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Abstract
In this paper, we study the existence of nontrivial homoclinic orbits of a dynamic
equation on time scales T of the form

{
(p(t)u�(t))� + qσ (t)uσ (t) = f (σ (t),uσ (t)), �-a.e. t ∈ T,
u(±∞) = u�(±∞) = 0.

We construct a variational framework of the above-mentioned problem, and some
new results on the existence of a homoclinic orbit or an unbounded sequence of
homoclinic orbits are obtained by using the mountain pass lemma and the
symmetric mountain pass lemma, respectively. The interesting thing is that the
variational method and the critical point theory are used in this paper. It is notable
that in our study any periodicity assumptions on p(t), q(t) and f (t,u) are not required.

MSC: 34B15; 34C25; 34N05

Keywords: time scales; variational structure; homoclinic orbits; critical point
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1 Introduction
In the past decades, there has been an increasing interest in the study of dynamic equa-
tions on time scales, employing and developing a variety of methods (such as the varia-
tional method, the fixed point theory, the method of upper and lower solutions, the coin-
cidence degree theory, and the topological degree arguments [–]) motivated, at least
in part, by the fact that the existence of homoclinic and heteroclinic solutions is of utmost
importance in the study of ordinary differential equations.

Although considerable attention has been dedicated to the existence of homoclinic and
heteroclinic solutions for continuous or discrete ordinary differential equations, see [–
] and the references therein, to the best of our knowledge, there is little work on ho-
moclinic orbits for differential equations on time scales []. One of interesting and open
problems on dynamic equations on time scales is to investigate discrete or continuous dif-
ferential equations on time scales with one goal being the unified treatment of differential
equations (the continuous case) and difference equations (the discrete case). In particu-
lar, not much work has been seen on the existence of solutions or homoclinic orbits to
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dynamic equations on time scales through the variational method and the critical point
theory [–].

In this paper, we consider the existence of nontrivial homoclinic orbits to zero of equa-
tion on time scales T of the form

{
(p(t)u�(t))� + qσ (t)uσ (t) = f (σ (t), uσ (t)), �-a.e. t ∈ T,
u(±∞) = u�(±∞) = ,

()

where p(t) : T → R is nonzero and is �-differential, q : T → R is Lebesgue integrable
and f : T × R → R is Lebesgue integrable with respect to t for �-a.e. t ∈ T. Providing
that f (t, x) grows superlinearly both at origin and at infinity or is an odd function with
respect to x ∈R, we explore the existence of a nontrivial homoclinic orbit of the dynamic
equation () by means of the mountain pass lemma and the existence of an unbounded
sequence of nontrivial homoclinic orbits by using the symmetric mountain pass lemma.
The interesting thing is that the variational method and the critical point theory are used
in this paper. It is notable that in our study any periodicity assumptions on p(t), q(t) and
f (t, u) are not required.

We say that a property holds for �-a.e. t ∈ A ⊂ T or �-a.e. on A ⊂ T whenever there
exists a set E ⊂ A with the null Lebesgue �-measure such that this property holds for
every t ∈ A \ E.

Definition  We say that a solution u of equation () is homoclinic to zero if it satisfies
u(t) →  as t → ±∞, where t ∈ T. In addition, if u �= , then u is called a nontrivial ho-
moclinic solution.

Throughout this paper, we make the following assumptions:

(H) limx→
f (t,x)

x =  uniformly for �-a.e. t ∈ T;
(H) there exists a constant β >  such that

xf (t, x) ≤ β

∫ x


f (t, s) ds <  for �-a.e. t ∈ T and for all x ∈R \ {}; ()

(H) p(t) >  for �-a.e. t ∈ T and
∫

(–∞,∞)T
p(t)�t < +∞;

(H) qσ (t) <  for �-a.e. t ∈ T, lim|t|→∞ qσ (t) = –∞ and
∫

(–∞,∞)T
|qσ (t)|�t < +∞.

