
Miao et al. Advances in Difference Equations  (2017) 2017:112 
DOI 10.1186/s13662-017-1130-5

R E S E A R C H Open Access

Dynamic behaviors of a discrete
Lotka-Volterra competitive system with the
effect of toxic substances and feedback
controls
Zhanshuai Miao* , Fengde Chen*, Jiamin Liu and Liqiong Pu

*Correspondence:
N140320015@fzu.edu.cn;
fdchen@263.net
College of Mathematics and
Computer Science, Fuzhou
University, Fuzhou, Fujian 350002,
P.R. China

Abstract
By noting the fact that the intrinsic growth rate are not positive everywhere, we revisit
Lotka-Volterra competitive system with the effect of toxic substances and feedback
controls. The corresponding results about permanence and extinction for the species
given in (Chen and Chen in Int. J. Biomath. 8(1):1550012, 2015) are extended.
Furthermore, a very important fact is found in our results, that is, the feedback controls
and toxic substances have no effect on the permanence and extinction of species.
Moreover, we also derive sufficient conditions for the global stability of positive
solutions. Finally, some numerical simulations show the feasibility of our main results.
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1 Introduction
It is well known that the effect of toxic substances on ecological communities is an im-
portant problem, Maynard Smith [] proposed a model to incorporate the effects of toxic
substances in a two-species Lotka-Volterra competitive system by assuming that each of
the species produces a substance that is toxic to the other only in the presence of the other
species. However, the author did not analyze the model. By constructing a suitable Lya-
punov function, Chattopadhyay [] obtained a set of sufficient conditions which ensure
the system admits a unique globally stable positive equilibrium.

Li and Chen [] generalized the system considered in [] and [] to the non-autonomous
case:

ẋ(t) = x(t)
[
r(t) – a(t)x(t) – a(t)x(t) – b(t)x(t)x(t)

]
,

ẋ(t) = x(t)
[
r(t) – a(t)x(t) – a(t)x(t) – b(t)x(t)x(t)

]
,

(.)

where ri(t), aij(t), bi(t), i, j = ,  are assumed to be continuous and bounded above and
below by positive constants, x(t) and x(t) are population density of species x and x

at time t, respectively. By using a fluctuation lemma, Li and Chen [] obtained sufficient
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conditions which ensure the second species will be driven to extinction while the first one
will stabilize at a certain solution of a logistic equation. Their results indicates that toxic
substances play an important role in the extinction of species.

It has been found that the discrete time models governed by difference equations are
more appropriate than the continuous ones when the size of the population is rarely small
or the population has non-overlapping generations []. Li and Chen [] and Huo and Li
[] studied the following discrete model:

x(k + ) = x(k) exp
{

r(k) – a(k)x(k) – a(k)x(k) – b(k)x(k)x(k)
}

,

x(k + ) = x(k) exp
{

r(k) – a(k)x(k) – a(k)x(k) – b(k)x(k)x(k)
}

.
(.)

Huo and Li [] obtained sufficient conditions which ensure the permanence and global
stability of the system (.). Li and Chen [] proved that one of the components will be
driven to extinction while the other will be globally attractive with any positive solution of
a discrete logistic equation under some conditions. Again, their results showed that toxic
substances play an important role in the extinction of species.

Based on the work of Li and Chen [], recently, Chen and Chen [] proposed a discrete
Lotka-Volterra competitive system with the effect of toxic substances and feedback con-
trols:

x(k + ) = x(k) exp
{

r(k) – a(k)x(k) – a(k)x(k)

– b(k)x(k)x(k) – d(k)u(k)
}

,

x(k + ) = x(k) exp
{

r(k) – a(k)x(k) – a(k)x(k)

– b(k)x(k)x(k) – d(k)u(k)
}

,

u(k + ) =
(
 – e(k)

)
u(k) + f(k)x(k),

u(k + ) =
(
 – e(k)

