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Abstract
With the help of a loop algebra we first present a (1 + 1)-dimensional discrete
integrable hierarchy with a Hamiltonian structure and generate a (2 + 1)-dimensional
discrete integrable hierarchy, respectively. Then we obtain a new
differential-difference integrable system with three-potential functions, whose
algebraic-geometric solution is derived from the theory of algebraic curves, where we
construct the new elliptic coordinates to straighten out the continuous and discrete
flows by introducing the Abel maps as well as the Riemann-Jacobi inversion theorem.
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1 Introduction
Integrable nonlinear lattice systems have important applications and rich mathematical
structures in mathematical physics, statistical physics, and quantum physics. For example,
the Toda lattice equation governs a system of unit masses connected by nonlinear springs
whose restoring force is exponential. The equation has been proved to have integrability
properties, such as a Lax pair, the Hamiltonian structure, infinite many conservation laws,
and so on [, ]. The Toda lattice was also solved by using the Casoratian technique system-
atically on rational or soliton or complex solutions [, ]. Therefore, it is interesting how
to generate integrable nonlinear lattice systems associated with mathematics and physics
by various methods. Suris [] once derived a new lattice equation related to the relativistic
Toda lattice hierarchy via a highly non-trivial Bäcklund transformation. Tu Guizhang []
applied a compatibility condition of spectral problems and some Lie algebras to propose a
powerful method for generating integrable differential-difference hierarchies and the cor-
responding Hamiltonian structures. Based on the scheme, some related integrable non-
linear lattice hierarchies were obtained; e.g. see [–]. In the case where lattice equations
including the positive and negative lattices by using the semi-direct sums of Lie algebras
have been present [, ], their mathematical structures such as Hamiltonian structures
usually investigated by the variational identity []. Ablowitz et al. [] considered some
exact linearization of difference equations; Nijhoff and Papageorgiou [] studied simi-
larity reductions; Levi et al. [] investigated some symmetries of differential and differ-
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ence equations; Ablowitz and Ladik [] obtained some differential-difference equations
and applied Fourier analysis to review their some integrable properties; Cao Cewen et
al. [] applied the nonlinearization method to importantly pave the way for generating
differential-difference equations and algebraic-geometric solutions of ( + )-dimensional
and ( + )-dimensional difference equations. Next Geng and Dai [] proposed some new
( + )-dimensional discrete models and obtained some algebraic-geometric solutions by
applying the nonlinearization method. Based on this, Geng et al. [–] further improved
the method so as to conveniently investigate algebraic-geometric solutions of differential
and difference equations by introducing a new matrix consisting of fundamental solu-
tions of spectral problems which satisfy discrete zero-curvature equations. With the help
of the nonlinearization method, some interesting work on algebraic-geometric solutions
was performed; e.g. see [, ].

As for as non-isospectral integrable lattice hierarchies are concerned, as is well known,
less work has been done. Gordoa, Pickering and Zhu [] made great progress in the aspect
of constructing new non-isospectral lattice hierarchies in  +  dimensions. Based on this,
Pickering, Zhu [] constructed two ( + )-dimensional discrete linear spectral problems
and generalized some known lattice equations. In the paper, we make use of a loop alge-
bra of the Lie algebra A to deduce a ( + )-dimensional discrete integrable hierarchy and
a ( + )-dimensional discrete hierarchy, respectively. Furthermore, we investigate their
Hamiltonian structures by the trace identity. The ( + )-dimensional discrete integrable
hierarchy obtained in the paper can be reduced to a new ( + )-dimensional integrable
nonlinear difference system with three-potential functions, and the ( + )-dimensional
discrete integrable hierarchy presented in the paper is obtained by a non-isospectral Lax
pair based on the loop algebra and a zero-curvature equation. Finally, we generate the
algebraic-geometric solution of the reduced discrete integrable system by introducing
Abel coordinates and the Riemann-Jacobi inversion theorem. The latter was once used
to investigate binary constrained flows and separation of variables in [].

2 Two integrable differential-difference hierarchies of evolution equations
We presented a loop algebra of the Lie algebra A as follows in []:

g̃ = span
{

h(n), h(n), e(n), f (n)
}

,

where

h(n) = hλ
n, h(n) = hλ

n, e(n) = eλn–, f (n) = f λn–,

h =

(
 
 

)

, h =

(
 
 

)

, e =

(
 
 

)

, f =

(
 
 

)

,

which has the commutative operations

[h, h] = , [h, e] = e, [h, f ] = –f , [h, e] = –e,

[h, f ] = f , [e, f ] = h ≡ h – h, [h, e] = e, [h, f ] = –f .
()
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In general, we usually apply multiplication operations among elements of the Lie algebra
g = span{h, h, e, f }. It is easy to see that

hh = h, hh = h, hh = hh = ee = ff = , he = e, eh = ,

hf = , fh = f , hf = f , fh = , he = , eh = e,

ef = h, fe = h.