Let F(t, x) =
∫ x

 f (t, s) ds, it follows from () that

dF
F

≥ β

x
dx for |x| ≥ ,

which implies that there is a real function α(t) >  such that

∫ x


f (t, s) ds ≤ –α(t)|x|β for �-a.e. t ∈ T and |x| ≥ . ()

It follows from () and () that

lim|x|→∞
f (t, x)

x
= –∞ uniformly for �-a.e. t ∈ T. ()



Su et al. Advances in Difference Equations  (2017) 2017:47 Page 3 of 16

Hence, we have the following remark.

Remark 
() u(t) ≡  is a trivial homoclinic solution of equation ().
() f (t, x) grows superlinearly both at infinity and at origin.

The paper is structured as follows. In Section , we introduce two technical lemmas
which will be used in the proofs of our main results. In Section , the variational structure
of the dynamic equation () is presented. In Section , we summarize our main results on
the existence homoclinic solution of the dynamic equation () on time scales and present
two examples. We demonstrate the proofs in Section .

2 Preliminaries
In this section, we present two lemmas which can help us to better understand our main
results and proofs. For the basic terminologies such as measure, absolute continuity, the
Lebesgue integral and Sobolev’s spaces on time scales, we refer the reader to references
[–].

Let us recall the mountain pass theorem [] and the symmetric mountain pass theorem
[], respectively.

Lemma  ([]) Let X be a real Banach space and ϕ : X → R be a C-smooth functional.
Suppose that ϕ satisfies the following conditions:

(i) ϕ() = ;
(ii) every sequence {uj}j∈N in X such that {ϕ(uj)}j∈N is bounded in R and ϕ′(uj) →  in

X∗ as j → +∞ contains a convergent subsequence as j → +∞ (the PS condition);
(iii) there exist constants � and α >  such that ϕ|∂B�() ≥ α;
(iv) there exists e ∈ X \ B̄�() such that ϕ(e) ≤ , where B�() is an open ball in X of

radius � centered at .
Then ϕ possesses a critical value c ≥ α given by

c = inf
g∈	

max
s∈[,]

ϕ
(
g(s)

)
,

where

	 =
{

g ∈ C
(
[, ], E

)
: g() = , g() = e

}
.

Lemma  ([]) Let X be a real Banach space and ϕ : X → R be a C-smooth functional.
Suppose that ϕ satisfies the following conditions:

(i) ϕ() = ;
(ii) ϕ satisfies the PS condition;

(iii) there exist constants � and α >  such that ϕ|∂B�() ≥ α;
(iv) for each finite-dimensional subspace Ẽ ⊂ E, there is γ = γ (̃E) such that ϕ ≤  on

Ẽ \ βγ .
Then ϕ possesses an unbounded sequence of critical values.
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3 Variational framework
In this section, we state some basic notations, some lemmas which are closely related to
our main results, and construct a variational framework of our problem.

For p ∈ R and p ≥ , we let the space

Lp
�

(
(–∞,∞)T,R

)
=

{
f : (–∞,∞)T →R :

∫
(–∞,∞)T

∣∣f (t)
∣∣p

�t < +∞
}

be equipped with the norm

‖f ‖Lp
�

=
[∫

(–∞,∞)T

∣∣f (s)
∣∣p

�s
] 

p
.

Then Lp
�((–∞,∞)T,R) is a Banach space together with the inner product given by

〈f , g〉Lp
�

=
∫

(–∞,∞)T
f (t)g(t)�t,

where (f , g) ∈ Lp
�((–∞,∞)T,R) × Lp

�((–∞,∞)T,R).
Let

H,
� = H,

�

(
(–∞,∞)T,R

)

=

⎧⎪⎨
⎪⎩u : (–∞,∞)T →R

∣∣∣∣∣∣∣
u is absolutely continuous and
bounded measurable functional,
u� ∈ L

�((–∞,∞)T,R)

⎫⎪⎬
⎪⎭ .

It is a Hilbert space with the norm defined by

‖u‖ = ‖u‖H,
�

=
(∫

(–∞,∞)T
|u|�t +

∫
(–∞,∞)T

∣∣u�
∣∣

�t
) 



for u ∈ H,
� .