)
u(k) + f(k)x(k),

(.)

where xi(k) is the density of the ith species at kth generation and ui(k) is control variable,
i = , ; ri(k), aii(k) denote the intrinsic growth rate and density-dependent coefficient of
the ith species, respectively, i = , . By b(k) and b(k) are, respectively, shown that each
species produces a substance toxic to the other, but only when the other is present. By
constructing a discrete Lyapunov type extinction, they found that if assumptions (H)-
(H) in [] and the following inequalities:

lim sup
k→∞

∑k+w–
s=k r(s)

∑k+w–
s=k r(s)

< lim inf
k→∞

b(k)
b(k)

,

lim inf
k→∞

d(k)
e(k)

> lim sup
k→∞

(
a(k)
f(k)

lim sup
k→∞

∑k+w–
s=k r(s)

∑k+w–
s=k r(s)

–
a(k)
f(k)

)
,

lim sup
k→∞

d(k)
e(k)

< lim inf
k→∞

(
a(k)
f(k)

lim inf
k→∞

∑k+w–
s=k r(s)

∑k+w–
s=k r(s)

–
a(k)
f(k)

)
,

hold, then we have

lim
k→∞

x(k) = , lim
t→∞ u(k) = 
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for any positive solution (x(k), x(k), u(k), u(k)) of system (.). They also found that in
addition to the conditions of Theorem . in [], if rl

 > , du
 >  and f l

 >  still hold, then
the specie x will be permanent while the species x will be driven to extinction. Their re-
sults indicate that toxic substances and feedback control variables play an important role in
the dynamics of the system. However, they did not consider the permanence of the system
and the global stability of positive solutions. In this paper, we extend the corresponding
results given in [] and give the permanence of the system and the global stability of posi-
tive solutions. For more work on the dynamic behaviors of the competition system with a
toxic substance, one could refer to [–] and the references cited therein. For more work
on the dynamic behaviors of the feedback control ecosystem, one could refer to [–]
and the references cited therein.

In [, , ], the basic assumption is shared that all coefficients are nonnegative. Thus
those models may be not completely realistic. If the intrinsic growth rates are not positive
everywhere, we need to reconsider the model and will meet some essential difficulties. In
this paper we discuss the dynamic behaviors of the competition system (.). In Section ,
as preliminaries, some assumptions and lemmas are introduced. In Section , we establish
sufficient conditions on the permanence for system (.). In Section , we show the global
stability of the system (.). In Section , some sufficient conditions for the extinction of
the system (.) are obtained. In Section , a numerical simulation is presented to illustrate
the feasibility of our main result.

2 Preliminaries
For any bounded sequence x(k), we denote xu = supk∈Z{x(k)}, xl = infk∈Z{x(k)}, where Z =
{, , , , . . .}. Throughout this paper, we introduce the following assumptions.

(H) ri(k) is a bounded sequence defined on Z; ei(k) is a positive bounded sequence defined
on Z; aij(k), bi(k), di(k) and fi(k), i, j = ,  are nonnegative bounded sequences defined
on Z.

(H) Sequences ei(k), i = ,  satisfy  < el
i ≤ eu

i <  for all k ∈ Z.
(H) There exist positive integers λi such that

lim inf
k→∞

k+λi–∑

s=k

aii(s) ≥ , i = , .

(H) There exist positive integers ωi such that

lim sup
k→∞

k+ωi–∑

s=k

ri(s) ≤ , i = , .

Motivated by the biological background of system (.), in this paper we only consider
all solutions of system (.) that satisfy the initial conditions xi() > , ui() > , i = , . It
is obvious that the solution (x(k), x(k), u(k), u(k)) is positive, that is, xi(k) > , ui(k) > ,
i = ,  for all k ∈ Z.

We consider the following non-autonomous difference inequality system:

x(k + ) ≤ x(k) exp
{

a(k) – b(k)x(k)
}

, (.)
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where a(k) and b(k) are bounded sequences and b(k) ≥  for all k ∈ Z. We get the following
result.

