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Abstract
In this paper, we study the existence and multiplicity of solutions for an impulsive
differential equation via some critical point theory and the variational method. We
extend and improve some recent results and reduce conditions.
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1 Introduction
As an important research field of study, the impulsive differential equation has been at-
tracting the attention of several mathematicians. In the early years, the main way to resolve
this kind of problems is based on the fixed point theory, the theorem of topological degree,
the upper and lower solutions method coupled with the monotone iterative technique,
and so on; see for example [–]. Recently, many authors have tried to use the variational
method and some specific critical point theorems, such as mountain pass lemma, fountain
theorem, linking theorem, symmetric mountain pass lemma, and so on, to study the exis-
tence (see [–]) and multiplicity (see [–]) of solutions for some impulsive differential
equations.

In [], authors have shown the variational structure of an impulsive differential equation
and proved the existence of a solution by using the mountain pass lemma.

In [], the authors studied the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

–(p(t)u′)′(t) + r(t)u′(t) + q(t)u(t) = f (t, u(t)), a.e. t ∈ J ,

–�(p(t)u′(ti)) = Ii(u(ti)), i = , , . . . , p,

u() = , αu(t) + u′() = ,

where J = [, ],  = t < t < t < · · · < tp < tp+ = , f ∈ C[J × R, R], p ∈ C[J , R+], q, r ∈
C[, T].
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Then Zhang in [] proved the existence of two solutions and the existence of infinitely
many solutions of problem given by

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) + λu(t) = f (t, u(t)), a.e. t ∈ [, T],

�u′(ti) = Ii(u(ti)), i = , , . . . , p,

u() = u(T) = .

In this paper, we study the existence and multiplicity of solutions for the following non-
linear impulsive problem:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) + r(t)u′(t) + λu(t) = f (t, u(t)), a.e. t ∈ J ,

�u′(ti) = u′(ti+) – u′(ti–) = Ii(u(ti)), i = , , . . . , p,

u() = u(T) = ,

()

where J = [, T],  = t < t < t < · · · < tp < tp+ = T , r ∈ C[, T], Ii ∈ C[R, R], λ is a parame-
ter, f ∈ C[J × R, R], with F(t, u) =

∫ u
 f (t, ξ ) dξ .

We will prove that equation () has at least two classical solutions and infinitely many
classical solutions under different conditions. Our main results extend the existing result
in [, , ]. We prove the same impulsive problem in [] cannot only have two solutions
but also have infinitely many classical solutions. Compared with [], we do not require the
impulsive functions Ij and F to satisfy the sublinear growth condition and the superlinear
growth condition about uμ, which such that the problem more general. Different from []
in which F is a negative function, in this paper, our results relax the restriction of F with
a wider range of applications.

The rest of the paper is organized as follows: In Section , we give the variational struc-
ture and several important lemmas. The main theorems are formulated and proved in
Section .

2 Preliminaries
Let R(t) =

∫ t
 r(s) ds, M = maxt∈[,T] e–R(t), m = mint∈[,T] e–R(t). Multiplying the first equa-

tion of () by e–R(t), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

–(e–R(t)u′(t))′ + λe–R(t)u(t) = e–R(t)f (t, u(t)), a.e. t ∈ J ,

�u′(ti) = Ii(u(ti)), i = , , . . . , p,

u() = u(T) = .

()

Obviously, the solutions of equation () are solutions of equation (). Consider the Hilbert
space H

(, T) with the inner product and norm

(u, v) =
∫ T


e–R(t)u′(t)v′(t) dt,

‖u‖ =
(∫ T


e–R(t)(u′(t)

) dt
)/

.
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Multiply the first equation of () by v ∈ H
(, T), integrate it on the interval [, T]. It

follows from the boundary conditions u() = , u(T) =  that

∫ T


e–R(t)u′(t)v′(t) dt + λ

∫ T


e–R(t)u(t)v(t) dt +

p∑

i=

e–R(t)Ii
(
u(ti)

)
v(ti)

=
∫ T


e–R(t)f

(
t, u(t)

)
v(t) dt.

Now, define the function ϕ : H
(, T) → R

ϕ(u) = L(u, u) +
p∑

i=

e–R(t)
∫ u(ti)


Ii(s) ds

–
∫ T


e–R(t)F

(
t, u(t)

)
dt,

where

L(u, v) =



∫ T


e–R(t)u′(t)v′(t) dt +

λ



∫ T


e–R(t)u(t)v(t) dt,

and for all v ∈ H
(, T), we have

ϕ′(u)v =
∫ T


e–R(t)u′(t)v′(t) dt + λ

∫ T


e–R(t)u(t)v(t) dt

+
p∑

i=

e–R(t)Ii
(
u(ti)

)
v(ti) –

∫ T


e–R(t)f

(
t, u(t)

)
v(t) dt. ()

Definition  A weak solution of problem () is a function u ∈ H
(, T) such that the inte-

gral equation () holds for all v ∈ H
(, T).

