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Abstract
By formulating a new contraction mapping on a product space, the authors originally
employed Banach fixed point theorem to derive the LMI-based robust exponential
stability criterion for impulsive BAM neural networks with distributed delays and
uncertain parameters. Numerical example illuminates that the new criterion is not
worse than the existing results derived by Lyapunov functional method. Hence both
the methods and the results of this paper are really novel to a certain extent.
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1 Introduction
In [], Kosko proposed originally the time-delay differential equations as follows:

{
dxi(t)

dt = –aixi(t) +
∑n

j= cijfj(yj(t – τj)) + Ii,
dyi(t)

dt = –biyi(t) +
∑n

j= dijgj(xj(t – ρj)) + Ji,
i = , , . . . , n, t > , (.)

which belongs to the so-called bidirectional associative memory (BAM) neural networks.
Here, the parameters ai > , bi >  denote the time scales of the respective layers of the
network. The first term in each of the right sides of system (.) corresponds to a stabiliz-
ing negative feedback of the system which acts instantaneously without time delay. These
terms are known as forgetting or leakage terms [, ]. Since then, various generalized BAM
neural networks have become a hot research topic due to their potential applications in
associative memory, parallel computation, artificial intelligence, and signal and image pro-
cesses [, ]. However, the above successful applications often depend on whether the
system has a certain stability, and the robust stability always plays an important role. In
recent decades, stability analyses of neural networks have attracted the attention of many
researchers (see e.g. [–]). The Lyapunov function method was always employed in the
existing literature to obtain stability criteria. But any method has its limitations. As one of
the alternative methods, fixed point theorems played positive roles in the stability analysis
of BAM neural networks (see e.g. [, ]). Some stability criteria of BAM neural networks
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without impulse were derived by fixed point theorems. But the impulsive model of BAM
neural networks has rarely been investigated. Besides, there are a lot of other factors and
problems in practical engineering. In fact, there exist parameter errors unavoidable in
factual systems due to aging of electronic components, external disturbance, and param-
eter perturbations. It is very important to ensure that the system is stable with respect to
these uncertainties. So, in this paper, the contraction mapping principle and linear matrix
inequalities (LMIs) technique are applied to generate the LMI-based exponential robust
stability criterion for the impulsive BAM neural networks model with distributed delays
and uncertain parameters. Finally, a numerical example and two comparable tables are
presented to show the novelty and effectiveness of the derived result.

For the sake of convenience, we introduce the following standard notations.
• L = (lij)n×n >  (< ): a positive (negative) definite matrix, i.e., yT Ly >  (< ) for any

 �= y ∈ Rn.
• L = (lij)n×n ≥  (≤ ): a semi-positive (semi-negative) definite matrix, i.e.,

yT Ly ≥ (≤ ) for any y ∈ Rn.
• L ∈ [–L∗, L∗] implies that |lij| ≤ l∗ij for all i, j with L = (lij)n×n and L∗ = (l∗ij)n×n.
• L ≥ L (L ≤ L): this means matrix (L – L) is a semi-positive (semi-negative)

definite matrix.
• L > L (L < L): this means matrix (L – L) is a positive (negative) definite matrix.
• λmax(�),λmin(�) denotes the largest and smallest eigenvalue of matrix �, respective.
• Denote |L| = (|lij|)n×n for any matrix L = (lij)n×n.
• |u| = (|u|, |u|, . . . , |un|)T for any vector u = (u, u, . . . , un)T ∈ Rn.
• u ≤ (≥)v implies that ui ≤ (≥)vi, ∀i, and u < (>)v implies that ui < (>)vi, ∀i, for any

vectors u = (u, u, . . . , un)T ∈ Rn and v = (v, v, . . . , vn)T ∈ Rn.
• I : the identity matrix with compatible dimension.
• Denote vector μ = (, , . . . , )T ∈ Rn.

Remark  The main purpose of this paper is to obtain the LMI-based robust stability
criteria of BAM neural networks with uncertain parameters by using the Banach fixed
point theorem. To overcome mathematical difficulties, it is necessary to formulate a novel
contraction mapping. Therefore, the following main task is to construct a new contraction
mapping on the space suitable, and prove that the fixed point of this mapping is the robust
stability solution of the BAM neural network.