()

In [], we changed the form of the discrete zero-curvature equation as follows:

(�V )Un = [Un, V ], ()

where � = E – , Ef (n) = f (n + ), Un and V are Lax matrices which appear in the spectral
problems

ϕn+ = Unϕn,
dϕn

dt
= Vϕn, ϕn = ϕ(n, t). ()

Equation () is similar to the stationary zero-curvature equation in continuous spectral
problems,

Vx = [U , V ].

The reason why we adopt equation () to investigate discrete integrable hierarchies aims
at applying the Tu scheme [] to generate lattice integrable hierarchies, which has been
a current way for generating integrable hierarchies of evolution equations. Based on the
above version, we had obtained the well-known Toda lattice hierarchy and a differential-
difference hierarchy; and further their expanding integrable models were produced, re-
spectively. In the following, we choose Un and V to be of the form []

Un = h() + qnh() + rne() + snf (),

V =
∑

n≥

[
an
(
h(–n) – h(–n)

)
+ bne(–n) + cnf (–n)

]
,

and apply equation () and the discrete zero-curvature equation,

dUn

dtm
= (�V(m))Un – [Un, V(m)], ()

to obtain the following integrable discrete hierarchy:

⎧
⎪⎪⎨

⎪⎪⎩

qn,tm = –rnc()
m + snbm,

rn,tm = bm,

sn,tm = –c()
m ,

()

where

V(m) =
m∑

n=

[
an
(
h(m – n) – h(m – n)

)
+ bne(m – n) + cnf (m – n)

]
– bme() – cmf ().
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Assume a = 
 , b = rn, c = sn–, then when m = , equation () can be reduced to

qn,t = snrn – rnsn–, rn,t = rn, sn,t = –sn. ()

When m = , equation () gives rise to (t = t):

⎧
⎪⎪⎨

⎪⎪⎩

qn,t = snqnrn+ – qnrnsn–,

rn,t = qnrn+ – rnrn+sn – r
nsn–,

sn,t = s
nrn+ + snsn–rn – qnsn–,

which can be written as

⎧
⎪⎪⎨

⎪⎪⎩

∂t ln qn = snrn+ – rnsn–,

∂t ln rn = –rn+sn – rnsn– + qn
rn+
rn

,

∂t ln sn = sn–rn + snrn+ – qn
sn–
sn

.

()

In the following, we still make use of the loop algebra g̃ to generate (+)-dimensional non-
isospectral differential-difference hierarchy by adopting the method presented in [–].

Consider the non-isospectral Lax problem

⎧
⎨

⎩
ψn+(λ) = Un(qn, rn, sn,λ)ψn(λ),
dψn(λ)

dt = ω(λ) dψn(λ)
dy + V (m)

n (qn, rn, sn,λ)ψn(λ),
()

where

λ = λ(t, y),
dλ

dt
= λt = ω(λ)λy + β(λ).

The compatibility condition of () yields

∂Un

∂t
– ω(λ)

∂Un

∂y
+ β(λ)

∂Un

∂λ
+
(
�V (m)

n
)
Un –

[
Un, V (m)

n
]

= . ()

Now we take

V (m)
n =

(
A B
C D

)

,

where

⎧
⎨

⎩
A =

∑m
j= aj(n, t, y)λ(m–j), B =

∑m
j= bj(n, t, y)λ(m–j)+,

C =
∑m

j= ci(n, t, y)λ(m–j)+, D =
∑m

j= dj(n, t, y)λ(m–j).
()
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Then equation () admits

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λEA + λsnEB – λA – λrnC = λβ(λ),

λṙn – λω(λ)rn,y + β(λ)rn = λrnEA + qnEB – λB – λrnD,

λṡn – λω(λ)sn,y + β(λ)sn = λEC + λsnED – λsnA – qnC,

q̇n – ω(λ)qn,y = λrnEC + qnED – λsnB – qnD.

