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1 Introduction
The purpose of this work is to investigate the asymptotic behavior of the third-order func-
tional differential equation with the middle-term

(
r(t)

(
r(t)

(
y′(t)

)γ )′)′ – p(t)
(
y′(t)

)γ – q(t)f
(
y
(
g(t)

))
= , t ≥ t, (.)

where t is fixed and γ is a quotient of odd positive integers. Throughout this paper, we
assume that

(i) r, r, q ∈ C(I , (,∞)), where I = [t,∞);
(ii) p ∈ C(I , [,∞));

(iii) g ∈ C(I ,R), g ′(t) ≥ , limt→∞ g(t) = ∞;
(iv) f ∈ C(R,R), xf (x) > , f ′(x) ≥  for x �= , f (xy) ≥ f (x)f (y) for xy > .
By a solution of equation (.) we mean a function y ∈ C([Ty,∞)), Ty ∈ I , which has

the property ry′, r(r(y′)γ )′ ∈ C([Ty,∞),R) and satisfies (.) on [Ty,∞). Our attention
is restricted to those solutions y of (.) which exist on I and satisfy the condition

sup
{∣∣y(t)

∣∣ : t ≤ t < ∞}
>  for any t ≥ t.

We make the standing hypothesis that (.) admits such a solution. A solution of (.)
is called oscillatory if it has arbitrarily large zeros on [Ty,∞) and otherwise it is called
nonoscillatory. Equation (.) is said to be oscillatory if all its solutions are oscillatory.
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Analysis of the asymptotic and oscillatory behavior of solutions to different classes of dif-
ferential and functional differential equations has experienced long-term interest of many
researchers, see, for example, [–] and the references cited therein. A huge amount of
significant oscillation results has been collected in several excellent monographs, see, e.g.,
[, , , ]. This interest is caused by the fact that differential equations, especially those
with deviating argument, are deemed to be adequate in modeling of countless processes
in all areas of science. In particular, it is worthwhile to mention the use of third-order
differential equations in the study of an entry-flow phenomenon in a problem of hydro-
dynamics, or of the propagation of electrical pulses in the nerve of a squid approximated
by the famous Nagumo’s equation [].

In the recent works [, ], the authors used a generalized Riccati transformation and an
integral averaging technique in order to establish some sufficient conditions for oscillation
of all solutions of a trinomial third-order differential equation

(
r(t)

(
r(t)

(
y′(t)

)γ )′)′ + p(t)
(
y′(t)

)γ + q(t)f
(
y
(
g(t)

))
= , (.)

where p(t) and q(t) are positive functions and the auxiliary equation

(
r(t)z′(t)

)′ +
p(t)
r(t)

z(t) = 

is nonoscillatory. They have shown (see [], Lemma .) that any nonoscillatory solution
of (.) satisfies

y(t)y′(t) <  or y(t)y′(t) > .

Another approach for studying the asymptotic properties of (.) has been employed
in papers [, ] when p(t) is negative and q(t) is positive. The authors presented several
comparison theorems in which the desired properties of solutions are deduced from those
of corresponding first-order functional or second-order ordinary differential equations.
Their results, however, strongly rely on the knowledge of the auxiliary solution z(t).

In this work, we would like to study equation (.) under assumptions (i)–(v). The organi-
zation of the paper is as follows. Using different arguments as those in [] and by imposing
one restrictive condition on coefficients of the corresponding auxiliary equation, we show
that any nonoscillatory solution y(t) of (.) satisfies

y(t)y′(t) > .

In the next, we consider separately delay and advanced cases of the argument deviation to
establish new sufficient conditions for all solutions of (.) to have property B (see Defini-
tion ). Moreover, in the advanced case, we will attain oscillation of all solutions of (.).

2 Some basic definitions and auxiliary lemmas
Following [], we define

Ly(t) = y(t), Ly(t) = r(t)
(
y′(t)

)γ ,
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Ly(t) = r(t)
(
Ly(t)

)′, Ly(t) =
(
Ly(t)

)′,

for t ∈ I . With this notation, (.) can be rewritten as

Ly(t) –
p(t)
r(t)

Ly(t) – q(t)f
(
y
(
g(t)

))
= .