2 Preliminaries
The physical background of the following integro-differential equations is in the BAM
neural networks (see e.g. [, ]):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = –(A + �A(t))x(t) + (C + �C(t))f (y(t))

+ (M + �M(t))
∫ t

t–τ (t) f (y(s)) ds, t ≥ , t �= tk ,
dy(t)

dt = –(B + �B(t))y(t) + (D + �D(t))g(x(t))
+ (W + �W (t))

∫ t
t–ρ(t) g(x(s)) ds, t ≥ , t �= tk ,

x(t+
k ) – x(t–

k ) = φ(x(tk)), y(t+
k ) – y(t–

k ) = ϕ(y(tk)), k = , , . . . ,

(.)

with the initial condition

x(s) = ξ (s), y(s) = η(s), s ∈ [–τ , ], (.)
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where x = (x, x, . . . , xn), y = (y, y, . . . , yn) ∈ Rn with xi(t), yj(t) being the state variables of
the ith neuron and the jth neuron at time t, respectively. Also f (x) = (f(x(t)), f(x(t)),
. . . , fn(xn(t)))T , g(x) = (g(x(t)), g(x(t)), . . . , gn(xn(t)))T ∈ Rn are the neuron active func-
tions. Both A = diag(a, a, . . . , an) and B = diag(b, b, . . . , bn) are (n × n)-dimension posi-
tive definite matrices with ai and bj denoting the rate with which the ith neuron and the
jth neuron will reset their potential to the resting state in isolation when disconnected
from the networks and the external inputs, respectively. C and D denote the connection
weight matrices with (n × n) dimensions. M and W are the distributively delayed connec-
tion weight matrices with (n × n) dimensions. The parameter uncertainties considered
here are norm-bounded and of the following forms:

�A(t) ∈ [–A∗, A∗], �B(t) ∈ [–B∗, B∗], �C(t) ∈ [–C∗, C∗],

�D(t) ∈ [–D∗, D∗], �M(t) ∈ [–M∗, M∗], �W (t) ∈ [–W∗, W∗],
(.)

where A∗, B∗, C∗, D∗, M∗, W∗ all are nonnegative matrices.
Assume, in addition, distributed delays τ (t),ρ(t) ∈ [, τ ]. The fixed impulsive moments

tk (k =, , , . . .) satisfy  < t < t < · · · with limk→+∞ tk = +∞. x(t+
k ) and x(t–

k ) stand for the
right-hand and left-hand limit of x(t) at time tk , respectively. Further, suppose that

x
(
t–
k
)

= lim
t→t–

k
x(t) = x(tk), y

(
t–
k
)

= lim
t→t–

k
y(t) = y(tk), k = , , . . . . (.)

Throughout this paper, we assume that f () = g() = φ() = ϕ() =  ∈ Rn, and F =
diag(F, F, . . . , Fn), G = diag(G, G, . . . , Gn), H = diag(H, H, . . . , Hn), and H = diag(H,
H, . . . ,Hn) are positive definite diagonal matrices, satisfying

(H) |f (x) – f (y)| ≤ F|x – y|, x, y ∈ Rn;
(H) |g(x) – g(y)| ≤ G|x – y|, x, y ∈ Rn;
(H) |φ(x) – φ(y)| ≤ H|x – y|, x, y ∈ Rn;
(H) |ϕ(x) – ϕ(y)| ≤H|x – y|, x, y ∈ Rn;
(H) there exist nonnegative matrices A∗, B∗, C∗, D∗, M∗, W∗, satisfying (.).

Definition . System (.) with initial condition (.) shows globally exponential robust
stability in mean square for all admissible uncertainties if for any initial condition

( ξ (s)
η(s)
) ∈

C([–τ , ], Rn), there exist positive constants a and b such that
∥∥∥∥∥
(

x(t; s, ξ ,η)
y(t; s, ξ ,η)

)∥∥∥∥∥≤ be–at , for all t > ,

for all admissible uncertainties in (.), where the norm
∥∥( x(t)

y(t)
)∥∥ = (

∑n
i= |xi(t)| +∑n

i= |yi(t)|) 
 , and x = (x, . . . , xn), y = (y, . . . , yn) ∈ Rn.

Lemma . (Contraction mapping theorem []) Let P be a contraction operator on a
complete metric space �, then there exists a unique point θ ∈ � for which P(θ ) = θ .

3 Global exponential robust stability via contraction mapping
For convenience, we may denote

Ct = C + �C(t), Dt = D + �D(t), Mt = M + �M(t), Wt = W + �W (t).
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Before giving the LMI-based robust stability criterion, we may firstly present the follow-
ing fact.