Lemma . ([]) Assume that there exist an integer λ >  such that

lim inf
k→∞

k+λ–∑

s=k

b(s) > .

Then there exists a constant M >  such that, for any nonnegative solution x(k) of system
(.) with initial value x(k) = x ≥ , where k ∈ Z is some integer,

lim sup
k→+∞

x(k) < M.

Next, we consider the following non-autonomous linear difference equation:

ν(k + ) ≤ γ (k)ν(k) + ω(k), (.)

where γ (k) and ω(k) are nonnegative bounded sequences defined on Z. We have the fol-
lowing results.

Lemma . ([]) Assume that there exist an integer λ >  such that

lim sup
k→∞

k+λ–∏

s=k

γ (s) < ,

then there exists a constant M >  such that, for any nonnegative solution ν(k) of system
(.) with initial value ν(k) = ν ≥ , where k ∈ Z is some integer,

lim sup
k→∞

ν(k) < M.

Lemma . ([]) Assume that the conditions of Lemma . hold, then for any constants
ε >  and M >  there exist positive constants δ̂ = δ̂(ε) and k̂ = k̂(ε, M) such that, for any
k̂ ∈ Z and  ≤ ν ≤ M, where ω(k) < δ̂ for all k ≥ k̂, one has

ν(k, k̂,ν) < ε for all k ≥ k̂ + k̂,

where ν(k, k̂,ν) is the solution of (.) with initial value ν(k̂) = ν.

Lemma . ([]) Assume that A >  and y() > . Suppose that

y(k + ) ≥ Ay(k) + B(k), k ∈ N .

If A <  and B is bounded above with respect to N , then

lim inf
k→+∞

y(k) ≥ N
 – A

.
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3 Permanence
Theorem . Assume that assumptions (H)-(H) hold, then there exist constants x̄i, ūi > 
such that

lim sup
k→∞

xi(k) < x̄i, lim sup
n→∞

ui(k) < ūi, i = , 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).

Proof From the first and second equation of system (.), we have

xi(k + ) ≤ xi(k) exp
{

ri(k) – aii(k)xi(k)
}

, (.)

then by assumption (H) and applying Lemma . there exist constants x̄i >  such that

lim sup
k→∞

xi(k) < x̄i, i = , . (.)

Hence, there exists a positive integer k such that

xi(k) ≤ x̄i for all k ≥ k, i = , .

Thus, from the third and fourth equation of system (.), we obtain

ui(k + ) ≤ (
 – ei(k)

)
ui(k) + fi(k)x̄i for all k ≥ k. (.)

By assumption (H) we can find that there exists a positive integer ρ such that for i = , 

lim sup
k→∞

k+ρ–∏

s=k

(
 – ei(s)

)
< .

It follows from Lemma . that there exist positive constants ūi such that

lim sup
k→∞

ui(k) < ūi, i = , . (.)

The proof of Theorem . is completed. �

In order to obtain the permanence of system (.), we assume the following.

(H) There exists a positive integer ωi such that

lim inf
k→∞

k+ωi–∑

s=k

(
ri(s) – ai–i(s)x̄–i

)
> , i = , .

Theorem . Suppose that (H)-(H) and (H) hold, then the system of (.) is permanent.

Proof From Theorem ., it follows that there exist constants x̄i, ūi >  such that

lim sup
k→∞

xi(k) < x̄i, lim sup
n→∞

ui(k) < ūi, i = , 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).
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Next, we can only prove that there exist constants xi, ui >  such that

lim inf
k→+∞

xi(k) ≥ xi, lim inf
k→+∞

ui(k) ≥ ui, i = , 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).
From (H) we can choose a constant ε >  and a positive integer k ≥ k such that

k+ω–∑

s=k

(
r(s) – a(s)x̄ – d(s)ε

) ≥ ε for all k ≥ k. (.)