Define

E =

⎧⎪⎨
⎪⎩u ∈ H,

�

∣∣∣∣∣∣∣

∫
(–∞,∞)T

[p(t)(u�) – qσ (t)(uσ )]�t < +∞,
and there exist , a ∈ (–∞,∞)T are real
such that

∫
(,a)T

u(t)�t = 

⎫⎪⎬
⎪⎭ .

Then E is a Hilbert space with the norm defined by

‖u‖
E =

∫
(–∞,∞)T

[
p(t)

(
u�

) – qσ (t)
(
uσ

)]
�t for u ∈ E,

and the inner product is

〈u, v〉 =
∫

(–∞,∞)T

[
p(t)u�v� – qσ (t)

(
uσ

)v
]
�t for any u, v ∈ E.
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Let

L∞
�

(
(–∞, +∞)T,R

)
=

{
u : (–∞, +∞)T →R

∣∣∣∣ u is bounded measurable
function a.e. on (–∞, +∞)T

}
,

and L∞
� ((–∞, +∞)T,R) is called the essentially bounded space on time scales, which is

equipped with the norm

‖u‖L∞
�

:= ess sup
{∣∣u(t)

∣∣ : t ∈ (–∞, +∞)T
}

= inf
μ(E)=,E⊂E

sup
t∈(–∞,+∞)T\E

∣∣u(t)
∣∣,

where u(t) is bounded on (–∞, +∞)T \ E, and E is a set of measure zero in the space
(–∞, +∞)T.

Now, we list three technical lemmas which will be used in the proofs of our main results
in the next section.

We have the following lemma.

Lemma  There exist positive constants C∗ and L such that the following inequality holds:

‖u‖L∞
�

≤ C∗‖u‖. ()

Moreover, there exist , a ∈ (–∞,∞)T are real such that
∫

(,a)T
u(t)�t = , then

‖u‖L∞
�

≤ L‖u�‖L
�

, ()

where t ∈ (–∞, +∞)T, holds.

Proof Going to the components of u(t), we can assume that n = , and there exist , a ∈
(, +∞)T are real. If u(t) ∈ H,

� , then there exists τ ∈ [, a]T such that u(τ ) = inft∈[,a]T u(t),
it follows that


a

∫
(,a)T

u(t)�t ≥ 
a

∫
(,a)T

u(τ )�t = u(τ ).

Thus, there exists constant c >  such that |u(τ )| ≤ c|
∫

(,a)T
u(t)�t|. Hence, for t ∈

(–∞,∞)T, one can get

∣∣u(t)
∣∣ =

∣∣∣∣u(τ ) +
∫

(τ ,t)T
u�(t)�t

∣∣∣∣ ≤ ∣∣u(τ )
∣∣ +

∣∣∣∣
∫

(τ ,t)T
u�(t)�t

∣∣∣∣

≤ c

∣∣∣∣
∫

(,a)T
u(t)�t

∣∣∣∣ + |t – τ | 


(∫
(τ ,t)T

∣∣u�(t)
∣∣

�t
) 



≤ ca



(∫
(–∞,∞)T

∣∣u(t)
∣∣

�t
) 



+ |t – τ | 


(∫
(–∞,∞)T

∣∣u�(t)
∣∣

�t
) 


,
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then

‖u‖L∞
�

= inf
μ(E)=,E⊂E

sup
t∈(–∞,+∞)T\E

∣∣u(t)
∣∣

≤ max
{

ca

 , inf

μ(E)=,E⊂E
sup

t∈(–∞,+∞)T\E

|t – τ | 

}

×
((∫

(–∞,∞)T

∣∣u(s)
∣∣

�t
) 


+

(∫
(–∞,∞)T

∣∣u�(s)
∣∣

�t
) 


)

≤ C∗‖u‖.

