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Abstract
In this work, we study Hopf bifurcations in the extended Lorenz system, ẋ = y,
ẏ =mx – ny –mxz – px3, ż = –az + bx2, with five parametersm,n,p,a,b ∈R. For some
values of the parameters, this system can be transformed to the classical Lorenz
system. In this paper, we give conditions for occurrence of Hopf bifurcation at the
equilibrium points. We find totally three limit cycles, each of them located around one
of the three equilibria of the system. Numerical simulations illustrate the validity of
these conditions and the existence of limit cycles.
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1 Introduction
At , E.N. Lorenz presented the first chaotic system, now called the Lorenz chaotic
attractor, which can be formulated as follows []:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = σ (Y – X),

Ẏ = ρX – Y – XZ,

Ż = –rZ + XY .

(.)

Since then, chaotic attractors attract more and more interest, and many other chaotic
attractors have been given, such as Rössler system [], Chua’s circuit [], Chen system [],
Lü system [], T system [], and so on. Various dynamical behaviors of chaotic systems
are revealed. Recently, there has been increasing attention about hidden attractors because
of their rich but distinctive dynamical behaviors [–]. Chaos becomes more and more
popular notion in the nonlinear science.

The main purpose of the article is to study the Hopf bifurcation of the following system
given by []:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y,

ẏ = mx – ny – mxz – px,

ż = –az + bx,

(.)
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where m, n, p, a, b ∈ R are parameters of system (.). The Lorenz system (.) can be
transformed into system (.) by the change of variables x =

√
X, y =

√
(X + Y

σ
), z =

X

σ
+ (ρ – )Z with a = –r, b = σ–r

σ (ρ–) , m = σ (ρ – ), p = , n = σ + . System (.) was in-
troduced recently in [] as the extended Lorenz system. Few results are reported on this
system so far. In [], the authors studied the birth of the Lorenz attractor in the extended
Lorenz system and revealed relations between the extended Lorenz system and the Lorenz
system.

The extended Lorenz system (.) is invariant under the transformation (x, y, z) →
(–x, –y, z). So the orbits of system (.) are symmetric with respect to the z-axis. The ori-
gin O(, , ) is an equilibrium of system (.) regardless the values of the parameters.
If ap + bm �=  and am

ap+bm ≥ , then the system has two other equilibria A(x, , z) and

A′(–x, , z) with x =
√

am
ap+bm and z = bm

ap+bm . The Jacobian matrix at O is
(

  
m –n 
  –a

)

with the eigenvalues 


√
n + m – 

 n, – 


√
n + m – 

 n, and –a. This implies that, for
m < – n

 , the Jacobian matrix has a pair of complex eigenvalues. If additionally we assume
that a > , then the system may undergo a Hopf bifurcation around O at the critical value
n = .

This paper is organized as follows. In Section , we analyze the Hopf bifurcation of the
extended Lorenz system at the origin. In Section , we study the Hopf bifurcation at the
nontrivial equilibria A and A′. Numerical simulations illustrate the validity of the theoret-
ical analysis in the last sections.

2 Hopf bifurcation of the origin
In this section, we analyze the Hopf bifurcation at the origin of coordinates.

Theorem  If

n = , m < , a > ,

then the extended Lorenz system (.) undergoes Hopf bifurcation at the origin. When b < ,
the Hopf bifurcation is supercritical, whereas if b > , then the Hopf bifurcation is subcrit-
ical. When b = , the extended Lorenz system (.) has no limit cycles near the origin of
coordinates.

Proof Whenever m < – n

 , system (.) has a pair of conjugate complex eigenvalues

λ := –



n +



i
√

–
(
n + m

)
, λ := –




n –



i
√

–
(
n + m

)
,

and a real eigenvalue λ := –a. Hence, system (.) has a simple pair of purely imaginary
eigenvalues as n =  and no other eigenvalues with zero real parts since a �= . Therefore,
condition (H) of Theorem .. in [], pp. -, is satisfied. Next, it is obvious that

d Re(λ)
dn

∣
∣
∣
∣
n=

= –



< ,

so that condition (H) of Theorem .. in [], pp. -, is also satisfied.