Let λk(k = , , . . .) be the eigenvalue of the following Dirichlet problem, where λ = π

T

is the first eigenvalue:

⎧
⎨

⎩

–u′′(t) = λu(t), t ∈ [, T],

u() = u(T) = .
()

We assume Xk is the feature space corresponding with λk , then H
(, T) =

⊕
i∈N Xi.

Lemma  There exists a constant C > , such that ‖u‖∞ ≤ C‖u‖, where ‖u‖∞ =
maxt∈[,T] |u(t)|.

Lemma  ([]) If λ > – mλ
M , then there exist  < a < a, such that

a‖u‖ ≤ L(u, u) ≤ a‖u‖.
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Remark  If |λ| < mλ
M , then  < a < a < . In fact, if λ > , then let a = 

 , and by the
Poincaré inequality we have

L(u, u) =



∫ T


e–R(t)(u′(t)

) dt +
λ



∫ T


e–R(t)u(t) dt

≤ 

‖u‖ +

λM


∫ T


u(t) dt

≤ 

‖u‖ +

λM
λ

∫ T



(
u′(t)

) dt

≤ 

‖u‖ +

λM
mλ

∫ T


e–R(t)(u′(t)

) dt

=
(




+
λM

mλ

)

‖u‖.

Then letting a = 
 + λM

mλ
, we can get the result. Similarly, if – mλ

M < λ < , then let a = 
 ,

and by the Poincaré inequality we have

L(u, u) =



∫ T


e–R(t)(u′(t)

) dt +
λ



∫ T


e–R(t)u(t) dt

≥ 

‖u‖ +

λM


∫ T


u(t) dt

≥ 

‖u‖ +

λM
λ

∫ T



(
u′(t)

) dt

≥ 

‖u‖ +

λM
mλ

∫ T


e–R(t)(u′(t)

) dt

=
(




+
λM

mλ

)

‖u‖.

We can also let a = 
 + λM

mλ
to get the result.

Lemma  ([]) For the function F : M ⊆ E → R with M �= ∅, minu∈M F(u) = α has a solu-
tion in the case that the following hold:

(F) E is a real reflexive Banach space,
(F) M is bounded and weak sequentially closed,
(F) F is weak sequentially lower semi-continuous on M, i.e., by definition, for each se-

quence {un} in M such that un ⇀ u as n → ∞, we have F(u) ≤ lim infn→∞ F(un).

Lemma  ([]) Let E be a real Banach space with E = V
⊕

W , where V is finite-
dimensional. Suppose φ ∈ C′(E, R) satisfies P.S. condition, and:

(φ) there are constants ρ, τ >  such that φ|∂Bρ∩W ≥ τ , and
(φ) there is e ∈ ∂B ∩ W and R > ρ such that if Q = (BR ∩ V ) ⊕ {re| < r < R}, then

φ|∂Q ≤ .
Then φ possesses a critical value c ≥ τ which can be characterized as

c = infh∈� maxu∈Q φ(h(u)), where � = {h ∈ C(Q, E), h|∂Q = id}.
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Lemma  ([]) Let E be an infinite-dimensional real Banach space and ϕ ∈ C(E, R) be
even, satisfying the P.S. condition and u() = . If E = V ⊕W , where V is finite-dimensional,
and ϕ satisfies the following conditions:

(ϕ) there exist constants ρ, τ > , such that ϕ|∂Bρ∩W ≥ τ ,
(ϕ) for each finite-dimensional subspace V ⊂ E, there is R = R(V) such that, for all

u ∈ {u ∈ V,‖u‖ ≥ R}, we have ϕ(u) ≤ .
Then ϕ has an unbounded sequence of critical values.

3 Main results
In this paper, we assume:

(H) There exists μ >  such that μF(t, u) ≤ uf (t, u) and Ii(u)u ≤ μ
∫ u

 Ii(s) ds < .
(H) There exists ρ > , δi >  such that

∫ u
 Ii(s) ds ≥ –δi|u|μ for all ‖u‖ ≤ ρ.

(H) For all u ∈ X ∪ X, we have
∫ T

 F(t, u(t)) dt ≥ a‖u‖

m .
The main results are the following theorems.

Theorem  Assume (H)-(H) hold and |λ| < mλ
M , then the impulsive problem () has at

least two weak solutions.

