥ t. �

Corollary  Let the conditions of Theorem  be satisfied with b(u) = Ku, K > .
Then the zero solution of () is Lipschitz stable.

Proof The proof is similar to the one of Theorem  with M ≥  : M > M L
K

and
M = M. �

Theorem  Let the following conditions be satisfied:
. Conditions (H)-(H) are fulfilled.
. There exists a function V (t, x) ∈ �(R+,Rn) and:

(i) the inequalities

b
(‖x‖) ≤ V (t, x) ≤ a

(‖x‖), x ∈ Sρ , t ∈ R+

holds, where b ∈ K([,ρ]), a ∈ M([,ρ]), ρ > ;
(ii) the inequality D+V (t, x) ≤ g(t, V (t, x)), t ∈ ⋃∞

k=(tk , sk), x ∈ Sρ holds;
(iii) for any k = , , , . . . the inequality

V
(
t,φk(t, y)

) ≤ ψk
(
t, V (sk – , y)

)
, t ∈ (sk , tk+], y ∈ Sρ ,

holds.
. The zero solution of () is uniformly Lipschitz stable (uniformly globally Lipschitz

stable).
Then the zero solution of () is uniformly Lipschitz stable (uniformly globally Lipschitz

stable).

Proof Let the zero solution of () be uniformly Lipschitz stable. Let t ≥  be an arbitrary.
Without loss of generality we assume t ∈ [, s). From condition  there exist M ≥ , δ > 
such that for any t ∈ ⋃∞

k=[sk , tk+) and any u ∈R : |u| < δ the inequality

∣
∣u(t; t, u)

∣
∣ ≤ M|u| for t ≥ t ()

holds, where u(t; t, u) is a solution of ().
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From the inclusions b ∈ K([,ρ]) and a ∈ M([,ρ]) there exist a function qb(u) and a
positive constant Ka. Choose M ≥  such that M > qb(M)Ka and δ ≤ ρ

M
. Therefore,

δ ≤ ρ .
Let δ = min{δ, δ, δ

Ka
}. Choose the initial value x: ‖x‖ < δ. Therefore, ‖x‖ < δ ≤ δ ≤

ρ , i.e. x ∈ Sρ . Consider the solution x(t) = x(t; t, x) of system () for the chosen initial
data. Let u∗

 = V (t, x). From the choice of x and the properties of the function a(u)
applying condition (i) we get u∗

 = V (t, x) ≤ a(‖x‖) ≤ Ka‖x‖ < Kaδ ≤ δ. Therefore,
the function u∗(t) satisfies () for t ≥ t with u = u∗

, where u∗(t) = u(t; t, u∗
) is a solution

of ().
We will prove

∥
∥x(t)

∥
∥ ≤ M‖x‖, t ≥ . ()

Assume () is not true. Therefore, there exists a point T > t such that ‖x(t)‖ ≤ M‖x‖
for t ∈ [t, T], ‖x(T)‖ = M‖x‖ and ‖x(t)‖ > M‖x‖ for t ∈ (T , T + ε], where ε >  is
a small enough number. Then for t ∈ [t, T] the inequalities ‖x(t)‖ ≤ M‖x‖ < Mδ ≤
Mδ ≤ ρ hold, i.e. x(t) ∈ Sρ for t ∈ [t, T].

Using condition (ii) and applying Lemma  on [t, T] for � = Sρ we get

V
(
t, x∗(t)

) ≤ u∗(t) for t ∈ [t, T]. ()

From inequality () and condition (i) we obtain

M‖x‖ =
∥
∥x(T)

∥
∥ ≤ b–(V

(
T , x(T)

)) ≤ b–(∣∣u∗(T)
∣
∣
)

≤ b–(M
∣
∣u∗


∣
∣
)

= b–(MV (t, x)
)

≤ qb(M)V (t, x) ≤ qb(M)a
(‖x‖

)

≤ qb(M)Ka‖x‖ < M‖x‖. ()

The contradiction obtained proves the validity of ().
The proof of globally uniformly Lipschitz stability is analogous and we omit it. �

Corollary  Let (H)-(H) and condition  of Theorem  be satisfied with g(t, x) ≡  and
ψk(t, x) ≡ x.

Then the zero solution of () is uniformly Lipschitz stable.

Corollary  Let (H), (H) be satisfied and the inequality

xf (t, x) ≤ , t ∈
∞⋃

k=

(tk , sk), x ∈R
n,

holds and for any k = , , , . . . the inequality

(
φk(t, y)

) ≤ y, y ∈ R
n, t ∈ (sk , tk+],

holds.
Then the zero solution of () is uniformly Lipschitz stable.
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Proof Consider the quadratic Lyapunov function V (t, x) = x for which D+V (t, x) =
xf (t, x) and condition  of Theorem  is satisfied with K ≤ , K ≥ , g(t, x) = , and
ψk(t, x) ≡ x. �

Theorem  Let the conditions of Theorem  be satisfied where (i) is replaced by
. (i) the inequalities λ(t)‖x‖ ≤ V (t, x) ≤ λ(t)‖x‖, x ∈ Sρ , t ∈R

+ holds, where
λ,λ ∈ C(R+, (,∞)) and there exist positive constants A, A: A < A such that
λ(t) ≥ A, λ(t) ≤ A for t ≥ , and ρ > .

If the zero solution of () is uniformly Lipschitz stable (uniformly globally Lipschitz sta-
ble) then the zero solution of () is uniformly Lipschitz stable(uniformly globally Lipschitz
stable).

Proof The proof is similar to the one of Theorem  where M =
√

M A
A

. �

4 Applications
Let two increasing sequences of points {ti}∞i= and {si}∞i= be given such that t = ,  < s <
ti ≤ si < ti+, i = , , . . . , and limk→∞ tk = ∞. Consider the following single species model
exhibiting the so-called Allee effect in which the per-capita growth rate is a quadratic
function of the density:

N ′(t) = N(t)
(
–a – bN(t) + cN(t)

)
for t ∈ (tk , sk], k = , , , . . . ,

N(t) = ψk
(
t, N(tk – )

)
for t ∈ (sk , tk+], k = , , , . . . ,

()

where a, c > , b ∈ R. The impulsive functions ψk(t, x) ≤ Ckx, k = , , , . . . , where Ck ∈
(, ].

Define the function V (t, x) = x.
Then condition (i) of Theorem  is satisfied for λ(t) = ., λ(t) = ..
For any x : |x| ≤ ρ , ρ = | b–

√
b+ac
c | >  we have D+V (t, x) = x(cx – bx – a) ≤ , t ∈

⋃∞
k=(tk , sk), x ∈ Sρ . Therefore, condition (ii) is satisfied with g(t, x) ≡ .
The condition (ii) is satisfied for ψk(t, x) ≡ Ckx.
Therefore, the comparison equation is

u′(t) =  for t ∈ (tk , sk], k = , , , . . . ,

u(t) = Cku(sk – ) for t ∈ (sk , tk+], k = , , , . . . ,
()

which solution is u(t; t, u) = u
∏k

i= Ci, for t ∈ (sk , sk+], k = , , , . . . . Therefore, the zero
solution of () according to Corollary  is uniformly Lipschitz stable.
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