For the sake of clarity, we list the functions used in this work:

R(t, t) =
∫ t

t


r/γ

 (s)
ds, R(t, t) =

∫ t

t


r(s)

ds, R(t, t) =
∫ t

t

R/γ
 (s, t)
r/γ

 (s)
ds,

P(t) = exp

(
–

∫ t

t


r(s)

∫ ∞

s

p(u)
r(u)

du ds
)

, P̃(t) =
∫ ∞

t


r(s)

∫ ∞

s
q(u) du ds,

Q(t) =
p(t)
r(t)

P̃(t) + q(t), Q̃(t) =


r(t)

∫ ∞

t
Q(s) ds,

q̃(s, t) =
∫ s

t


r(u)

∫ u

t
q(x)f

(
R

(
g(x), t

))
dx du,

R(s, t) =
p(s)
r(s)

q̃(s, t) + q(s)f
(
R

(
g(s), t

))
,

for s ≥ t ≥ t, t ∈ I .
Throughout and without further mentioning, it will be assumed that

Ri(t, t) → ∞ as t → ∞, for i = , ,

which means that the operator Ly(t) is in the so-called canonical form (see Trench []).
To give a sense of the definitions of P(t) and P̃(t), we also suppose that

∫ ∞

t

p(s)
r(s)

ds < ∞ and
∫ ∞

t

q(s) ds < ∞.

Remark  All the functional inequalities considered in this paper are assumed to hold
eventually, that is, they are satisfied for all t large enough.

Remark  In the sequel and without loss of generality, we can restrict our attention only
to positive solutions of (.).

Properties of solutions to equation (.) are closely related to those of solutions to an
auxiliary second-order linear ordinary differential equation

(
r(t)v′(t)

)′ =
p(t)
r(t)

v(t) (.)

as the following lemma says.

Lemma  Let v(t) be a positive solution of (.) on I . Then (.) can be written in the form

(
r(t)v(t)

(
r(t)
v(t)

(
y′(t)

)γ

)′)′
= q(t)v(t)f

(
y
(
g(t)

))
, t ∈ I . (.)
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Proof It follows from a straightforward calculation that

(
r(t)

(
r(t)

(
y′(t)

)γ )′)′ – p(t)
(
y′(t)

)γ =


v(t)

(
r(t)v(t)

(
r(t)
v(t)

(
y′(t)

)γ

)′)′
.

The proof of the above equivalence is similar to that stated in [], and so it is omitted. �

We recall that (.) always has a couple of nonoscillatory solutions such that, for all t ∈ I ,
either

v(t)v′(t) >  (.)

or

v(t)v′(t) < . (.)

According to a classical work of Hartman [], a nonoscillatory solution v(t) of (.) sat-
isfying (.) is termed a principal solution at infinity, and such a solution is determined
uniquely up to a constant factor. In order to reveal the structure of possible nonoscillatory
solutions of (.), the following property of a principal solution of (.) plays a crucial role.

Lemma  If

∫ ∞

t

(
P(s)
r(s)

)/γ

ds = ∞, (.)

then (.) has a positive solution v(t) satisfying

∫ ∞

t


r(s)v(s)

ds =
∫ ∞

t

(
v(s)
r(s)

)/γ

ds = ∞. (.)

Proof Let v(t) be a principal solution of (.) which is positive on [t,∞). It is clear from
the fact that v′(t) <  and the assumption (v) that the first integral in (.) is divergent. On
the other hand, since

(
r(t)v′(t)

)′ =
p(t)
r(t)

v(t) ≥ ,

then r(t)v′(t) is increasing and there exists a constant � ≤  such that

lim
t→∞ r(t)v′(t) = �.

We claim that � = . If not, then

v(t) ≤ v(t) + �

∫ t

t

r–
 (s) ds → –∞ as t → ∞,

a contradiction. Thus � = . By integrating (.) from t to ∞, we see that

–r(t)v′(t) =
∫ ∞

t

p(s)
r(s)

v(s) ds ≤ v(t)
∫ ∞

t

p(s)
r(s)

ds. (.)
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Integrating (.) from t to t, we get

v(t) ≥ v(t) exp

(
–

∫ t

t


r(s)

∫ ∞

s

p(u)
r(u)

du ds
)

,

that yields

(
v(t)
r(t)

)/γ

≥ v/γ (t)
(

P(t)
r(t)

)/γ

. (.)