Set

β(λ) =
m∑

j=

βjλ
(m–j)+, ω(λ) = λm. ()

Substituting () and () into equation () yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–rn,y + βrn = rnEa – b + qnEb – rnd,

rnβj = rnEaj + qnEbj – rndj – bj+,

–sn,y + βsn = Ec + snEd – sna – qnc,

snβj = Ecj+ + snEdj – snaj – qncj,

–qn,y = rnEc + qnEd – snb – qnd,

rnEcj+ + qnEdj – snbj+ – qndj = , j = , . . . , m,

()

and

⎧
⎪⎪⎨

⎪⎪⎩

rn,tm = –rnβm + rnEam + qnEbm – rndm,

sn,tm = snEdm – snam – qncm,

�qn,tm = qn�dm, j = , , . . . , m.

()

From equation (), we find that

(qn – snrn)�dj = rnsn�aj + qnsnEbj – qnrncj – snrnβj, j = , . . . , m. ()

For equation () to be solvable locally, we let aj = –dj, then equations ()-() can be
simplified, respectively,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–rn,y + βrn = rnEa – b + qnEb + rna,

rnβj = rnEaj + qnEbj + rnaj – bj+,

–sn,y + βsn = Ec – snEa – sna – qnc,

snβj = Ecj+ – snEaj – snaj – qncj,

–qn,y = rnEc – qnEa – snb – qnd,

rnEcj+ – qnEaj+ – snbj+ + qnaj = , j = , . . . , m,

()
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and
⎧
⎪⎪⎨

⎪⎪⎩

rn,tm = –rnβm + rnEam + rnam + qnEbm,

sn,tm = –snEam – snam – qncm,

�qn,tm = –qn�am, j = , , . . . , m,

()

qn�aj = –qnsnEbj + qnrncj + snrnβj, j = , , . . . , m. ()

Assume b = 
 s–

n–, c = – 
 r–

n , then one infers from () that

a = –n + β�
– snrn

qn
.

In terms of (), we have

b = –rn + rn,y – βrn + β
snr

n
qn

–



qn

sn
,

c = (β – )sn– – sn–,y + β
rn–s

n–
qn–

+
qn–

rn–
,

�a = –�rnsn– + β(E + )rnsn– – snrn+,y – rnsn–,y +



qn+sns–
n+ +




qn–rnr–
n–

+ βrnrn–s
n–q–

n– – βsnsn+q–
n+r

n+.

()

Substituting the above results into () yields a reduction of the ( + )-dimensional non-
isospectral discrete hierarchy (),

⎧
⎪⎪⎨

⎪⎪⎩

rn,t = –βrn – qnrn+ + qnrn+,y – βqnrn+ + β
qnsn+r

n+
qn+

– 


qnqn+
sn+

+ rn(E + )a,

sn,t = ( – β)qnsn– + qnsn–,y – β
qnrn–s

n–
qn–

– qn–an
rn–

– sn(E + )a,

�qn,t = –qn�a,

where a is given by ().

Remark  Via applying the trace identity proposed by Tu [], we could deduce the Hamil-
tonian structure of the ( + )-dimensional discrete integrable hierarchy (). However, how
do we search for the Hamiltonian structure of the ( + )-dimensional non-isospectral dis-
crete integrable hierarchy ()? This is a problem worth of discussing in the future.

3 Algebraic-geometric solution of the (1 + 1)-dimensional nonlinear discrete
integrable system (8)

The nonlinear discrete system () possesses the following Lax pair:
⎧
⎨

⎩
Eϕ(n) = Unϕ(n), Un = h() + qnh() + rne() + snf (),

ϕt(n) = V()ϕ(n),
()

where

V() =

(

λ – rnsn–λ V

V – 
λ + rnsn–λ

)

,
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V = rnλ
 +

(
λ –


λ

)(
qnrn+ – rnrn+sn – r

nsn–
)
,

V = sn–λ
 +

(
λ –


λ

)(
qn–sn– – s

n–rn – sn–sn–rn–
)
.

With the help of the approaches presented in [, ], we could generate Darboux-
Bäcklund transformations and exact soliton solutions of equation (). Of course, the key
problem focuses on how to construct suitable Darboux matrices. The problem will be
dealt in another paper.

In the following, we want to seek algebraic-geometric solutions based on theories in
[–, ]. We first introduce the Lenard gradient sequence S̄j,  ≤ j ∈ Z by the recursion
equation

KnS̄j(n) = JnS̄j+, JnS̄(n) = , j ≥ , ()

with the two operators

Kn =

⎛

⎜
⎝

 qnE 
–qn  
rnE –sn –qn�

⎞

⎟
⎠ , Jn =

⎛

⎜
⎝

 – rnE + rn

E  –snE – sn

rnE –sn –qn�

⎞

⎟
⎠ ,

S̄j(n) = (S()
j , S()

j , S()
j )T .