Zhou et al. Advances in Difference Equations  (2017) 2017:28 Page 3 of 10

We further compute the first Lyapunov coefficient.
By applying the linear change

⎛

⎜
⎝

x
y
z

⎞

⎟
⎠ =

⎛

⎜
⎝

  
– 

 n – 


√
–n – m 

  

⎞

⎟
⎠

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠

we transform system (.) into

⎛

⎜
⎝

u̇
v̇
ẇ

⎞

⎟
⎠ =

⎛

⎜
⎝

– 
 n – 



√
–n – m 




√
–n – m – 

 n 
  –a

⎞

⎟
⎠

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ +

⎛

⎜
⎝


pu+muw√

–n–m
bu

⎞

⎟
⎠ .

Moreover, let η = u + i v, where i = –, from which it follows that η̄ = u – i v, u = η+η̄

 , and
v = η–η̄

 i . After a simple calculation, we have

η̇ =
(

–



n +
i

√

–n – m
)

η +
i√

–n – m

(
p


(η + η̄) + mw(η + η̄)
)

,

ẇ = –aw +
b


(
η + ηη̄ + η̄).

(.)

When n = , m = –ω <  (ω >  is an arbitrary real constant), and a �= , system (.)
satisfies the center manifold theorem []. Thus, the center manifold W c has the repre-
sentation

w = W (η, η̄) =



wη
 + wηη̄ +




wη̄
 + O

(|η|) (.)

with unknown wij ∈ C. Since W must be real, w is real, and w = w̄.
Let us rewrite system (.) at n = :

⎧
⎨

⎩

η̇ =
√

–mηi + i

√

–m ( p
 (η + η̄) + mw(η + η̄)),

ẇ = –aw + b
 (η + ηη̄ + η̄).

(.)

Substituting (.) into (.) and using (.), we get, at the quadratic level,

(a + i
√

–m)w =
b


, aw =
b


, (a – i
√

–m)w =
b


.

Thus,

w =
b

(a + i
√

–m)
, w =

b
a

, w =
b

(a – i
√

–m)
,

and the center manifold W c is

w = W (η, η̄) =
b

(a + i
√

–m)
η +

b
a

ηη̄ +
b

(a – i
√

–m)
η̄ + O

(|η|). (.)
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Now the restriction of (.) to its center manifold, up to cubic terms, can be written as
follows:

η̇ = i
√

–mη +
i√
–m

[(
p


+
b

(a + i
√

–m)

)

η +
(

p


+
b

a
+

b
(a + i

√
–m)

)

ηη̄

+
(

p


+
b

a
+

b
(a – i

√
–m)

)

ηη̄ +
(

p


+
b

(a – i
√

–m)

)

η̄
]

+ · · · , (.)

where we omit higher-order terms when considering the Hopf bifurcation.
Now we can compute the first Lyapunov coefficient. There are three methods to com-

pute the Lyapunov constant: the Poincaré map, the Poincaré formal series, and the norm
form method. According to Han’s book [], pp. -, these three methods are equivalent
to each other, and the Lyapunov constants obtained by the methods are the same up to a
positive constant. Here we adopt the formal series method because it is easier to compute
by algebra system.

Using the relationship u = η+η̄

 and v = η–η̄

 i , we have

⎧
⎨

⎩

u̇ = –
√

–mv,

v̇ =
√

–mu + (ap+ab–amp–bm)√
–m(a–am) u + b

a–m uv + b
√

–m
a–am uv + O(r),

(.)

where r =
√

u + v.
By using the Maple program edited according to the formal series algorithm we obtain

the first Lyapunov constant

L =
b


√

–m(a – m)
(.)

and the formal series

F = u + v +
(ap + ab –  amp –  bm)u

ma(a –  m)

+
buv√

–m(a –  m)
–

buv
√

–m(a –  m)
–

 bv

a –  m
+ · · · .