Consider the following auxiliary equation:

v(k + ) =
(
 – e(k)

)
v(k) + f(k)α, (.)

where α is a positive parameter. It follows from Lemma . that for ε >  and ū >  given
above there exist positive constants δ̂ = δ̂(ε) and k̂ = k̂(ε, ū) such that, for any k ∈ Z
and  ≤ v ≤ ū, when f(k)α < δ̂ for all k ≥ k, we get

v(k, k, v) < ε for all k ≥ k + k̂, (.)

where v(k, k, v) is the solution of equation (.) with the initial condition v(k, k, v) = v.
By (.), we can find that there exists a positive constant α ≤ min{ε, δ̂/f u

 } such that

k+ω–∑

s=k

(
r(s) – a(s)α – a(s)x̄ – b(s)αx̄ – d(s)ε

) ≥ α for all k ≥ k. (.)

We first prove

lim sup
k→+∞

x(k) ≥ α. (.)

In fact, if this is not true, then there exists a positive solution (x(k), x(k), u(k), u(k)) of
system (.) and a positive integer k >  such that x(k) < α for all k ≥ k. Further, from
(.) and (.), we can find that there exists a positive integer k ≥ k such that

xi(k) ≤ x̄i, u(k) ≤ ū for all k ≥ k, i = , . (.)

Thus, the third equation of system (.) implies

u(k + ) ≤ (
 – e(k)

)
u(k) + f(k)α for all k ≥ k. (.)

Let v(k) be the solution of equation (.) with the initial value v(k) = u(k). It follows
from the comparison theorem for the difference equation and inequality (.) that

v(k) ≤ u(k) for all k ≥ k. (.)
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In (.), we choose k = k and v = u(k). Since f(k)α < δ̂ for all k ≥ k, we have

v(k) = v
(
k, k, u(k)

)
< ε for all k ≥ k + k̂.

Further, by (.) we have

u(k) < ε for all k ≥ k + k̂.

Therefore, k ≥ k + k + k̂ system (.) and (.) imply

x(k + ω) ≥ x(k) exp

{k+ω–∑

s=k

[
r(s) – a(s)α – a(s)x̄ – b(s)αx̄ – d(s)ε

]
}

≥ x(k) exp{α}.

Consequently, we further obtain

x(k̄ + nω) ≥ x(k̄) exp{nα} for all n ∈ Z,

where k̄ = k + k + k̂, which implies x(k̄ + nω) → +∞ as n → +∞, which leads to a
contradiction with (.). So (.) holds.

Next, we prove that there exists a positive constant x such that

lim inf
k→+∞

x(k) ≥ x

for any positive solution (x(k), x(k), u(k), u(k)) of system (.). Otherwise, there exists
a sequence with initial values z(n) = (ϕ(n)

 ,ϕ(n)
 ,ψ (n)

 ,ψ (n)
 ) of system (.) such that

lim inf
k→+∞

x
(
k, z(n)) <

α

n
for all n = , , . . . , (.)

where (x(k, z(n)), x(k, z(n)), u(k, z(n)), u(k, z(n))) is the solution of system (.) and satisfy
xi(k) = ϕ

(n)
i (k), ui(k) = ψ

(n)
i (k), i = , .

It follows from (.) and (.) that there exist two sequences of positive integers {s(n)
q }

and {t(n)
q } such that for each n ∈ Z

 < s(n)
 < t(n)

 < s(n)
 < t(n)

 < · · · < s(n)
q < t(n)

q < · · · (.)

and

s(n)
q → +∞ as q → +∞ (.)

such that

x
(
s(n)

q , z(n)) > α, x
(
t(n)
q , z(n)) <

α

n
(.)

and

α

n
≤ x

(
k, z(n)) ≤ α for all k ∈ (

s(n)
q , t(n)

q
)
. (.)
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Equation (.) implies t(n)
q – s(n)

q ≥  for all n ≥ . It follows from (.) and (.) that for
each n ∈ Z there exists an integer k(n)

 > k such that

xi
(
k, z(n)) ≤ x̄i, u

(
k, z(n)) ≤ ū for all k ≥ k(n)

 , i = , .