It is easy to see that integration of (.) from t to ∞ together with (.) implies that the
second integral in (.) is divergent. The proof is complete. �

In the lemma below we recall the adaptation of the generalized Kiguradze lemma []
to the canonical operator Ly(t).

Lemma  Let y(t) be a real-valued function on I which has the property Lny(t) ∈ C(I),
n = , , . If

y(t)Ly(t) >  on I ,

then there exists t ∈ I and � = {, } such that

y(t)Ljy(t) > ,  ≤ j ≤ �,

(–)j–�y(t)Ljy(t) > , � +  ≤ j ≤ , on [t,∞).

Now we are prepared to state the sign structure of possible nonoscillatory solutions to
equation (.). We introduce the following classes of nonoscillatory (let us say positive)
solutions:

y(t) ∈N ⇐⇒ y(t) > , Ly(t) > , Ly(t) < , Ly(t) > ,

y(t) ∈N ⇐⇒ y(t) > , Ly(t) > , Ly(t) > , Ly(t) > ,

for t ≥ t.

Lemma  Assume that (.) holds. If y(t) is a positive solution of (.) on I , then there
exists t ∈ I such that either y(t) ∈N or y(t) ∈N on [t,∞).

Proof Assume that y(t) is a positive solution of (.) on I . As a consequence of Lemma ,
we may rewrite (.) in an equivalent binomial form (.). In view of Lemma , there exists
a positive solution v(t) of (.) which satisfies (.); and therefore, we see that the operator

(
r(t)v(t)

(
r(t)
v(t)

(
y′(t)

)γ

)′)′
> 

is in a canonical form. Then, by Lemma , y(t) satisfies either

y(t) > ,
r(t)
v(t)

(
y′(t)

)γ > , r(t)v(t)
(

r(t)
v(t)

(
y′(t)

)γ

)′
< ,
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or

y(t) > ,
r(t)
v(t)

(
y′(t)

)γ > , r(t)v(t)
(

r(t)
v(t)

(
y′(t)

)γ

)′
> ,

for t ≥ t. Note that in both cases we have y′(t) >  and, by virtue of (.), we can see that
Ly(t) > . The rest sign properties of quasi-derivatives Liy(t), i = , , immediately follow
from Lemma . �

Consequently, if we assume (.), the set N of all positive solutions of (.) has the fol-
lowing decomposition:

N = N ∪N.

According to the well-known results of Kiguradze and Chanturia [], the oscillation
criteria are often accomplished by introducing the concepts of having property A and/or
B. Such properties have been widely studied by many authors, see, e.g., [, , , ] and
the references cited therein.

Definition  Equation (.) is said to have Property B if N = N.

In what follows, we state and prove some useful estimates which will play an important
role in the proofs of our main results.

Lemma  Let y(t) ∈N be a positive solution of (.) on [t,∞). Then

y(t)
R(t, t)

is nonincreasing, (.)

Ly(t) ≥ P̃(t)f
(
y
(
g(t)

))
(.)

for t ≥ t.

Proof Assume that y(t) ∈ N is a positive solution of (.) for t ≥ t. It follows from the
monotonicity of Ly(t) that

y(t) ≥ y(t) – y(t) =
∫ t

t

r–/γ
 (s)L/γ

 y(s) ds ≥ R(t, t)L/γ
 y(t). (.)

Therefore,

(
y(t)

R(t, t)

)′
=

L/γ
 y(t)R(t, t) – y(t)

r/γ (t)R
 (t, t)

≤ ,

and so y(t)/R(t, t) is nonincreasing.
On the other hand, integration of (.) from t to ∞ yields

–Ly(t) ≥
∫ ∞

t

p(s)
r(s)

Ly(s) ds +
∫ ∞

t
q(s)f

(
y
(
g(s)

))
ds

≥ f
(
y
(
g(t)

))∫ ∞

t
q(s) ds.
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By repeated integration, we obtain

Ly(t) ≥
∫ ∞

t

f (y(g(s)))
r(s)

∫ ∞

s
q(u) du ds ≥ P̃(t)f

(
y
(
g(t)

))
.