Since m < , the denominator of (.) is positive, so L and the parameter b have the
same sign. Thus, we have the result of the second part of Theorem .

When b = , the center manifold of system (.) is w = , and the restriction of system
(.) in the center manifold becomes

ẋ = y, ẏ = mx – ny – px. (.)

If n = , then system (.) is a Hamilton system with the Hamiltonian function H(x, y) =

 y – m

 x + p
 x. There exists a family of periodic orbits given by Lh : H(x, y) = h, h ∈

(, +∞). Because the limit cycle is an isolated periodic orbit, system (.) and, equivalently,
system (.) have no limit cycles in this case. If n �= , then limit cycles also do not exist
because Ḣ = –ny is a constant function. The last part of Theorem  is proved. �

To illustrate the conclusion, we show in Figure  the limit cycle in the phase space for
a = , b = –, m = – (n = , p = ).
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Figure 1 The limit cycle of the extended Lorenz system; a = 1, b = –1, m = –1.

3 Hopf bifurcation of the nontrivial equilibria
Now we analyze the Hopf bifurcation at the nontrivial equilibria A′(–x, , z) and
A(x, , z), where x =

√
am

ap+bm and z = bm
ap+bm . Due to the symmetry, we only analyze

the equilibrium A(x, , z).
First, we move the equilibrium to the origin of the coordinates under the following

change of variables:

X = x – x, Y = y, Z = z – z.

The extended Lorenz system (.) thus becomes:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = Y ,

Ẏ = – amp
ap+bm X – nY – mxZ – pxX – mXZ – pX,

Ż = bxX – aZ + bX.

(.)

The Jacobian matrix of the linearization of system (.) at the origin is

⎛

⎜
⎝

  
– amp

ap+bm –n –mx

bx  –a

⎞

⎟
⎠

with the characteristic equation

P(λ) ≡ λ + aλ
 + aλ + a = , (.)

where

a = a + n, a = an +
amp

ap + bm
, a = am.

When we consider the Hopf bifurcation of a system at an equilibrium, we hope that the
Jacobian matrix of the linear part of the system at the equilibrium has a pair of purely imag-
inary eigenvalues and no other eigenvalues with zero real part. As to three-dimensional



Zhou et al. Advances in Difference Equations  (2017) 2017:28 Page 6 of 10

system, this means that the characteristic polynomial of the Jacobian matrix should be
formulated as P(λ) = (λ + p)(λ + p) with p �=  and p > . Expanding this form, we
know that p and p are the coefficients at λ and λ, respectively, and the constant term of
the polynomial is pp. At this moment, the three eigenvalues of the Jacobian matrix are
λ = –p and λ, = ±i√p []. By this fact we have the following proposition.

Proposition  The polynomial (.) has two purely imaginary roots if and only if aa = a,
a �= , and a > , that is,

a + n �= , an +
apm

ap + bm
> , p =

abm

amn + an + an . (.)

In this case, the roots are λ = –a – n and λ, = ±iω, where ω =
√

an + amp
ap+bm .

We choose the parameter p as the bifurcation parameter. Setting λ = λ(p) and applying

the implicit function theorem to (.), we have dλ
dp = –

dP
dp
dP
dλ

and

Re

(
dλ

dp

∣
∣
∣
∣
λ=iω,p= abm

amn+an+an

)