Lemma . The impulsive system (.) with initial condition (.) is equivalent to the fol-
lowing integral equations with initial condition (.):

(
x(t)
y(t)

)
=
(

e–At{ξ () +
∫ t

 eAs[–�A(s)x(s) + Csf (y(s)) + Ms
∫ s

s–τ (s) f (y(r)) dr] ds +
∑

<tk <t eAtk φ(xtk )}
e–Bt{η() +

∫ t
 eBs[–�B(s)x(s) + Dsg(x(s)) + Ws

∫ s
s–ρ(s) g(x(r)) dr] ds +

∑
<tk <t eBtk ϕ(xtk )}

)
,

(.)

for all t ≥ , and x(s) = ξ (s), y(s) = η(s), s ∈ [–τ , ].

Proof Indeed, we only need to prove that each solution of system (.) with initial con-
dition (.) is a solution of the impulsive system (.) with initial condition (.), and the
converse is also true.

On the one hand, suppose that
( x(t)

y(t)
)

is a solution of (.) with initial condition (.).
Then we have

eAtx(t) = ξ () +
∫ t


eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds

+
∑

<tk <t

eAtk φ(xtk ).

For t ≥ , t �= tk , taking the derivative in both sides of the above equation results in

eAt dx(t)
dt

+ AeAtx(t) =
d
dt
(
eAtx(t)

)
= eAt

[
–�A(t)x(t) + Ctf

(
y(t)

)
+ Mt

∫ t

t–τ (t)
f
(
y(r)

)
dr
]

,

or

dx(t)
dt

+ Ax(t) = –�A(t)x(t) + Ctf
(
y(t)

)
+ Mt

∫ t

t–τ (t)
f
(
y(r)

)
dr,

which is the first equation of system (.). Similarly, we can also derive the second equation
of (.).

Moreover, as t → t–
j , we can get by (.)

x
(
t–
j
)

= lim
ε→+

x(tj – ε) = x(tj), y
(
t–
j
)

= lim
ε→+

y(tj – ε) = y(tj), j = , , . . . ,

and

x
(
t+
j
)

= lim
ε→+

x(tj + ε) = x(tj) + φ
(
x(tj)

)
,

y
(
t+
j
)

= lim
ε→+

y(tj + ε) = y(tj) + φ
(
y(tj)

)
, j = , , . . . .

Hence, we have proved that each solution of (.) with initial condition (.) is a solution
of (.) with initial condition (.).
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On the other hand, suppose that
( x(t)

y(t)
)

is a solution of (.) with initial condition (.).
Then multiplying both sides of the first equation of system (.) with eAt results in

eAt dx(t)
dt

+ AeAtx(t) = eAt
[

–�A(t)x(t) + Ctf
(
y(t)

)
+ Mt

∫ t

t–τ (t)
f
(
y(s)

)
ds
]

, t ≥ , t �= tk .

Moreover, integrating from tk– + ε to t ∈ (tk–, tk) gives

eAtx(t) = eA(tk–+ε)x(tk– + ε)

+
∫ t

tk–+ε

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds,

which yields, after letting ε → +,

eAtx(t) = eA(tk–)x
(
t+
k–
)

+
∫ t

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds,

t ∈ (tk–, tk). (.)

Throughout this paper, we assume that ε is a sufficient small positive number. Now, taking
t = tk – ε in (.) one obtains

eAtk –εx(tk – ε) = eAtk– x
(
t+
k–
)

+
∫ tk –ε

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds,

which yields by (.) and letting ε → +

eAtk x(tk) = eAtk– x
(
t+
k–
)

+
∫ tk

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds.

Combining (.) and the above equation generates

eAtx(t) = eAtk– x
(
t+
k–
)

+
∫ t

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds

= eAtk– x(tk–) +
∫ t

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds

+ eAtk–φ
(
x(tk–)

)
,

for all t ∈ (tk–, tk], k = , , . . . . Thereby, we have

eAtk– x(tk–) = eAtk– x(tk–) +
∫ tk–

tk–

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)

+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds + eAtk–φ
(
x(tk–)

)
,

...
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eAt x(t) = eAt x(t) +
∫ t

t

eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds

+ eAtφ
(
x(t)

)
,

eAt x(t) = φ() +
∫ t


eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds.