The proof is complete. �

In the lemma below we shall point out that estimate (.) can be improved further.
Define

P(t) = P̃(t),

Pn(t) =
∫ ∞

t


r(s)

∫ ∞

s

p(u)
r(u)

Pn–(u) du ds + P(t), t ≥ t, n ∈N.

Lemma  Let y(t) ∈N be a solution of (.) on [t,∞), t ∈ I . Then

Ly(t) ≥ Pn(t)f
(
y
(
g(t)

))
, t ≥ t, n ∈N. (.)

Proof Proceeding as in the proof of Lemma , we obtain (.). Setting (.) into (.) and
integrating twice from t to ∞, we see that

Ly(t) ≥
(∫ ∞

t


r(s)

∫ ∞

s

p(u)
r(u)

P(u) du ds + P(t)
)

f
(
y
(
g(t)

))
= P(t)f

(
y
(
g(t)

))
.

By induction, we can show that (.) holds for any n ∈N. �

Lemma  Let y(t) ∈N be a positive solution of (.) on [t,∞). If

∫ ∞

t

p(s)
r(s)

R(s, t) + q(s)f
(
R

(
g(s, t)

))
ds = ∞, (.)

then there exists t > t such that

y(t)
R(t, t)

is nondecreasing on [t,∞). (.)

Proof Assume that y(t) ∈N is a positive solution of (.) for t ≥ t. Since Ly(t) is increas-
ing, Ly(t) ≥ Ly(t) =: �. Obviously,

Ly(t) ≥ �R(t, t) and y(t) ≥ �/γ R(t, t) for t ≥ t.

We claim that (.) implies limt→∞ Ly(t) = ∞. Setting the above estimates into (.), we
obtain

Ly(t) ≥ �
p(t)
r(t)

R(t, t) + f
(
�/γ )

q(t)f
(
R

(
g(t), t

))
. (.)
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By integrating (.) from t to ∞, we see that the claim holds. Therefore, for any t ≥ t > t,

Ly(t) = Ly(t) +
∫ t

t

r–
 (s)Ly(s) ds ≤ Ly(t) + Ly(t)R(t, t)

= Ly(t) – R(t, t)Ly(t) + R(t, t)Ly(t)

≤ R(t, t)Ly(t),

which leads to

(
Ly(t)

R(t, t)

)′
=

Ly(t)R(t, t) – Ly(t)
r(t)R

(t, t)
≥ ;

and consequently, Ly(t)/R(t, t) is nondecreasing on [t,∞).
In the same way, for any t ≥ t > t,

y(t) = y(t) +
∫ t

t

(
R(s, t)

r(s)
Ly(s)

R(s, t)

)/γ

ds ≤ y(t) + R(t, t)
(

Ly(t)
R(t, t)

)/γ

≤ y(t) – R(t, t)
(

Ly(t)
R(t, t)

)/γ

+ R(t, t)
(

Ly(t)
R(t, t)

)/γ

.

It follows from l’Hospital’s rule that limt→∞ Ly(t)/R(t, t) = limt→∞ Ly(t) = ∞, and so we
have

y(t) ≤ R(t, t)
(

Ly(t)
R(t, t)

)/γ

, t ≥ t.

Then

(
y(t)

R(t, t)

)′
=

(Ly(t))/γ R(t, t) – (R(t, t))/γ y(t)
r/γ

 (t)R
(t, t)

≥ .

Thus y(t)/R(t, t) is nondecreasing on [t,∞). The proof is complete now. �

Remark  It is easy to see that if (.) has Property B, then any positive solution of (.)
satisfies

lim
t→∞

y(t)
R(t, t)

= ∞,

which gives us information about the rate of convergence of possible positive solutions.