If
∫

(,a)T
u(t)�t = , then

∣∣u(t)
∣∣ =

∣∣∣∣u(τ ) +
∫

(τ ,t)T
u�(t)�t

∣∣∣∣ ≤ ∣∣u(τ )
∣∣ +

∣∣∣∣
∫

(τ ,t)T
u�(t)�t

∣∣∣∣

≤ c

∣∣∣∣
∫

(,a)T
u(t)�t

∣∣∣∣ + |t – τ | 


(∫
(τ ,t)T

∣∣u�(t)
∣∣

�t
) 


,

which implies () holds. �

Lemma  Assume that the sequence {un} ⊂ E such that un ⇀ u in E, then the sequence un

satisfies un → u in L
�((–∞,∞)T,R).

Proof Without loss of generality, assume that un ⇀  in E for any ε > . It follows from
(H) that there exists negative T ∈ T such that

–


qσ (t)
≤ ε for �-a.e. t ∈ (–∞, T)T. ()

Similarly, we also have there exists positive T ∈ T such that

–


qσ (t)
≤ ε for �-a.e. t ∈ (T,∞)T. ()

From (H) and (H), we have un ⇀ u in EI , where

EI =
{

u ∈ H,
�

∣∣∣
∫

(T,T)T

[
p(t)

(
u�(t)

) – qσ (t)
(
uσ (t)

)]
�t < +∞

}
.

Hence, {un} is bounded in EI , which implies that {un} is bounded in L
�((T, T)T,R). Due

to the uniqueness of the weak limit in L
�((T, T)T,R), one obtains un →  on (T, T)T,

then there is n such that

∫
(T,T)T

∣∣un(t)
∣∣

�t ≤ ε for all n ≥ n ()

since

sup
n

∫
(–∞,∞)T

[
p(t)

(
u�

n (t)
) – qσ (t)

(
un(t)

)]
�t < +∞.
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Let

A = max

{∫
(–∞,T)T

qσ (t)
∣∣un(t)

∣∣
�t,

∫
(–∞,T)T

qσ (t)
∣∣uσ

n (t)
∣∣

�t
}

,

then  < A < +∞.
According to (), we have

∫
(–∞,T)T

∣∣un(t)
∣∣

�t

≤ –ε max

{∫
(–∞,T)T

qσ (t)
∣∣un(t)

∣∣
�t,

∫
(–∞,T)T

qσ (t)
∣∣uσ

n (t)
∣∣

�t
}

≤ εA. ()

Let

A = max

{∫
(T,∞)T

qσ (t)
∣∣un(t)

∣∣
�t,

∫
(T,∞)T

qσ (t)
∣∣uσ

n (t)
∣∣

�t
}

,

then  < A < +∞.
In view of (), we have

∫
(T,∞)T

∣∣un(t)
∣∣

�t

≤ –ε max

{∫
(T,∞)T

qσ (t)
∣∣un(t)

∣∣
�t,

∫
(T,∞)T

qσ (t)
∣∣uσ

n (t)
∣∣

�t
}

≤ εA. ()

Since ε is arbitrary, combining (), () and (), one has

un → u in L
�

(
(–∞,∞)T,R

)
. �

In the following, we define and prove the variational framework of the dynamic equa-
tion ().

Define the functional E →R by

ϕ(u) =



∫
(–∞,∞)T

(
p(t)

(
u�(t)

) – qσ (t)
(
uσ (t)

))
�t +

∫
(–∞,∞)T

F
(
σ (t), uσ (t)

)
�t

=


‖u‖

E +
∫

(–∞,∞)T
F
(
σ (t), uσ (t)

)
�t, ()

where F(t, ξ ) =
∫ ξ

 f (t, s) ds.

Lemma  The functional ϕ is continuously differentiable on E, and

ϕ′(u)v =
∫

(–∞,∞)T

(
p(t)u�v� – qσ (t)uσ vσ

)
�t +

∫
(–∞,∞)T

f
(
σ (t), uσ

)
vσ �t for u, v ∈ E.
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Proof Let us first consider the existence of the Gâteaux derivative.
For any v ∈ E and ε ∈R ( < |ε| < ), we have


ε

[
ϕ(u + εv) – ϕ(u)

]

=
∫

(–∞,∞)T


ε

[
p(t)εu�v� + p(t)ε(v�

) – εqσ (t)uσ (t)vσ (t) + εqσ (t)
(
vσ (t)

)]

+
∫

(–∞,∞)T

F(σ (t), uσ + εvσ ) – F(σ (t), uσ )
ε

�t.