Equation JnS̄(n) =  possesses a special solution as follows:

S̄(n) =

⎛

⎜
⎝

sn–

rn



⎞

⎟
⎠ , ()

and we find that

ker Jn =
{

cS̄(n)
}

,

where c is an arbitrary constant. From equation (), we easily have

S̄(n) =

⎛

⎜
⎝

–s
n–rn – sn–sn–rn– + qn–sn–

–rnrn+sn – r
nsn– + qnrn+

–rnsn–

⎞

⎟
⎠ , . . . . ()

It is easy to see from () that

⎧
⎪⎪⎨

⎪⎪⎩

rnEs()
j+ + qnEs()

j – s()
j+ + rns()

j+ = ,

Es()
j+ – snEs()

j+ – qns()
j – sns()

j+ = ,

rnEs()
j – qnEs()

j – sns()
j + qns()

j = .

()
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The ( + )-dimensional integrable discrete hierarchy can be viewed as a generation of the
following isospectral problems:

⎧
⎨

⎩
ψ(n + ) = Unψ(n), Un = h() + qnh() + rne() + snf (),

ψ(n)tm = V (m)
n ψ(n), V (m)

n = A(m)
n h() + B(m)

n e() + C(m)
n f () – A(m)

n h(),
()

where

A(m)
n =

m∑

j=

s()
j (n)λ(m–j), B(m)

n =
m∑

j=

s()
j (n)λ(m–j), C(m)

n =
m∑

j=

s()
j (n)λ(m–j).

The compatibility condition of () admits equation (), which can be expressed as

⎛

⎜
⎝

qn

rn

sn

⎞

⎟
⎠

tm

= Xm(n) =

⎛

⎜
⎝

–rnc()
m + snbm

bm

–c()
m

⎞

⎟
⎠ .

3.1 Decomposition of the differential-difference equations
In the subsection, we shall decompose the ( + )-dimensional lattice system () into
solvable ordinary differential equations. Suppose () has two basic solutions ψ(n) =
(ψ ()(n),ψ ()(n))T and ϕ(n) = (ϕ()(n),ϕ()(n))T . We define a Lax matrix Wn in terms of
ψ(n) and ϕ(n), which has some generalizations in [], by

Wn =

(
f (n) g(n)
h(n) –f (n)

)

=


(
ϕ(n)ψ(n)T + ψ(n)ϕ(n)T)

(
 –
 

)

. ()

From equation () we can verify that

Wn+Un – UnWn = , Wn,tm =
[
V (m)

n , Wn
]
, ()

which means that the function det Wn is a constant independent of n and tm. It is easy to
see that equation () can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ�f (n) + λsnEg(n) – λrnh(n) = ,

λrnEf (n) + qnEg(n) – λg(n) + λrnf (n) = ,

λEh(n) – λsnEf (n) – qnh(n) – λsnf (n) = ,

λrnEh(n) – qnEf (n) – λsng(n) + qnf (n) = ,

()

and

⎧
⎪⎪⎨

⎪⎪⎩

f (n)tm = B(m)
n h(n) – C(m)

n g(n),

g(n)tm = g(n)A(m)
n – B(m)

n f (n),

h(n)tm = C(m)
n f (n) – A(m)

n h(n),

()
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where

f (n) =
N∑

j=

fj(n)λ(N–j)+, g(n) =
N∑

j=

gj(n)λ(N–j)+,

h(n) =
N∑

j=

hj(n)λ(N–j)+.

()

Substituting () into () and comparing the coefficients of the same powers of λ give
rise to

KnGj(n) = JnGj+(n), JnG(n) = , KnGN (n) = , ()

where Gj(n) = (hj(n), gj(n), fj(n))T . It is easy to see that equation JnG(n) =  has the general
solution

G(n) = αS̄(n), ()

here α is a constant. Acting with (J–
n Kn)k on equation (), we obtain

Gk(n) = αS̄k(n) + αS̄k–(n) + · · · + αkS̄(n), ()

where α,α, . . . ,αk are constants. Inserting () into equation KnGN (n) =  gives a discrete
stationary equation

αXN (n) + αXN–(n) + · · · + αN X(n) = , ()

which implies (qn, rn, sn) is the finite-band solution. Assume α = , we can obtain from
() and () that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f(n) = 
 , g(n) = rn, h(n) = sn–,

f(n) = –rnsn–,

g(n) = –rnrn+sn – r
nsn– + qnrn+,

h(n) = –s
n–rn – sn–sn–rn– + qn–sn–.