We conclude the introductory part by recalling a useful relationship between the exis-
tence of positive solutions of the first-order functional differential inequalities

y′(t) + q(t)f
(
y
(
g(t)

)) ≤ , (.)

y′(t) – q(t)f
(
y
(
g(t)

)) ≥ , (.)
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and the corresponding first-order functional differential equations

y′(t) + q(t)f
(
y
(
g(t)

))
= , (.)

y′(t) – q(t)f
(
y
(
g(t)

))
= , (.)

where q, g and f satisfy conditions (i), (iii) and (iv), respectively. The following lemma can
be found in [] or, separately for delayed and advanced cases, in [] and [], respectively.

Lemma  Let g(t) < t (g(t) > t). If inequality (.) (inequality (.)) has an eventually
positive solution, then so does equation (.) (equation (.)).

3 Main results
3.1 Criteria for Property B
Now we are prepared to give sufficient conditions under which (.) enjoys Property B. We
distinguish between delayed and advanced types of the argument deviation.

Theorem  Let (.) hold and g(t) < t for t ≥ t. If the first-order delay differential equation

z′(t) + Q̃(t)f
(
R

(
g(t), t

))
f
(
z/γ (

g(t)
))

=  (.)

is oscillatory, then (.) has Property B.

Proof Let y(t) be a positive solution of (.) on I . It follows from Lemma  that there exists
t ∈ I such that either y(t) ∈N or y(t) ∈N on [t,∞). If y(t) ∈N, then by virtue of (.)
and (.), we have

Ly(t) ≥
(

p(t)
r(t)

P̃(t) + q(t)
)

f
(
y
(
g(t)

))
= Q(t)f

(
y
(
g(t)

))
. (.)

Integrating (.) from t to ∞, we find

–Ly(t) ≥
∫ ∞

t
Q(s)f

(
y
(
g(s)

))
ds ≥

(∫ ∞

t
Q(s) ds

)
f
(
y
(
g(t)

))
. (.)

Using (.) in the latter inequality yields

–
(
Ly(t)

)′ ≥ 
r(t)

(∫ ∞

t
Q(s) ds

)
f
(
R

(
g(t), t

))
f
(
L/γ

 y
(
g(t)

))
.

Letting z(t) = Ly(t), we see that the differential inequality

z′(t) + Q̃(t)f
(
R

(
g(t), t

))
f
(
z/γ (

g(t)
)) ≤ 

has a positive solution. By Lemma , we see that (.) also has a positive solution, which
contradicts the hypothesis. Therefore y(t) ∈ N, which means that (.) has Property B.
The proof is complete. �
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Theorem  Let (.) hold and g(t) > t for t ≥ t. If the first-order advanced differential
equation

y′(t) –


r/γ
 (t)

(∫ ∞

t
Q̃(s) ds

)/γ

f /γ (
y
(
g(t)

))
=  (.)

is oscillatory, then (.) has Property B.

Proof Let y(t) be a positive solution of (.) on I . It follows from Lemma  that there exists
t ∈ I such that either y(t) ∈ N or y(t) ∈ N on [t,∞). If y(t) ∈ N, then, as in the proof
of Theorem , we obtain (.) so that by integration from over [t,∞), we find that

Ly(t) ≥
∫ ∞

t

f (y(g(u)))
r(u)

∫ ∞

u
Q(s) ds du ≥

(∫ ∞

t
Q̃(s) ds

)
f
(
y
(
g(t)

))
. (.)

Therefore, it is clear that y(t) is a positive solution of the advanced differential inequality

y′(t) –


r/γ
 (t)

(∫ ∞

t
Q̃(s) ds

)/γ

f /γ (
y
(
g(t)

)) ≥ .

By Lemma , we see that (.) also has a positive solution, a contradiction. Therefore y(t) ∈
N, which means that (.) has Property B. The proof is complete. �

Employing some known criteria for oscillation of first-order functional differential equa-
tions (.) and (.), one can easily obtain oscillation criteria for (.). The following ones
are due to Ladde et al. [].

Corollary  Assume that f (u) = uγ . Let (.) hold and g(t) < t for t ≥ t. If

lim inf
t→∞

∫ t

g(t)
Q̃(u)Rγ


(
g(u), t

)
du >


e

,

then (.) has Property B.

Corollary  Assume that f (u) = uγ . Let (.) hold and g(t) > t for t ≥ t. If

lim inf
t→∞

∫ g(t)

t


r/γ

 (u)

(∫ ∞

u
Q̃(s) ds

)/γ

du >

e

,

then (.) has Property B.