Given u ∈R, the mean value theorem indicates that there exists λ ∈ (, ) such that


|ε|

∣∣F(
σ (t), uσ + εvσ

)
– F

(
σ (t), uσ

)∣∣

=

|ε|

∣∣∣∣∂F
∂ξ

∣∣∣∣
(σ (t),uσ +λεvσ )

∣∣∣∣∣∣εvσ
∣∣ =

∣∣f (σ (t), uσ + λεvσ
)∣∣∣∣vσ

∣∣.

Note that

∣∣f (σ (t), uσ + λεvσ
)∣∣∣∣vσ

∣∣ ∈ L
�

(
(–∞,∞)T,R

)
.

It follows from Lebesgue’s dominated convergence theorem on time scales that

ϕ′(u)v = lim
ε→


ε

[
ϕ(u + εv) – ϕ(u)

]

=
∫

(–∞,∞)T

(
p(t)u�v� – qσ (t)uσ vσ

)
�t +

∫
(–∞,∞)T

f
(
σ (t), uσ

)
vσ�t.

Next, we show the continuity of the Gâteaux derivative.
Assume that the sequence {un} ⊂ E satisfies un → u as n → ∞ in E. Using Lebesgue’s

dominated convergence theorem on time scales and (H) yields
∫

(–∞,∞)T

∣∣f (σ (t), uσ
n
)

– f
(
σ (t), uσ

)∣∣�t →  as n → ∞. ()

It follows from Theorem . in [] that E ↪→ L
�((–∞,∞)T,R) is compact, then un → u

as n → ∞ in L
�((–∞,∞)T,R). For arbitrary v ∈ E, there holds

ϕ′(un)v – ϕ′(u)v

=
∫

(–∞,∞)T
p(t)

(
u�

n – u�
)
v��t

–
∫

(–∞,∞)T
qσ (t)

(
uσ

n – uσ
)
vσ�t +

∫
(–∞,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ

))
vσ�t.

Hölder’s inequality on time scales and Lemma  reduce to

∣∣ϕ′(un)v – ϕ′(u)v
∣∣

≤
∫

(–∞,∞)T

∣∣p(t)
(
u�

n – u�
)∣∣∣∣v�

∣∣�t +
∫

(–∞,∞)T

∣∣qσ (t)
(
uσ

n – uσ
)∣∣∣∣vσ

∣∣�t
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+
∫

(–∞,∞)T

∣∣(f
(
σ (t), uσ

n
)

– f
(
σ (t)uσ

)
vσ

)∣∣�t

≤ ‖v‖L∞
�

(∫
(–∞,∞)T

∣∣u�
n – u�

∣∣
�t

) 

(∫

(–∞,∞)T

∣∣p(t)
∣∣

�t
) 



+
∥∥vσ

∥∥
L∞
�

(∫
(–∞,∞)T

∣∣uσ
n – uσ

∣∣
�t

) 

(∫

(–∞,∞)T

∣∣qσ (t)
∣∣

�t
) 



+
∫

(–∞,∞)T

∣∣(f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ

)
vσ

)∣∣�t

≤ C∗‖v‖∥∥u�
n – u�

∥∥
L
�

(∫
(–∞,∞)T

∣∣p(t)
∣∣

�t
) 



+ C∗∥∥vσ
∥∥∥∥uσ

n – vσ
∥∥

L
�

(∫
(–∞,∞)T

∣∣qσ (t)
∣∣

�t
) 



+ C∗∥∥vσ
∥∥∫

(–∞,∞)T

∣∣f (σ (t), uσ
n
)

– f
(
σ (t), uσ

)∣∣�t.