Synthesizing the above analysis results in the first equation of system (.). Similarly, the
second equation of system (.) can also be derived by system (.) with initial condition
(.). Hence, we have proved that each solution of (.) with initial condition (.) is that
of (.) with initial condition (.). This completes the proof. �

Theorem . The impulsive system (.) with initial condition (.) shows globally ex-
ponential robust stability in mean square for all admissible uncertainties if there exists a
positive number α < , satisfying the following two LMIs conditions:

A∗ +
(|C| + C∗)F + τ

(|M| + M∗)F +

δ

H + AH – αA < ,

B∗ +
(|D| + D∗)G + τ

(|W | + W ∗)G +

δ
H + BH – αB < ,

where δ = infk=,,...(tk+ – tk) > , and A∗, B∗, C∗, D∗, M∗, W ∗ are real matrices defined in
(.).

Proof To apply the contraction mapping theorem, we firstly define the complete metric
space � = � × � as follows.

Let �i (i = , ) be the space consisting of functions qi(t) : [–τ ,∞) → Rn, satisfying
(a) qi(t) is continuous on t ∈ [, +∞)\{tk}∞k=;
(b) q(t) = ξ (t), q(t) = η(t), for t ∈ [–τ , ];
(c) limt→t–

k
qi(t) = qi(tk), and limt→t+

k
qi(t) exists, for all k = , , . . . ;

(d) eγ tqi(t) →  ∈ Rn as t → +∞, where γ >  is a positive constant, satisfying
γ < min{λminA,λminB}.

It is not difficult to verify that the product space � is a complete metric space if it is
equipped with the following metric:

dist(q, q̃) = max
i=,,...,n–,n

(
sup
t≥–τ

∣∣q(i)(t) – q̃(i)(t)
∣∣), (.)

where

q = q(t) =

(
q(t)
q(t)

)
=
(
q()(t), q()(t), . . . , q(n)(t)

)T ∈ �,

q̃ = q̃(t) =

(
q̃(t)
q̃(t)

)
=
(̃
q()(t), . . . , q̃(n)(t)

)T ∈ �,

and qi ∈ �i, q̃i ∈ �i, i = , .
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Next, we want to formulate the contraction mapping P : � → � as follows:

P
(

x(t)
y(t)

)
=
(

e–At{ξ () +
∫ t

 eAs[–�A(s)x(s) + Csf (y(s)) + Ms
∫ s

s–τ (s) f (y(r)) dr] ds +
∑

<tk <t eAtk φ(xtk )}
e–Bt{η() +

∫ t
 eBs[–�B(s)x(s) + Dsg(x(s)) + Ws

∫ s
s–ρ(s) g(x(r)) dr] ds +

∑
<tk <t eBtk ϕ(xtk )}

)
,

(.)

for all t ≥ , and

P

(
x(t)
y(t)

)
=

(
ξ (t)
η(t)

)
, for all t ∈ [–τ , ]. (.)

From Lemma ., it is obvious that each fixed point of P is a solution of system (.)
with initial condition (.), and each solution of system (.) with initial condition (.) is
a fixed point of P.

Below, we only need to prove that the mapping P defined as (.)-(.) is truly a con-
traction mapping from � into �, which may be divided into two steps.

Step . We claim that P(�) ⊂ �. That is, for any
( x(t)

y(t)
) ∈ �, we shall prove that P

( x(t)
y(t)
)

satisfies the conditions (a)-(d) of �.
Indeed, it follows by the definition of P that P

( x(t)
y(t)
)

satisfies the conditions (a)-(b). Be-
sides, because of

lim
ε→+

(∑
<tk <tj–ε eAtk φ(xtk )∑
<tk <tj–ε eBtk ϕ(ytk )

)
=

(∑
<tk <tj

eAtk φ(xtk )∑
<tk <tj

eBtk ϕ(ytk )

)

and

lim
ε→+

(∑
<tk <tj+ε eAtk φ(xtk )∑
<tk <tj+ε eBtk ϕ(ytk )

)
=

(∑
<tk <tj

eAtk φ(xtk )∑
<tk <tj

eBtk ϕ(ytk )

)
+

(
eAtjφ(xtj )
eBtjϕ(ytj )

)
,

we can conclude directly from (.) that

lim
ε→+

P

(
x(tj – ε)
y(tj – ε)

)
= P

(
x(tj)
y(tj)

)

and

lim
ε→+

P

(
x(tj + ε)
y(tj + ε)

)
= P

(
x(tj)
y(tj)

)
+

(
φ(x(tj))
ϕ(y(tj))

)
,

which implies that P(·) satisfies the condition (c).
Finally, we verify that P(·) satisfies the condition (d). In fact, we can conclude from

eγ tx(t) →  and eγ ty(t) →  that, for any given ε > , there exists a corresponding con-
stant t∗ > τ such that

∣∣eγ tx(t)
∣∣ +

∣∣eγ ty(t)
∣∣ < εμ, ∀t ≥ t∗, where μ = (, , . . . , )T ∈ Rn.