Now, we present other results for (.) to have Property B which are applicable even in
the ordinary case g(t) = t.

Theorem  Let (.) hold and g(t) ≤ t for t ≥ t. Assume that

∫ ∞

t


r/γ

 (v)

(∫ ∞

v


r(u)

∫ ∞

u
Q(s) ds du

)/γ

dv = ∞ (.)
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and the function f satisfies

lim
x=±∞

x
f /γ (x)

= k < ∞. (.)

If

lim sup
t→∞

{
f /γ

(


R(t, t)

)∫ t

t

(
f (R(g(s), t))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds
}

> k, (.)

then (.) has Property B.

Proof Let y(t) be a positive solution of (.) on I . It follows from Lemma  that there exists
t ∈ I such that either y(t) ∈ N or y(t) ∈ N on [t,∞). If y(t) ∈ N, then, the same as in
the proof of Theorem , we get (.). Then, by integrating (.) from t to t, we easily find
that

y(t) ≥
∫ t

t

(
f (y(g(s)))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds. (.)

By virtue of the monotonicity property (.) and the fact that g(t) ≤ t, we have

y(t) ≥ f /γ
(

y(g(t))
R(g(t), t)

)∫ t

t

(
f (R(g(s), t))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds

≥ f /γ
(

y(t)
R(t, t)

)∫ t

t

(
f (R(g(s), t))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds.

Using the assumption (iv) posed on the function f and dividing both sides of the latter
inequality by f /γ y(t), one can see that

y(t)
f /γ (y(t))

≥ f /γ
(


R(t, t)

)∫ t

t

(
f (R(g(s), t))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds. (.)

It follows from (.) that limt→∞ y(t) = ∞. Taking the lim sup on both sides of (.),
we are led to the contradiction with (.). Therefore y(t) ∈N, which means that (.) has
Property B. The proof is complete. �

Theorem  Let (.), (.) and (.) hold, and g(t) ≥ t for t ≥ t. If

lim sup
t→∞

{
f /γ

(


R(t, t)

)∫ t

t

(
f (R(s, t))

r(s)

∫ ∞

s
Q̃(u) du

)/γ

ds
}

> k,

then (.) has Property B.

Proof The proof is similar to that of Theorem  and so is omitted. �

Remark  Note that in view of Lemma , the functions Q(t) and Q̃(t) can be replaced by

Qn(t) =
p(t)
r(t)

Pn(t) + q(t), Q̃n(t) =


r(t)

∫ ∞

t
Qn(s) ds,

respectively, for any n ∈N.
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3.2 Oscillation of (1.1)
If g(t) > t, we are also able to eliminate the remaining class of nonoscillatory solutions and
ensure (.) to be oscillatory.

Theorem  Assume that all assumptions of Theorem  are satisfied and (.) holds. If

lim sup
t→∞

f /γ
(


R(g(t), t)

)∫ g(t)

t


r/γ

 (x)

[∫ x

t


r(u)

∫ u

t
R(s, t) ds du

]/γ

dx > k, (.)

then (.) is oscillatory.

Proof Let y(t) be a positive solution of (.) on I . It follows from Lemma  that there exists
t ∈ I such that either y(t) ∈ N or y(t) ∈ N on [t,∞). From Theorem , we know that
(.) has Property B, that is, y(t) ∈N. Integrating (.) from t to v, we obtain

Ly(v) ≥ Ly(v) – Ly(t) ≥
∫ v

t

p(s)
r(s)

Ly(s) ds +
∫ v

t
q(s)f

(
y
(
g(s)

))
ds. (.)

By Lemma , there exists t > t such that y(t)/R(t, t) is nondecreasing for t ≥ t, and
hence

Ly(v) ≥
∫ v

t
q(s)f

(
y
(
g(s)

))
ds

≥ f
(

y(g(t))
R(g(t), t)

)∫ v

t
q(s)f

(
R

(
g(s), t

))
ds, t ≥ t. (.)