Thus, from the above discussion, (), (H) and (H), we have

∥∥ϕ′(un) – ϕ′(u)
∥∥

≤ C∗∥∥u�
n – u�

∥∥
L
�

(∫
(–∞,∞)T

∣∣p(t)
∣∣

�t
) 



+ C∗ ‖vσ‖
‖v‖

∥∥uσ
n – vσ

∥∥
L
�

(∫
(–∞,∞)T

∣∣qσ (t)
∣∣

�t
) 



+ C∗ ‖vσ‖
‖v‖

∫
(–∞,∞)T

∣∣f (σ (t), uσ
n
)

– f
(
σ (t), uσ

)∣∣�t →  as n → ∞,

which implies ϕ′(un) → ϕ′(u) as n → ∞. �

For any vσ ∈ E, the dynamic equation () gives
∫

(–∞,∞)T

(
p(t)u�(t)

)�vσ�t +
∫

(–∞,∞)T
qσ (t)uσ (t)vσ�t

–
∫

(–∞,∞)T
f
(
σ (t), uσ (t)

)
vσ �t

=
∫

(–∞,∞)T

(
–p(t)u�(t)vσ + qσ (t)uσ (t)vσ

)
�t –

∫
(–∞,∞)T

f
(
σ (t), uσ

)
vσ�t

= .

So, finding the homoclinic solutions to the zero of dynamic equation () is equivalent to
finding the critical points of the associated functional ϕ defined in ().

4 Main results
In this section, we state the results of the existence of nontrivial homoclinic orbits of the
dynamic equation () on time scales. As an elementary illustration, two examples are given
to show the usefulness of these criteria.
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Theorem  If conditions (H), (H), (H) and (H) are satisfied, then the dynamic equation
() has one nontrivial homoclinic orbit to  such that

 <
∫

(–∞,∞)T

[


(
p(t)

(
u�(t)

) – qσ (t)
(
uσ (t)

)) + F
(
σ (t), uσ

)]
�t < +∞.

Example  Let

T ={, , , , , , , , , } ∪ [., +∞) ∪ (–∞, –.).

Consider the following second order boundary value problem on time scales T of the
form

{
(tu�(t))� – (tσ )uσ = – 

σ (t)(uσ (t)), �-a.e. t ∈ T,
u(±∞) = u�(±∞) = .

()

Since
∫ x

 f (t, s) ds = – t
 x, one can check that all conditions of Theorem  are fulfilled. It

follows from Theorem  that the dynamic equation () has one nontrivial homoclinic orbit
to .

Theorem  If conditions (H), (H), (H), (H) and the following condition are satisfied

(H) f (t, –x) = –f (t, x) for all x ∈R and �-a.e. t ∈ T,

then the dynamic equation () has an unbounded sequence in E of a homoclinic orbit to .

Example  Let a, b >  be real numbers,

P =
∞⋃

k=

[
k(a + b), k(a + b) + a

]
,

and

P =
∞⋃

k=

[
–k(a + b) – a, –k(a + b)

]
.

Consider the following second order boundary value problem on time scales P ∪ P of
the form

{
(tu�(t))� – |tσ |uσ = – 

σ (t)(uσ (t)), �-a.e. t ∈ P ∪ P,
u(±∞) = u�(±∞) = .

()

Since
∫ x

 f (t, s) ds = – t
 x, one can check that all conditions of Theorem  are fulfilled. It

follows from Theorem  that the dynamic equation () has an unbounded sequence in E
of a homoclinic orbit to .

5 Proof of theorems
In this section, we show our main results on the existence of nontrivial homoclinic orbits
of the dynamic equation () on time scales.
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Proof of Theorem  Since we have already known that ϕ ∈ C(E,R) and ϕ() = , in the
following we prove that all the other conditions of Lemma  are fulfilled with respect to
the functional ϕ.

Firstly, we claim that ϕ satisfies the PS condition.
Assume that there exist a sequence {un} ⊂ E and a constant c such that

ϕ′(un) →  as n → ∞ and ϕ(un) ≤ c, n = , , . . . , ()

we show that {un} has a convergent subsequence in E.
It follows from () and (H) that there is a constant d ≥  such that

d + ‖un‖E ≥ ϕ(un) –

β

ϕ′(un)un

=
(




–

β

)
‖u‖

E +
∫

(–∞,∞)T

(
F
(
σ (t), uσ

)
– f

(
σ (t), uσ

)
vσ

)
�t

≥
(




–

β

)
‖u‖

E ,

which implies that {un} is bounded in E. Hence, there is a subsequence (still denoted by
{un}, un ⇀ u in E). It follows from Lemma  that un → u in L