Rao et al. Advances in Difference Equations  (2017) 2017:19 Page 8 of 16

Next, we get by (H)

∣∣∣∣eγ te–At
∫ t


eAsCsf

(
y(s)

)
ds
∣∣∣∣

≤ e–(A–γ I)t
∫ t∗


eAs|Cs|F

∣∣y(s)
∣∣ds + e–(A–γ I)t

∫ t

t∗
eAs|Cs|F

∣∣y(s)
∣∣ds. (.)

On the one hand, the boundedness assumption (.) produces |Cs|μ ≤ (|C| + C∗)μ, and
then

e–(A–γ I)t
∫ t∗


eAs|Cs|F

∣∣y(s)
∣∣ds

≤ t∗e–(A–γ I)teAt∗(|C| + C∗)F[max
i

(
sup

s∈[,t∗]

∣∣yi(s)
∣∣)]μ →  ∈ Rn, t → ∞. (.)

Remark that the convergence in (.) is in the sense of the metric defined as (.). Below,
all the cases of convergence are in the sense of the metric defined as (.), and we need
not repeat it anywhere else.

Due to (.), obviously there exists a positive number a such that

(|Cs| + |Ms|
)
Fμ ≤ aμ.

So we have

e–(A–γ I)t
∫ t

t∗
eAs|Cs|F

∣∣y(s)
∣∣ds

≤ εe–(A–γ I)t
∫ t

t∗
e(A–γ I)s|Cs|Fμds

≤ εae–(A–γ I)t

⎛
⎜⎜⎜⎜⎜⎝

e(a–γ )t

a–γ
 · · ·  

 e(a–γ )t

a–γ
 · · · 
. . .

  · · ·  e(an–γ )t

an–γ

⎞
⎟⎟⎟⎟⎟⎠μ

= εa

(


a – γ
,


a – γ

, . . . ,


an – γ

)T

. (.)

Now, the arbitrariness of ε together with (.)-(.) implies that

eγ te–At
∫ t


eAsCsf

(
y(s)

)
ds →  ∈ Rn, t → +∞. (.)

Similarly as the proof of (.), we can prove from (.) that

eγ te–At
∫ t


eAs(–�A(s)x(s)

)
ds →  ∈ Rn, t → +∞. (.)

Further, the definition of γ gives

eγ te–Atξ () →  ∈ Rn, t → +∞. (.)
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Below, we estimate

∣∣∣∣eγ te–At
∫ t


eAsMs

∫ s

s–τ (s)
f
(
y(r)

)
dr ds

∣∣∣∣
≤ e–(A–γ I)t

∫ t


eAs|Ms|

∫ s

s–τ (s)

∣∣f (y(r)
)∣∣dr ds

≤ e–(A–γ I)t
∫ t


eAs|Ms|

∫ s

s–τ

F
∣∣y(r)

∣∣dr ds

≤ eγ τ e–(A–γ I)t
∫ t∗+τ


e(A–γ I)s|Ms|

∫ s

s–τ

Feγ r∣∣y(r)
∣∣dr ds

+ eγ τ e–(A–γ I)t
∫ t

t∗+τ

e(A–γ I)s|Ms|
∫ s

s–τ

Feγ r∣∣y(r)
∣∣dr ds. (.)

It follows by the definitions of a, t∗, and τ that

 ≤ eγ τ e–(A–γ I)t
∫ t∗+τ


e(A–γ I)s|Ms|

∫ s

s–τ

Feγ r∣∣y(r)
∣∣dr ds

≤ eγ τ e–(A–γ I)t
∫ t∗+τ


e(A–γ I)s|Ms|

∫ t∗+τ

–τ

F max
i

(
sup

r∈[–τ ,t∗+τ ]
eγ r∣∣yi(r)

∣∣)μdr ds

= eγ τ e–(A–γ I)t
∫ t∗+τ


e(A–γ I)s|Ms|

(
t∗ + τ + τ

)
F max

i

(
sup

r∈[–τ ,t∗+τ ]
eγ r∣∣yi(r)

∣∣)μds

≤ e–(A–γ I)t
[(

t∗ + τ
)
eγ τ max

i

(
sup

r∈[–τ ,t∗+τ ]
eγ r∣∣yi(r)

∣∣)e(A–γ I)(t∗+τ )