()

We apply g(n) and h(n) as polynomials of λ to define the elliptic coordinates {μj(n)} and
{νj(n)}:

⎧
⎪⎨

⎪⎩

g(n) = rn
N
π
j=

(λ – μj(n)) ≡ rn
N
π
j=

(λ̃ – μ̃j(n)),

h(n) = sn–(
N
π
j=

(λ – νj(n))) ≡ sn–
N
π
j=

(λ̃ – ν̃j(n)),
()

where we denote λ,μj(n),νj(n) by λ̃, μ̃j(n) and ν̃j(n), respectively. By comparing coeffi-
cients of the same power for λ, we have

⎧
⎨

⎩
g(n) = –rn

∑N
j= μ̃j(n), h(n) = –sn–

∑N
j= ν̃j(n),

g(n) = rn
∑

i<j μ̃i(n)μ̃j(n), h(n) = sn–
∑

i<j ν̃i(n)ñuj(n).
()
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Combined with (), equation () can be written as

⎧
⎨

⎩
rn+sn + rnsn– – rn+

rn
qn =

∑N
j= μ̃j(n) + α,

sn–rn + sn–rn– – sn–
sn–

qn– =
∑N

j= ν̃j(n) + α.
()

Thus, equation () can be written as

⎧
⎪⎪⎨

⎪⎪⎩

∂t ln qn = snrn+ – rnsn–,

∂t ln rn = –
∑N

j= μ̃j(n) – α,

∂t ln sn = E
∑N

j= ν̃j(n) + α.

()

Consider the function det Wn, which is a (N + )th-order polynomial in λ:

– det Wn = f (n) + g(n)h(n) =



λ N+
π
j=

(
λ – λ

j
)

=



λ̃
N+
π
j=

(λ̃ – λ̃j) =



R(λ̃). ()

Substituting () into () yields

α = –



N+∑

j=

λ̃j.

One infers that

f (n)|λ̃=μ̃k (n) =



√
R
(
μ̃k(n)

)
, f (n)|λ̃=ν̃j(n) =




√
R
(
ν̃j(n)

)
, ()

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g(n)t |λ̃=μ̃k (n) = (s()
 (n)g(n) – f (n)s()

 (n))|λ̃=ν̃j(n)

= g(n)t |λ̃=μ̃k (n) = rn(∂tμ̃k(n))
N
π

i�=j,i=
(μ̃k(n) – μ̃i(n)),

h(n)t |λ̃=ν̃k (n) = (f (n)s()
 – h(n)s()

 )|λ̃=ν̃k (n) = sn–(∂t ν̃k(n))
N
π

i�=j,i=
(ν̃k(n) – ν̃i(n)),

from which we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t μ̃k (n)√
R(μ̃k (n))

= – 
N
π

i�=k,i=
(μ̃k (n)–μ̃i(n))

,

∂t ν̃k (n)√
R(ν̃k (n))

= 
N
π

i�=k,i=
(ν̃k (n)–ν̃i(n))

.
()

Taking t = t, in terms of (), we get

g(n)t|λ̃=μ̃k (n) = g(n)
[



λ̃ – rnsn–λ̃

]

– f (n)
[
rnλ̃
√

λ̃
(
–rnrn+sn – r

nsn– + qnrn+
)|λ̃=μ̃k (n)

]
, ()

h(n)t|λ̃=ν̃k (n) = f
(
ν̃k(n)

)[
sn–ν̃k(n)

√
ν̃k(n)

]

+
(
–s

n–rn – sn–sn–rn– + qn–sn–
)√

ν̃k(n). ()
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Again from () and (), (), we have the following ODEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tμ̃k (n)√
R(μ̃k (n))

= –
μ̃k (n)–

∑N
j= μ̃j(n)–α

N
π

i�=j,i=
(μ̃k (n)–μ̃i(n))

,

∂t ν̃k (n)√
R(ν̃k (n))

=
ν̃k (n)–

∑N
j= ν̃j(n)–α

N
π

i�=j,i=
(ν̃k (n)–ν̃i(n))

.
()

Therefore, if λ̃, . . . , λ̃N+ are N +  distinct parameters, and μ̃k(n), ν̃k(n) are compati-
ble solutions of () and (), then qn, rn, sn determined by (), () solve the ( + )-
dimensional lattice system ().