�((–∞,∞)T,R). Now,
according to (H), un, u ∈ E, for any ε > , we have that there exist constants δ > , δ > 
and L ∈ T such that

|un| < δ, |u| < δ and ‖un – u‖L
�

< ε for �-a.e. |t| > L, ()

which implies that

∣∣f (σ (t), uσ
n
)∣∣ ≤ ε

∣∣uσ
n
∣∣ and

∣∣f (σ (t), uσ

)∣∣ ≤ ε

∣∣uσ

∣∣ for �-a.e. |t| > L. ()

Since
∫

(–∞,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t

=
∫

[–L,L]T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t

+
∫

(–∞,–L)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t

+
∫

(L,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t, ()

let

L
�,loc(T,R) =

{
� : T →R | for arbitrary compact interval K ⊂ T,�IK ∈ L

�(T,R)
}

,

where IK is an indicator function of interval K and

�IK =

{
� (x), x ∈ K ,
, x /∈ K .
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It follows from the uniform continuity of f (t, x) in x and un → u in L
�,loc(T,Rn) that

∫
[–L,L]T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t →  as n → ∞.

Combining Hölder’s inequality on time scales, () and () leads to

∣∣∣∣
∫

(–∞,–L)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t
∣∣∣∣

≤
(∫

(–∞,–L)T

∣∣f (σ (t), uσ
n
)

– f
(
σ (t), uσ


)∣∣

�t
) 


(∫

(–∞,–L)T
(un – u)�t

) 


≤ ε
(∫

(–∞,–L)T

(∣∣uσ
n
∣∣ +

∣∣uσ

∣∣)

�t
) 



≤ εM.

By using the same technique, we obtain

∣∣∣∣
∫

(L,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t
∣∣∣∣ ≤ εM,

where M, M depend on the bounds for un and u in E. Then

∫
(–∞,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t →  as n → ∞ ()

since

(
ϕ′(un) – ϕ′(u)

)
(uk – u)

= ‖un – u‖
E –

∫
(–∞,∞)T

(
f
(
σ (t), uσ

n
)

– f
(
σ (t), uσ


))

(un – u)�t. ()

Equations () and () imply that un → u in E. Consequently, ϕ satisfies the PS condi-
tion.

Secondly, we prove that there exist constants � and α >  such that ϕ satisfies the as-
sumption (iii) of Lemma .

It follows from Lemma  that there exists α >  such that

‖u‖L
�

≤ α‖u‖E for u ∈ E.

On the other hand, according to (H) and (H), we have that there exists α >  such that

‖u‖∞ ≤ α‖u‖E ,

where

‖u‖∞ = max
t∈(–∞,∞)T

∣∣u(t)
∣∣.
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(H) implies that there is δ >  such that

∣∣F(t, x)
∣∣ ≤ ε|x| for |x| ≤ δ.

Let ρ = δ
α

and ‖u‖E ≤ ρ , we have ‖u‖∞ ≤ δ
α

α = δ, then

∣∣F(
t, uσ

)∣∣ ≤ ε
∣∣uσ

∣∣ for
∣∣uσ

∣∣ ≤ δ and �-a.e. t ∈ T,

which implies that

∫
(–∞,∞)T

F
(
t, uσ

)
�t ≥ –ε‖u‖

L
�

≥ –εα
‖u‖

E .

Hence, if ‖u‖E = ρ , we have

ϕ(u) =


‖u‖

E +
∫

(–∞,∞)T
F
(
σ (t), uσ

)
�t

≥ 

‖u‖

E – εα
‖u‖

E =
(




– εα


)
ρ.

Choosing ε = 
α

, we have

ϕ(u) ≥ 


ρ = α > .

Thirdly, we claim that there exists e ∈ X \ B̄ρ() such that ϕ satisfies the assumption (iv)
of Lemma .