×
∫ t∗+τ


|Ms|Fμds

]
→  ∈ Rn, t → +∞, (.)

and

eγ τ e–(A–γ I)t
∫ t

t∗+τ

e(A–γ I)s|Ms|
∫ s

s–τ

Feγ r∣∣y(r)
∣∣dr ds

≤ ετaeγ τ e–(A–γ I)t
(∫ t

t∗+τ

e(A–γ I)s ds
)

μ

≤ ετaeγ τ e–(A–γ I)t

⎛
⎜⎜⎜⎜⎜⎝

e(a–γ )t

a–γ
 · · ·  

 e(a–γ )t

a–γ
 · · · 
. . .

  · · ·  e(an–γ )t

an–γ

⎞
⎟⎟⎟⎟⎟⎠μ

= ε

[
τaeγ τ

(


a – γ
,


a – γ

, . . . ,


an – γ

)T]
. (.)

Synthesizing (.)-(.) derives

eγ te–At
∫ t


eAsMs

∫ s

s–τ (s)
f
(
y(r)

)
dr ds →  ∈ Rn, t → +∞. (.)
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Combining (.)-(.) and (.) results in

eγ te–At
{
ξ () +

∫ t


eAs
[

–�A(s)x(s) + Csf
(
y(s)

)
+ Ms

∫ s

s–τ (s)
f
(
y(r)

)
dr
]

ds
}

→ Rn,

t → +∞. (.)

Similarly, we can prove and obtain

eγ te–Bt
{
η() +

∫ t


eBs
[

–�B(s)x(s) + Dsg
(
x(s)

)
+ Ws

∫ s

s–ρ(s)
g
(
x(r)

)
dr
]

ds
}

→ Rn,

t → +∞. (.)

In addition, we claim that if t → +∞,

eγ t

(
e–At ∑

<tk <t eAtk φ(xtk )
e–Bt ∑

<tk <t eBtk ϕ(ytk )

)
= eγ t

[(
e–At ∑

<tk≤t∗ eAtk φ(xtk )
e–Bt ∑

<tk≤t∗ eBtk ϕ(ytk )

)

+

(
e–At ∑

t∗<tk <t eAtk φ(xtk )
e–Bt ∑

t∗<tk <t eBtk ϕ(ytk )

)]
→  ∈ Rn. (.)

In fact, on the one hand,

eγ t

(
e–At ∑

<tk≤t∗ eAtk φ(xtk )
e–Bt ∑

<tk≤t∗ eBtk ϕ(ytk )

)
=

(
e(γ I–A)t ∑

<tk≤t∗ eAtk φ(xtk )
e(γ I–B)t ∑

<tk≤t∗ eBtk ϕ(ytk )

)
→  ∈ Rn,

t → +∞. (.)

Below we shall prove

eγ t

(
e–At ∑

t∗<tk <t eAtk φ(xtk )
e–Bt ∑

t∗<tk <t eBtk ϕ(ytk )

)
→  ∈ Rn, t → +∞. (.)

Firstly, we may assume that tm– < t∗ ≤ tm and tj < t ≤ tj+ for any given t > t∗,

∣∣∣∣eγ te–At
∑

t∗<tk <t

eAtk φ(xtk )
∣∣∣∣

≤ ε

δ

⎛
⎜⎜⎝

e–(γ –a)t(δe(a–γ )tj+ +
∑

tm≤tk≤tj
(tk+ – tk)e(a–γ )tk )H

...
e–(γ –an)t(δe(an–γ )tj+ +

∑
tm≤tk≤tj

(tk+ – tk)e(an–γ )tk )Hn

⎞
⎟⎟⎠

≤ ε

δ

⎛
⎜⎜⎝

e–(γ –a)t(δe(a–γ )tj+ + 
a–γ

e(a–γ )t)H
...

e–(γ –an)t(δe(an–γ )tj+ + 
an–γ

e(a–γ )t)Hn

⎞
⎟⎟⎠ ,

which together with the arbitrariness of the positive number ε implies that

e–At
∑

t∗<tk <t

eAtk φ(xtk ) →  ∈ Rn, t → +∞.
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Similarly, we can also obtain

e–Bt
∑

t∗<tk <t

eBtk ϕ(ytk ) →  ∈ Rn, t → +∞.

So we have proved (.). Moreover, combining (.)-(.) implies that

eγ tP

(
x(t)
y(t)

)
→  ∈ Rn, t → +∞.