3.2 Straightening out of the continuous flow
We introduce the Riemann surface � of the hyper-elliptic curve with genus N :

ξ  = R(λ̃), R(λ̃) = λ̃
N+
π
j=

(λ̃ – λ̃j),

which has two infinite points ∞ and ∞, not branch points of �. We fix a set of regular
cycle paths: a, . . . , aN ; b, . . . , bN which are independent and have the intersection numbers

ak ◦ aj = bk ◦ bj = , ak ◦ bj = δkj,  ≤ k, j ≤ N .

On �, we choose the holomorphic differentials:

ω̃l =
λ̃l– dλ̃
√

R(λ̃)
, l = , . . . , N ,

and we denote

Akj =
∫

aj

ω̃k , Bkj =
∫

bj

ω̃k .

It can be verified that the matrices A = (Akj) and B = (Bij) are all N × N invertible. If we
denote matrices C and τ by C = (ckj) = A–, τ = (τkj) = CB, then the matrix τ can be proved
to be symmetric and have positive defined imaginary part. Now we normalize ω̃j into the
new basis ωj:

ωj =
N∑

i=

cjlω̃l, l = , . . . , N ,

so that they satisfy

∫

ak

ωj =
N∑

l=

cjl

∫

ak

ω̃l =
N∑

l=

cjlAlk = δjk ,
∫

bk

ωj = τjk . ()

We again introduce the Abel map A(P):

A(P) =
∫ P

P

ω,
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which can be extended to the whole divisor group of � : A : Div(�) → J̄ (�) = CN /J ,
where the lattice J is spanned by the periodic vectors {δk , τk} given by (). The Abel-
Jacobi coordinates are defined as

⎧
⎨

⎩
ρ()(n) = A(

∑N
k= P(μ̃k(n))) =

∑N
k=
∫ P(μ̃k (n))

P
ω,

ρ()(n) = A(
∑N

k= P(ν̃k(n))) =
∑N

k= P(μ̃k(n)) =
∑N

k=
∫ P(ν̃k (n))

P
ω,

explicitly,

⎧
⎪⎨

⎪⎩

ρ()(n) =
∑N

k=
∫ μ̃k (n)
λ̃(P) ωj =

∑N
k=
∑N

l= cjl
∫ μ̃k (n)
λ̃(P)

λ̃l– dλ̃√
R(λ̃)

,

ρ()(n) =
∑N

k=
∫ ν̃k (n)
λ̃(P) ωj =

∑N
k=
∑N

l= cjl
∫ ν̃k (n)
λ̃(P)

λ̃l– dλ̃√
R(λ̃)

,
()

where λ̃(P) is the local coordinate of P, P(μ̃k(n)) = (λ̃ = μ̃k(n), ξ =
√

R(μ̃k(n))), P(ν̃k(n)) =
(λ̃ = ν̃k(n), ξ =

√
R(ν̃k(n))) ∈ �. We obtain

∂tρ
()(n) =

N∑

l=

N∑

k=

cjl
μ̃k(n)l–∂tμ̃k(n)
√

R(μ̃k(n))

= –
N∑

l=

N∑

k=

cjl
μ̃k(n)l–

N
π

i�=k,i=
(μ̃k(n) – μ̃i(n))

= –cjN ≡ �
()
j , ()

∂tρ
()(n) = ∂t

N∑

l=

N∑

k=

cjl

∫ μ̃k (n)

λ̃(P)

λ̃l– dλ̃
√

R(λ̃)

= –
N∑

k=

cjl
μ̃k(n)l–(μ̃k(n) –

∑N
j= μ̃j(n) – α)

N
π

i�=k,i=
(μ̃k(n) – μ̃i(n))

≡ �
()
j ,  ≤ j ≤ N . ()

Similarly, we can obtain

∂tρ
()(n) = –�

()
j , ∂tρ

()(n) = –�
()
j , j = , , . . . , N .

Remark  Equation () is a finite sum, but we do not know how to express it by some
linear combinations of the elements cij.

3.3 Straightening out of the discrete flow
Suppose the fundamental solution matrix of the first equation in () is given by []

Qn =
(
φ(n), φ̃(n)

)
=

(
φ() φ̂()(n)
φ() φ̂()(n)

)

, Q = I,

which satisfies

Qn+ = UnUn– . . . U. ()
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We can compute that

φ()() = λ, φ()() = λs, φ̂()() = λr, φ̂()() = q,

φ()() = λ + λrs, φ()() = λs + λqs,

φ̂()() = λr + λrq, φ̂() = λsr + qq, . . . .