Let u ∈ E be such that |u(t)| ≥ , for any σ ≥ , it follows from () that

ϕ(σu) =
σ 


‖u‖

E +
∫

(–∞,∞)T
F
(
σ (t),σuσ

)
�t

≤ σ 


‖u‖

E –
∫

(–∞,∞)T

∣∣σuσ
∣∣βα(t)�t

=
σ 


‖u‖

E – |σ |β
∫

(–∞,∞)T

∣∣uσ
∣∣βα(t)�t,

which implies that there exists σ ≥  such that ‖σu‖ > ρ and ϕ(σu) ≤  = ϕ().
Hence, all the conditions of Lemma  are satisfied, the desired results follow. �

Proof of Theorem  It follows from (H) that ϕ is even. In addition, we have already proved
that ϕ ∈ C(E,T), ϕ() =  and ϕ satisfies the Palais-Smale condition. We prove that all the
other conditions of the symmetric mountain pass theorem are satisfied with respect to
the functional ϕ. We have already showed that ϕ satisfies condition (iii) of the symmetric
mountain pass theorem in the proof of Theorem .

In the following, we claim that ϕ satisfies condition (iv) of the symmetric mountain pass
theorem.
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Let Ẽ ⊂ E be a finite-dimensional subspace. Consider u ∈ Ẽ ⊂ E with u �= . It follows
from () that

∫
(,∞)T

F
(
t, uσ

)
�t ≤ –

∫
(,∞)T

α(t)
∣∣u(t)

∣∣β�t,

and

∫
(–∞,–)T

F
(
t, uσ

)
�t ≤ –

∫
(–∞,–)T

α(t)
∣∣u(t)

∣∣β�t.

We also have

‖u‖
E ≤ c‖u‖

∞ for u ∈ Ẽ,

where c = c(̃E).
Define m = inf‖u‖∞=(

∫
(,∞)T

α(t)|u(t)|β�t +
∫

(–∞,–)T
α(t)|u(t)|β�t), if m = , we have

‖u‖ =  for �-a.e. t ∈ {t | |u(t)| > }, which contradicts ‖u‖∞ = , then m > , and we
have

ϕ(u) ≤ 


c‖u‖
∞ +

∫
(–∞,)T

F
(
σ (t), uσ

)
�t

+
∫

(,∞)T
F
(
σ (t), uσ

)
�t +

∫
[–,]T

F
(
σ (t), uσ

)
�t

≤ 


c‖u‖
∞ +

∫
(–∞,)T

F
(
σ (t), uσ

)
�t +

∫
(,∞)T

F
(
σ (t), uσ

)
�t

≤ 


c‖u‖
∞ –

∫
(–∞,)T

α(t)
∣∣u(t)

∣∣β�t –
∫

(,∞)T
α(t)

∣∣u(t)
∣∣β�t

=



c‖u‖
∞ –


β

‖u‖β
∞

(∫
(–∞,)T

α(t)
(

|u(t)|
‖u‖∞

)β

�t

+
∫

(,∞)T
α(t)

(
|u(t)|
‖u‖∞

)β

�t
)

≤ 


c‖u‖
∞ –

m
β

‖u‖β
∞.

Since β > , there exists a constant C such that ϕ(u) ≤  if ‖u‖∞ ≥ C.
Consequently, it follows from Lemma  that the functional ϕ possesses an unbounded

sequence of critical values {cj} with cj = ϕ(uj), where uj satisfies

 = ϕ′(uj)uj = ‖uj‖
E +

∫
(–∞,∞)T

f
(
σ (t), uσ

j
)
uj�t,

which implies that

–‖uj‖
E =

∫
(–∞,∞)T

f
(
σ (t), uσ

j
)
uj�t.
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(H) implies that

cj = –



∫
(–∞,∞)T

f
(
σ (t), uσ

j
)
uj�t +

∫
(–∞,∞)T

F
(
σ (t), uσ

j
)
�t

≤ –



∫
(–∞,∞)T

f
(
σ (t), uσ

j
)
uj�t =



‖uj‖

E .

Then {uj} is unbounded in E because of cj → ∞ as j → ∞. The proof is completed. �
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