Hence P(·) satisfies the condition (d). So we have proved that P(�) ⊂ �.
Step . Below, we only need to prove that the operator P : � → � is a contraction map-

ping.
Indeed, for any

( x(t)
y(t)
)
,
( x(t)

y(t)
) ∈ �, we can get by the LMI conditions of Theorem .

∣∣∣∣∣P
(

x(t)
y(t)

)
– P

(
x(t)
y(t)

)∣∣∣∣∣
≤
(

e–At ∫ t
 eAs|�A(s)||x(s) – x(s)|ds

e–Bt ∫ t
 eBs|�B(s)||y(s) – y(s)|ds

)
+

(
e–At ∫ t

 eAs|Cs||f (y(s)) – f (y(s))|ds
e–Bt ∫ t

 eBs|Ds||g(x(s)) – g(x(s))|ds

)

+

(
e–At ∫ t

 eAs|Ms|
∫ s

s–τ (s) |f (y(r)) – f (y(r))|dr ds
e–Bt ∫ t

 eBs|Ws|
∫ s

s–ρ(s) |g(x(r)) – g(x(r))|dr ds

)

+

(
e–At ∑

<tk <t eAtk |φ(xtk ) – φ(xtk )|
e–Bt ∑

<tk <t eBtk |ϕ(ytk ) – ϕ(ytk
)|

)

≤
[(

A–A∗μ
B–B∗μ

)
+

(
A–(|C| + C∗)Fμ

B–(|D| + D∗)Gμ

)
+ τ

(
e–At ∫ t

 eAs(|M| + M∗)Fμds
e–Bt ∫ t

 eBs(|W | + W ∗)Gμdr

)

+

δ

(
e–At(

∑
t≤tk≤tj–

(tk+ – tk)eAtk + δeAtj )Hμ

e–Bt(
∑

t≤tk≤tj–
(tk+ – tk)eBtk + δeBtj )Hμ

)]
dist

((
x(t)
y(t)

)
,

(
x(t)
y(t)

))

≤
[(

A–A∗μ
B–B∗μ

)
+

(
A–(|C| + C∗)Fμ

B–(|D| + D∗)Gμ

)
+ τ

(
A–(|M| + M∗)Fμ

B–(|W | + W ∗)Gμ

)

+

δ

(
e–At(

∫ t
 eAs ds + δeAt)Hμ

e–Bt(
∫ t

 eBs ds + δeBt)Hμ

)]
dist

((
x(t)
y(t)

)
,

(
x(t)
y(t)

))

≤
[(

(A–A∗ + A–(|C| + C∗)F + τA–(|M| + M∗)F + 
δ
A–H + H)μ

(B–B∗ + B–(|D| + D∗)G + τB–(|W | + W ∗)G + 
δ
B–H + H)μ

)]

× dist

((
x(t)
y(t)

)
,

(
x(t)
y(t)

))

< α

(
μ

μ

)
dist

((
x(t)
y(t)

)
,

(
x(t)
y(t)

))
,



Rao et al. Advances in Difference Equations  (2017) 2017:19 Page 12 of 16

where we assume tj < t ≤ tj+ with j = , , , . . . . Here, t = . Hence

dist

(
P

(
x(t)
y(t)

)
, P

(
x(t)
y(t)

))
≤ α dist

((
x(t)
y(t)

)
,

(
x(t)
y(t)

))
,

where A– and B– are the inverse matrices of A and B, respectively.
Therefore, P : � → � is a contraction mapping such that there exists the fixed point( x(t)

y(t)
)

of P in �, which implies that
( x(t)

y(t)
)

is a solution of the impulsive dynamic equations
(.) with the initial condition (.), satisfying eγ t

∥∥( x(t)
y(t)
)∥∥→  as t → +∞. Therefore, the

impulsive equations (.)-(.) show globally exponential robust stability in mean square
for all admissible uncertainties. �

Remark  It is the first time one employs the contraction mapping theory to derive
the LMI-based exponential robust stability criterion for BAM neural networks with dis-
tributed delays and parameter uncertainties. So the obtained criterion is novel against
existing results (see below Remarks - and Tables  and ).

If impulse behaviors are ignored, we can derive the following corollary from Theo-
rem ..