=
an(m + a + an)

b(an + m)(anL + mn + am + am)
�= 

whenever an �=  and m + a + an �= , where L = am + a + an + mn + an + n.
Next, we computer the first Lyapunov constant of system (.).
We consider system (.) at the critical parameter values (.) and perform the linear

change

⎛

⎜
⎝

X
Y
Z

⎞

⎟
⎠ =

⎛

⎜
⎝

  
 ω –a – n

aqx –ωqx – b
n x

⎞

⎟
⎠

⎛

⎜
⎝

U
V
W

⎞

⎟
⎠ ,

where q = b
a+ω . Then system (.) becomes

⎛

⎜
⎝

U̇
V̇
Ẇ

⎞

⎟
⎠ =

⎛

⎜
⎝

 –ω 
ω  
  –a – n

⎞

⎟
⎠

⎛

⎜
⎝

U
V
W

⎞

⎟
⎠ +

⎛

⎜
⎝


G(U , V , W )
H(U , V , W )

⎞

⎟
⎠ , (.)

where

G(U , V , W ) = – (px + amqx)U + mqωxUV

–
(

px + amqx –
bmx

n

)

UW

+ mqωxVW –
(

px –
bmx

n

)

W 

– pU – pUW – pUW  – pW ,

H(U , V , W ) = b
(
U + UW + W ).
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Introduce ξ = U + iV , ξ̄ = U – iV , where i = –. Then U = ξ+ξ̄

 and V = ξ–ξ̄

i . We transform
system (.) into the complex form

{
ξ̇ = ωξ i + g(ξ , ξ̄ , W ) + ig(ξ , ξ̄ , W ),
Ẇ = –(a + n)W + h(ξ , ξ̄ , W ),

(.)

where

g(ξ , ξ̄ , W ) =


ωmqxξ

 –


ω mqxξ

 – ωmqxξ W + ω mqxξW ,

g(ξ , ξ̄ , W ) =
(

–



px –



amω qx

)

ξ  +
(

–



px –



amω qx

)

ξ


+
(


bmx

n
– px

)

W  +
(

amω qx –



px

)

ξ ξ

+
(

bmx

n
–  px – amqx

)

ξ W +
(

bmx

n
–  px – amqx

)

ξW

–



pξ  –



pξ̄  – pW  –



pξ ξ̄ –



pξ ξ̄ 

–



pWξ  –



pW ξ̄  –



pW ξ –



pW ξ̄ –



pWξ ξ̄ ,

h(ξ , ξ̄ , W ) =



b
(
ξ  + ξξ + ξ

 + ξW + ξW + W ).

The center manifold W c now has the representation

W = W (ξ , ξ̄ , W ) =



Wξ
 + Wξ ξ̄ +




Wξ̄
 + O

(|ξ |). (.)

Thus, we have

Ẇ = Wξ ξ̇ + Wξ̇ ξ̄ + Wξ
˙̄ξ + Wξ̄

˙̄ξ + O
(|ξ |).

Substituting equation (.) into the last formula, we get

Ẇ = Wωiξ  – Wωiξ̄  + O
(|ξ |).

According to equation (.), the differential of W reads

Ẇ =
(




b –



aW –



nW

)

ξ  +
(




b –



aW –



nW

)

ξ̄ 

+
(




b – aW – nW

)

ξ ξ̄ + O
(|ξ |).

The two formulas are identical, and we equate the coefficients to get

W =
b

(a + n) + ωi
, W =

b
(a + n)

, W =
b

(a + n) – ωi
.
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Thus, we obtain the representation of center manifold W c

W = W (ξ , ξ̄ , W ) =
bξ 

(a + n) + ωi
+

bξ ξ̄

(a + n)
+

bξ̄ 

(a + n) – ωi
+ O

(|ξ |) (.)