Theorem  Suppose that (H)-(H) are satisfied and λ ≥ – mλ
M . If f (t, u) and Ii(u) are odd

about u, then the problem () has infinitely many weak solutions.

Next, we give the main lemma used in this paper.

Lemma  ([]) Suppose that (H) holds, then for all t ∈ [, T] we can obtain

F(t, u) ≤ F
(

t,
u
|u|

)

|u|μ,  < |u| ≤ ,
()

F(t, u) ≥ F
(

t,
u
|u|

)

|u|μ, |u| ≥ .

Remark  For the convenience of the reader, we denote M = sup{F(t, u), t ∈ [, T], |u| =
}, m = inf{F(t, u), t ∈ [, T], |u| = }.

Lemma  Suppose that (H) and (H) hold, then ϕ satisfies the P.S. condition.

Proof Let {un} ∈ H
(, T) be such a sequence that {ϕ(un)} is bounded and limn→∞ ϕ′(un) =

, we will show that un has a convergent subsequence. In view of the given condition, there
exists C >  such that

∣
∣ϕ(un)

∣
∣ ≤ C,

∥
∥ϕ′(un)

∥
∥ ≤ C,

for all n. By the definition of ϕ and () we obtain

(

 –

μ

)(∫ T


e–R(t)(u′(t)

) dt +
∫ T


e–R(t)u(t) dt

)

= ϕ(u) – 
p∑

i=

e–R(t)
∫ un(ti)


Ii(s) ds + 

∫ T


e–R(t)F

(
t, un(t)

)
dt
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–

μ

ϕ′(un)un +

μ

p∑

i=

e–R(t)Ii
(
un(ti)

)
un –


μ

∫ T


e–R(t)f

(
t, un(t)

)
un(t) dt

= C +

μ

C‖un‖ + 
p∑

i=

e–R(t)
[


μ

Ii
(
un(ti)

)
un –

∫ un(ti)


Ii(s) ds

]

+ 
∫ T


e–R(t)

[

F
(
t, un(t)

)
–


μ

f
(
t, un(t)

)
un(t)

]

dt.

Combining (H), we have

(

 –

μ

)

a‖un‖ ≤ C +

μ

C‖un‖.

This implies that {un} is bounded and, if necessary going to a sequence we can suppose
that un ⇀ u ∈ H

(, T). By () and Lemma  we have

(
ϕ′(un) – ϕ′(u)

)
(un – u) =

∫ T


e–R(t)(u′

n(t) – u′(t)
) dt + λ

∫ T


e–R(t)(un – un(t)

) dt

+
p∑

i=

e–R(t)[Ii
(
un(ti)

)
– Ii

(
u(ti)

)](
un(t) – u(t)

)

–
∫ T


e–R(t)[f

(
t, un(t)

)
– f

(
t, u(t)

)](
un(t) – u(t)

)
dt

≥ a‖un – u‖ +
p∑

i=

e–R(t)[Ii
(
un(ti)

)
– Ii

(
u(ti)

)](
un(t) – u(t)

)

–
∫ T


e–R(t)[f

(
t, un(t)

)
– f

(
t, u(t)

)](
un(t) – u(t)

)
dt. ()

Hence, un → u in C[, T]. Furthermore

(
ϕ′(un) – ϕ′(u)

)
(un – u) → ,

p∑

i=

e–R(t)[Ii
(
un(ti)

)
– Ii

(
u(ti)

)](
un(t) – u(t)

) → ,

∫ T


e–R(t)[f

(
t, un(t)

)
– f

(
t, u(t)

)](
un(t) – u(t)

)
dt → .

Combining with (), we know ‖un – u‖ → . So, ϕ satisfies the P.S. condition. �

Proof of Theorem  Because H
(, T) is Hilbert space, Bρ is bounded and weak sequentially

closed for all ρ > . We will show ϕ is weak sequentially lower semi-continuous on Bρ . In
fact suppose un ⇀ u in H

(, T), then ‖u‖ ≤ lim infn→∞ ‖un‖, and un → u in C[, T], so

λ



∫ T


e–R(t)u

n(t) dt +
p∑

i=

e–R(t)
∫ un(ti)


Ii(s) ds –

∫ T


e–R(t)F

(
t, un(t)

)
dt

→ λ



∫ T


e–R(t)u(t) dt +

p∑

i=

e–R(t)
∫ u(ti)


Ii(s) ds –

∫ T


e–R(t)F

(
t, u(t)

)
dt.
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By the definition of ϕ, we can obtain ϕ(u) ≤ lim infn→∞ ϕ(un). From Lemma , there exists
u such that ϕ(u) = min{ϕ(u), u ∈ Bρ}. Noting that ϕ() = , so ϕ(u) ≤ . Combining
with Lemma , Lemma , and (H), there exists a small ρ with ρ < ρ such that when
u(t) ∈ ∂Bρ we have