Corollary . The following system with initial condition (.) shows globally exponential
robust stability in mean square for all admissible uncertainties:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t)
dt = –(A + �A(t))x(t) + (C + �C(t))f (y(t)) + (M + �M(t))

∫ t
t–τ (t) f (y(s)) ds,

t ≥ ,
dy(t)

dt = –(B + �B(t))y(t) + (D + �D(t))g(x(t)) + (W + �W (t))
∫ t

t–ρ(t) g(x(s)) ds,
t ≥ ,

if there exists a positive number α < , satisfying the following two LMIs conditions:

A∗ +
(|C| + C∗)F + τ

(|M| + M∗)F – αA < ,

B∗ +
(|D| + D∗)G + τ

(|W | + W ∗)G – αB < ,

where A∗, B∗, C∗, D∗, M∗, W ∗ are the real matrices defined in (.).

4 Numerical example
Example  Equip the impulsive system (.)-(.) with the following parameters:

f
(
y(t)

)
=

(
sin(.y(t))
. sin(y(t))

)
, g

(
x(t)

)
=

(
sin(.x(t))
. sin(x(t))

)
, (.)

φ
(
x(tk)

)
=

(
.x(tk) cos(.tk)

sin(.x(tk))

)
, ϕ

(
y(tk)

)
=

(
cos(.y(tk))

.y(tk) sin(.tk)

)
, (.)

A =

(
. 
 

)
, B =

(
 
 .

)
, C =

(
–. .

 .

)
,
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Figure 1 State trajectory of the system for Example 1.

D =

(
. .
 –.

)
, M =

(
. –.
. .

)
,

W =

(
. –.
. .

)
, F =

(
. 
 .

)
,

G =

(
. 
 .

)
, H =

(
. 
 .

)
= H,

A∗ =

(
. .

 .

)
, B∗ =

(
. 
. .

)
, C∗ =

(
. 
. .

)
,

D∗ =

(
. .

 .

)
, M∗ =

(
. 
. .

)
, W ∗ =

(
. .

 .

)
.

Take t = ., tk = tk– + .k, and δ = ., τ (t) = ρ(t) = τ = .. Let x(s) = tanh s, x(s) =
es+., y(s) =  sin s, y(s) =  cos(s + .). Then we can use the matlab LMI toolbox to solve
the two LMI conditions in Theorem ., obtaining the following datum feasible:

α = .,

satisfying  < α < . Thereby, we can conclude from Theorem . that the impulsive equa-
tions (.)-(.) show globally exponential robust stability in mean square for all admissible
uncertainties (see Figure ).

Remark  Example  can be studied by [], Theorem , Example . Table  is presented
to compare our Example  with it. Our Example  illustrates the effectiveness of the LMI-
based criterion (Theorem .). Although both [], Theorem , and our Theorem . are
involved with BAM neural networks with distributed delays, our Theorem . includes an
impulse.
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Table 1 Numerical comparison of Theorem 3.2 with [36], Theorem 2, in Example 1

Impulse Distributed delays Upper bound of time-delays

[36], Theorem 2, Example 1 yes yes 1.9
Theorem 3.2, Example 1 yes yes 2.1

Table 2 Comparing our Theorem 3.2 with other existing results about BAM neural networks
models

Our Th. 3.2 [37], Th. 4.1 [31], Th. 3.1 [32],
Thms. 2-4

[38], Th. 3 [34], Thm. 1

Impulse yes yes no no no no
Distributed delays yes no no no no yes
Parameter uncertainty yes yes no no no no
Using fixed point theory yes no yes yes no no
BAM neural networks
model

yes yes yes yes yes yes

Equations type integro-
differential

differential differential differential differential integro-
differential

LMI-based criterion yes yes no no no yes
Robustness of stability yes yes no no no no
Stability type robust

exponential
robust
asymptotical

exponential exponential exponential exponential

Remark  In Example , our upper bound of time-delays τ = . while the upper bound
of time-delays of [], Example , is ., which implies that our obtained result is close to
some of the current good results. For this purpose, below we give another table to verify
it.

Remark  From Table , we can synthetically analyze the criteria involved to various
mathematical models, main methods, and the effectiveness of the conclusions. In sum-
mary, the different methods and models imply that our Theorem . is really novel against
existing results.

5 Conclusions
Impulsive uncertain BAM neural networks modeling brings about some mathematical dif-
ficulties to the applications of the contraction mapping theorem. Thereby, the contraction
mapping theorem has never been employed to derive the robust stability of the impulsive
uncertain BAM neural networks before our Theorem .. Moreover, our new criterion
can easily be applied to the computer Matlab LMI toolbox. Example  illustrates the effec-
tiveness and feasibility by using the Matlab LMI toolbox. In addition, Tables  and  are
presented to show the novelty of our Theorem . (see Remarks -).
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