Assume δ is the eigenvalue of the Lax matrix Wn in the solution space of equation ψ(n +
) = Unψ(n), which is invariant under the action of Wn due to (EWn)Un = UnWn. The
corresponding eigenfunction is ψ(n) called the Baker function which obeys

ψ(n + ) = Unψ(n), Wnψ(n) = δψ(n). ()

It is easy to see that

det |δ – Wn| = δ – f (n) – g(n)h(n) = 

has two eigenvalues δ± = ±δ, where

δ =
√

f (n) + g(n)h(n) =



√
R(λ̃). ()

The corresponding Baker function can be taken as

φ±(n) = φ(n) + b±φ̂(n), b± =
±δ – f ()

g()
,

or

φ±(n) = φ(n) + b̄±φ̂(n), b̄± =
h()

±δ + f ()
;

φ̂±(n) = c±φ(n) + φ̂(n), c± =
±δ + f ()

h()
,

or

φ̂±(n) = c̄±φ(n) + φ̂(n), c̄± =
g()

±δ – f ()
.

By following [], we can prove the following formula of Dubrovin-Novikov type:

⎧
⎪⎨

⎪⎩

p+(n)p–(n) = rn
r

N
π
j=

λ̃–μ̃j(n)
λ̃–μ̃j() ,

q+(n)q–(n) = sn–
s–

N
π
j=

λ̃–ν̃j(n)
λ̃–ν̃j() ,

()

where
⎧
⎨

⎩
p+(n) = φ()(n) + b+φ̂()(n), p–(n) = φ()(n) + b–φ̂()(n),

q+(n) = c+φ()(n) + φ̂()(n), q–(n) = c–φ()(n) + φ̂()(n).
()
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Now we consider the approximation of b± and c±, then we discuss the approximations
of the functions () so that we have some properties of the Baker function as follows.
A direct calculation gives rise to

b+ =
h()

δ + f ()
= s–λ̃

(
 + O

(
λ̃–)), ()

b– =
–δ – f ()

g()
= –


r

λ̃
{

 + O
(
λ̃–)}, ()

c+ =
δ + f ()

h()
=

λ̃

s–

{
 + O

(
λ̃–)}, ()

c– = –
g()

δ + f ()
= –rλ̃

–{ + O
(
λ̃–)}. ()

From ()-() and (), one infers that

p+(n)p–(n) =
rn

r

{
 + O

(
λ̃–)},

q+(n)q–(n) =
sn–

s–

{
 + O

(
λ̃–)}.

The functions p+(n), p–(n) and q+(n), q–(n) can be regarded as values of the singly valued
functions p(n, P) and q(n, P) on the upper and lower sheets of �, respectively. Hence, we
have the following assertion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p+(n) = ( + s–snr)λ̃n + O(λ̃n–),

p–(n) = ( – sn)λ̃n + O(λ̃n–),

q+(n) = 
s–

λ̃n+ + (s–
–rnsn– + snr)λ̃n + O(λ̃n–),

q–(n) = ( – sn)rλ̃
n– + O(λ̃n–).

()

As stated by Cao and Geng [, ], we can prove the following assertions based on ()-
().

Proposition  The Baker function p(n, P) has
(i) N simple zeros at μ̃(n), . . . , μ̃N (n) and a pole of the nth order at

∞ = (z = , ), z = λ̃– on the upper sheet of �;
(ii) N simple zeros at ν̃(n), . . . , ν̃N (n) and a zero of the nth order at ∞ = (z = , –) on

the lower sheet of �.

Proposition  The Baker function q(n, P) has
(i) N simple poles at ν̃(), . . . , ν̃N (n) and a pole of nth order at ∞ on the upper sheet of

�;
(ii) N simple zeros at ν̃(n), . . . , ν̃k(n) and a zero of the nth order at ∞ on the lower sheet

of �.

Theorem (Straightening out the discrete flow)

�ρ() = ρ()(n + ) – ρ()(n) = �()(modJ );
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�ρ() = ρ()(n + ) – ρ()(n) = �()(modJ ),

where �() =
∫∞
∞

ω.