ϕ(u) ≥ a‖u‖ +
p∑

i=

e–R(t)
∫ u(ti)


Ii(s) ds –

∫ T


e–R(t)F

(
t, u(t)

)
dt

≥ a‖u‖ –
p∑

i=

e–R(t)δi|u|μ – m

∫ T


e–R(t)∣∣u(t)

∣
∣μ dt

≥ a‖u‖ –

( p∑

i=

δiM + δMmT

)

C‖u‖μ

= aρ
 –

( p∑

i=

δiM + δMmT

)

Cρμ = τ > .

ϕ(u) ≤  implies that ϕ possesses a critical point u ∈ Bρ .
Let V = X ⊕ X, W =

⊕∞
i= Xi, then there exists ρ, τ > , such that

ϕ|∂Bρ∩W ≥ τ .

Hence ϕ satisfies the condition (φ).
Taking e ∈ W such that ‖e‖ = . By Lemma , we claim that there exist C, M > , such

that

‖e‖ ≤ C|e|L , ‖u‖ ≤ C|u|L , u ∈ V ,

F(t, u) ≥ C
 |u| – M, (t, u) ∈ [, T] × R.

By (H), for all r > , u ∈ V , we have

ϕ(re + u) = L(re + u, re + u) +
p∑

i=

e–R(t)
∫ re+u


Ii(s) ds –

∫ T


e–R(t)F(t, re + u) dt

≤ a‖re + u‖ –
∫ T


e–R(t)(C

 |re + u| – M
)

dt

≤ ar + a‖u‖ + ar‖u‖ + TMM – C

(|re|L + |u|L – |re|L |u|L

)

≤ ar + a‖u‖ + ar‖u‖ + TMM – r – ‖u‖ + r‖u‖
= –( – a)r – ( – a)‖u‖ + (a + )r‖u‖ + TMM.

Combining with a < , there exists R > , such that the following conclusions hold:

when ‖u‖ ≥ R,ϕ(re + u) <  for all  < r < R;

when r ≥ R,ϕ(re + u) <  for all ‖u‖ ≤ R.
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For any u(t) ∈ V , ‖u‖ ≤ R, we can obtain

ϕ(u) ≤ a‖u‖ – m
∫ T


F
(
t, u(t)

)
dt ≤ .

Let � = (BR ∩ V ) ⊕ {re| < r < R}, ∂� = � ∪ � ∪ �, where

� =
{

u ∈ V ,‖u‖ ≤ R
}

, � = Re ⊕ {
u ∈ V ,‖u‖ ≤ R

}
,

� = {re| < r < R} ⊕ {
u ∈ V ,‖u‖ = R

}
.

So ϕ|∂Q ≤ . From Lemma  we know that ϕ has a critical point c with c ≥ τ > . In other
words, there exists u such that ϕ(u) = c. Hence u and u are classical solutions of the
impulsive problem (). �

Proof of Theorem  Since f (t, u) and Ii are odd about u, ϕ(u) is even and ϕ() = . Lemma 
shows that ϕ satisfies the P.S. condition. In the same way as in Theorem , we can verify ϕ

satisfies the condition (ϕ) in Lemma . Finally we prove that ϕ also satisfies the condition
(ϕ). According to Lemma  and (H), for every V, u ∈ V, there exists C, M >  such
that

ϕ(u) ≤ a‖u‖ +
p∑

i=

e–R(t)
∫ u(ti)


Ii(s) ds –

∫ T


e–R(t)F

(
t, u(t)

)
dt

≤ a‖u‖ – m
∫ T



(
m

∣
∣u(t)

∣
∣μ – C

)
dt

≤ a‖u‖ – M‖u‖μ + mTC,

then we can find R >  such that ϕ(u) ≤  when ‖u‖ ≥ R. By Lemma , ϕ possesses in-
finitely many critical points. Hence, BVP () has infinitely many classical solutions. �

Example Take x(t) ∈ C[, T], t ∈ (, T) and k > . Consider the following impulsive prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) + tu′(t) + λu(t) = e–tx(t)u 
 (t), t �= t,

�u′(t) = u′(t+) – u′(t–) = –ku(t),

u() = u(T) = .

()

Let μ = ., δ =  and ρ = , then the differential equation () has infinity many weak
solutions by Theorem .

4 Conclusion
A second-order impulsive differential equation is considered in this paper. Some necessary
conditions for the existence and multiplicity of solutions are presented by critical point
theories and variational methods. We also proposed a numerical example to show the
advantage.
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