and the restriction of system (.) to the center manifold

ξ̇ = ωξ i + gξ
 + gξ ξ̄ + gξ̄

 + gξ
 + gξ

ξ̄ + gξ ξ̄  + gξ̄
 + O

(|ξ , ξ̄ |),

where

g =


ωmqx – i




amqx – i



px,

g = –iamqx – i



px,

g = –


ωmqx – i




amqx – i



px,

g =
ω bmqx

(a + n +  iω)
–

iabmqx

(a + n +  iω)
+

ibmx

n(a + n +  iω)
–

 ibpx

(a + n +  iω)
–




ip,

g =
ω bmqx

(a + n +  iω)
–

iabmqx

(a + n +  iω)
+

ibmx

n(a + n +  iω)
–

 ibpx

(a + n +  iω)
–




ip

+
ibmx

n(a + n)
+

ω bmqx

(a + n)
–

 ibpx

(a + n)
–

iabmqxb
(a + n)

,

g = –
ω bmqx

(–a – n +  iω)
+

iabmqx

(–a – n +  iω)
–

ibmx

n(–a – n +  iω)
+

 ibpx

(–a – n +  iω)

–



ip +
ibmx

n(a + n)
–

ω bmqx

(a + n)
–

 ibpx

(a + n)
–

iabmqxb
(a + n)

,

g =
ω bmqx

(–a – n +  iω)
+

iabmqx

(–a – n +  iω)
–

ibmx

n(–a – n +  iω)

+
 ibpx

(–(a + n) +  iω)
–




ip.

Returning to the real form, we have

{
U̇ = –ωV ,
V̇ = ωU + kU + kUV + kU + kUV + kUV  + kV  + O(r),

(.)

where the coefficients kij are given as follows:

k = –(amq + p)x, k = qmωx,

k = –


n(a + n)(a +  an + n + ω)
(
 abmnqx + apn +  amqxbn

+  apxbn –  bmxa +  apn +  abmnωqx +  apnω –  abmnx

+  amqxbn +  apn +  apxbn +  pnω –  bmxω
 +  bnωpx

–  bmnx + pn +  pxbn),
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k = –
ω bx(amqn +  apn –  abm +  pn –  mqnω –  bmn – mqn)

n(a + n)(a +  an + n + ω)
,

k =
ωbx(bm –  pn + mqn)

n(a + n)(a +  an + n + ω)
, k =

ωbmqx

(a + n)(a +  an + n + ω)
.

By using the formal series method we find the first Lyapunov constant

L =
x(K + Kx)

nω(a + n)((a + n) + ω)
,

where

K = bmnqω – bpnω + bqmnω – abnpω + nmbω – bqmnaω + abmω,

K = amnq + mnpq + amnpq + amnq + amnpq + amnq

+ mnpqω + amnqω + mnpqa

+ amnpqω + nmaq + nmaqω.

Therefore, we have the following:

Theorem  If L �= , then the extended Lorenz system (.) undergoes Hopf bifurcation
at the equilibrium A. When L < , the Hopf bifurcation is supercritical, and system has
a stable limit cycle. When L > , the Hopf bifurcation is subcritical, and system has an
unstable limit cycle.

Due to the symmetry, the same result can be obtained at the other nontrivial equilib-
rium A′. So we find two limit cycles around the two equilibria A and A′, respectively.

To illustrate this conclusion, we show in Figure  the limit cycle around the equilib-
rium A in the phase space for a = , b = , m = , n = , p = . The initial value is
(., ., .). In this case, the first Lyapunov constant is L = ..

Figure 2 The limit cycle around A(x0, 0, z0) of the extended Lorenz system, a = 1, b = 2, m = 3, n = 2,
p = 2.
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4 Conclusion
In this paper, we analyze the existence of Hopf bifurcation in an extended Lorenz sys-
tem. We show that a nondegenerate Hopf bifurcation arises at each of the three equi-
librium points, the origin and two other nontrivial symmetric equilibria. We find totally
three limit cycles, one for each of the equilibria. In each case, we reduce the system to a
two-dimensional center manifold and compute the first Lyapunov constant L. Due to the
complex form of the analytic expression of the Lyapunov constant and the multitude of
parameters, we cannot fully analyze the sign of L at the nontrivial equilibria. We illustrate
the results by numerical simulation using Matlab Ra for some particular parameters.
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