3.4 Algebraic-geometric solution of equation (8)
The well-known Riemann theta function of � is defined by

θ (ξ |τ ) =
∑

z∈ZN

exp
(
π i〈τz, z〉 + π i〈ξ , z〉), ξ ∈ CN ,

in which ξ = (ξ, . . . , ξN )T , 〈ξ , z〉 =
∑N

j= ξjzj.
According to the Riemann theorem, there exists a constant M(i) ∈ CN so that
(i) F = θ (A(P) – ρ()(n) – M()) has exactly N zeros at λ̃ = μ̃(n), . . . , μ̃N (n);

(ii) F = θ (A(P) – ρ()(n) – M()) has exactly zeros at λ̃ = ν̃(n), . . . , ν̃N (n).
The surface � is cut along all ak , bk to become a simple connected region so that the

function defined on � is simple valued. Denote the boundary of � by γ , then the integrals


π i

∫

γ

λ̃d ln Fm = Ik(�), m = , ; k = , ,

are constants which are independent of ρ()(n) and ρ()(n) with Ik(�) =
∑N

j=
∫

aj
λ̃kωj.

According to the inversion theorem, we have

⎧
⎨

⎩

∑N
j= μ̃j(n)k = Ik(�) –

∑
s= Resλ̃=∞s λ̃k d ln F(λ̃),

∑N
j= ν̃j(n)k = Ik(�) –

∑
s= Resλ̃=∞s λ̃k d ln F(λ̃).

()

In the following, we calculate the residues in (). We introduce local coordinate z = λ̃–

at ∞s. Then the hyper-elliptic curve ξ  = R(λ̃) in the neighborhood of infinity is given by

ξ̃  = R̃(z) along with ξ̃ = zN+, R̃(z) = zN N+
π
j=

( – λ̃jz), and ∞s = (z = , (–)s–
√

R̃(λ̃)|z=) =

(, (–)s–), s = , . We can infer that

A
(
P
(
z–)) =

(
–
∫ P

∞s

+
∫ P

∞s

)
ω

= –ηs – (–)s–
N∑

l=

cjl

∫ z



zN– dz
√

R̃(z)

= –ηs – (–)s–[cjN z + O
(
z)], ηs =

∫ P

∞s

ω.

Since the theta function is an even function, Fm(λ̃) can be written as

Fm
(
z–) = θ

(
. . . ,ρ(m)

j + M(m)
j + η(j)

s + (–)s–cjN z + O
(
z), . . .

)

= θ (m)
s + z(–)s–

N∑

j=

cjN Djθ
(m)
s + O

(
z),
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where θ
(m)
s = θ (ρ(m)(n) + M(m) + η

(m)
s ),η(m)

s =
∫ P
∞m

ω, m = , . Dj stands for the derivative
with respect to the jth argument of θ

(m)
s . It is easy to compute that

∂

∂t
θ (m)

s =
N∑

j=

cjN Djθ
(m)
s .

Thus, we have

Fm
(
z–) = θ (m)

s – z(–)s–∂t∂tθ
(m)
s + O

(
z).

Resλ̃=∞s λ̃d ln Fm(λ̃) = –(–)s–∂t ln θ (m)
s + O(z),  ≤ s, m ≤ ,

()

where

θ ()
s = θ

(
�()n + t�

() + t�() + ρ
()

)
,

θ ()
s = θ

(
�()n – t�

() – t�() + ρ()).

Hence, equations () and () lead to

⎧
⎪⎪⎨

⎪⎪⎩

∑N
j= μ̃j(n) = I(�) – ∂t ln

θ
()


θ
()


,

∑N
j= ν̃j(n) = I(�) – ∂t ln

θ
()


θ
()


.
()

Substituting () into () yields

rn = exp

[

–∂t–∂t ln
θ

()


θ
()


–



t
N+∑

j=

λ̃j

]

,

sn = exp

[

–∂t–∂t ln
Eθ

()


Eθ
()


–



t
N+∑

j=

λ̃j

]

,

qn = exp

{

∂t–�

[

exp

(

–∂–
t ∂t ln

θ
()


θ
()


–



t
N+∑

j=

)

exp

(
–∂t–∂t ln

Eθ
()


Eθ
()


–



t
N+∑

j=

λ̃j

)]}

,

which is the algebro-geometric solution to equation ().

Remark  We have obtained the algebraic-geometric solutions of the ( + )-dimensional
nonlinear discrete system (). It is also an interesting and challenging work to address how
to directly generate algebraic-geometric solutions of some ( + )-dimensional reduced
discrete integrable systems of the ( + )-dimensional differential-difference hierarchy ()
just like the model for generating algebraic-geometric solutions in  +  dimensions. In
addition, it is important for investigating numerical solutions of the discrete integrable
system () like the way presented in []. It is also interesting to discuss some properties
presented in [–]. These problems will be discussed in the future.
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