Integrating (.) in v, one gets

Ly(v) ≥ f
(

y(g(t))
R(g(t), t)

)∫ v

t


r(u)

∫ u

t
q(s)f

(
R

(
g(s), t

))
ds du. (.)

Setting (.) into (.), we have

Ly(v) ≥ f
(

y(g(t))
R(g(t), t)

)∫ v

t

p(s)
r(s)

q̃(s, t) ds +
∫ v

t
q(s)f

(
y
(
g(s)

))
ds

≥ f
(

y(g(t))
R(g(t), t)

)∫ v

t
R(s, t) ds.

Integrating in v once more, we get

Ly(v) ≥ f
(

y(g(t))
R(g(t), t)

)∫ v

t


r(u)

∫ u

t
R(s, t) ds du.

Integrating in v last time, we find

y(v) ≥ f /γ
(

y(g(t))
R(g(t), t)

)∫ v

t


r/γ

 (x)

[∫ x

t


r(u)

∫ u

t
R(s, t) ds du

]/γ

dx.

Setting v = g(t), we obtain

y(g(t))
f /γ (y(g(t)))

≥ f /γ
(


R(g(t), t)

)∫ g(t)

t


r/γ

 (x)

[∫ x

t


r(u)

∫ u

t
R(s, t) ds du

]/γ

dx.
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Taking the lim sup on both sides of the resulting inequality, we are led to the contradiction
with (.). Thus N = ∅ and (.) is oscillatory. The proof is complete. �

4 Examples
Example  Consider the third-order linear differential equation

y′′′(t) –
a
t y′(t) –

b
t y(λt) = , λ, a, b > , t ≥ . (.)

A corresponding auxiliary equation

v′′(t) =
a
t v(t)

has a principal solution v(t) = tα (α = 
 (–

√
 + a)), which satisfies (.) if a < . A simple

calculation leads to

lim
n→∞ Qn(t) =

b
t

(
 +

a

( – a)

)
.

Then, by Theorems  and  together with Remark , Property B of (.) is guaranteed if

λb


(
 +

a

( – a)

)
ln

(

λ

)
>


e

for λ ∈ (, ),

b


(
 +

a

( – a)

)
lnλ >


e

for λ > .

By Theorems  and , the same conclusion holds for (.) if

λb


(
 +

a

( – a)

)
>  for λ ∈ (, ],

b


(
 +

a

( – a)

)
>  for λ ≥ .

Furthermore, it follows from Theorem  that if λ >  and

b
{

( – a)
(

λ


lnλ –

λ


+




)
– a(λ lnλ – λ + )

+ (a – )
(

λ


– λ +




)
+ a

(
λ


ln λ –

λ


lnλ +

λ


–




)}
> ,

then (.) is oscillatory.

Example  Consider the third-order nonlinear differential equation

(

t


√

y′(t)
)′′

–
a
t


√

y′(t) –
b

t/

√

y(λt) = , λ, a, b > , t ≥ . (.)

Note that condition (.) is satisfied for a ≤ /. Then

Q(t) =
(

a


+ b
)


t/ ,
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and by Theorems  and  we obtain that (.) has Property B provided that


 √

(
a


+ b
)

√
λ ln

(

λ

)
>


e

for λ ∈ (, ),

[(
a


+ b
)




]

ln(λ) >

e

for λ > .

5 Summary
Very recently, authors suggested in [, ] the investigation of asymptotic and oscillatory
properties for (.). Thus, in a certain sense, the presented results may be viewed as a
complement of earlier obtained ones. We stress that, contrary to [, , ], these criteria
do not depend on solutions of the auxiliary equation (.).

For a particular case of (.), namely

(
r(t)

(
r(t)y′(t)

)′)′ – q(t)y(t) = ,

Kusano et al. [] have shown that there always exists a positive solution y(t) ∈ N. If,
however, g(t) > t, then we were able to eliminate also this class of solutions. It is clearly the
advanced argument that can generate the oscillations.

It remains an open problem for further research to obtain the solution structure and
corresponding asymptotic criteria for the equation

(
r(t)

(
r(t)

(
y′(t)

)γ )′)′ + p(t)
(
y′(t)

)γ – q(t)f
(
y
(
g(t)

))
= . (.)
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