From (.) we can choose an integer k(n)
 such that s(n)

q > k(n)
 for all q ≥ k(n)

 . For any k ∈
[s(n)

q , t(n)
q – ] and q ≥ k(n)

 , we get

x
(
k + , z(n)) = x

(
k, z(n)) exp

{
r(k) – a(k)x

(
k, z(n)) – a(k)x

(
k, z(n))

– b(k)x
(
k, z(n))x

(
k, z(n)) – d(k)u

(
k, z(n))}

≥ x
(
k, z(n)) exp{–θ},

where θ = |rl
| + au

x̄ + au
x̄ + bu

 x̄x̄ + du
 ū. Further, by (.)

α

n
> x

(
t(n)
q , z(n))

≥ x
(
s(n)

q , z(n)) exp
{

–θ
(
t(n)
q – s(n)

q
)}

> α exp
{

–θ
(
t(n)
q – s(n)

q
)}

,

which implies

t(n)
q – s(n)

q >
ln n
θ

for all q ≥ k(n)
 , n ∈ Z.

Obviously, t(n)
q – s(n)

q → ∞ as n → ∞. Hence, there exists an integer N >  such that

t(n)
q – s(n)

q ≥ k̂ + k + ω +  for all n ≥ N, q ≥ k(n)
 .

For all k ∈ (s(n)
q , t(n)

q ), by (.) and the third equation of system (.) we get

u
(
k + , z(n)) ≤ (

 – e(k)
)
u

(
k, z(n)) + f(k)α. (.)

Let v(n) be the solution of equation (.) with the initial value v(s(n)
q + ) = u(s(n)

q + ). By
applying the comparison theorem and inequality (.), we have

u
(
k, z(n)) ≤ v(k) for all k ∈ (

s(n)
q , t(n)

q
)
. (.)

In (.) we set k = s(n)
q +  and v = u(s(n)

q + ). Since f(k)α < δ̂ for all k ∈ (s(n)
q , t(n)

q ), we
have

v(k) = v
(
k, s(n)

q + , u
(
s(n)

q + 
))

< ε for all k ∈ [
s(n)

q + k̂ + , t(n)
q

]
.

Therefore, (.) yields

u
(
k, z(n)) < ε for all k ∈ [

s(n)
q + k̂ + , t(n)

q
]
, n ≥ N, q ≥ k(n)

 .
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Hence, it follows from the first equation of system (.) that

x
(
k + , z(n)) > x

(
k, z(n)) exp

{
r(s) – a(s)α – a(s)x̄ – b(s)αx̄ – d(s)ε

}
.

Further, we have

x
(
k + ω, z(n)) > x

(
k, z(n)) exp

{k+ω–∑

s=k

[
r(s) – a(s)α – a(s)x̄ – b(s)αx̄ – d(s)ε

]
}

.

For any n ≥ N, q ≥ k(n)
 and k ∈ [s(n)

q + k̂ + , t(n)
q ], (.), (.) and (.) yield

α

n
> x

(
t(n)
q , z(n))

> x
(
t(n)
q – ω, z(n)) exp

{k+ω–∑

s=k

[
r(s) – a(s)α – a(s)x̄ – b(s)αx̄ – d(s)ε

]
}

≥ α

n
exp{α},

which leads to a contradiction. Therefore, there exists a positive constant x such that

lim inf
k→+∞

x(k) ≥ x (.)

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).
Similarly, we can also find that there exists a positive constant x such that

lim inf
k→+∞

x(k) ≥ x (.)

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).
From (.) and (.), we find, for any ε >  sufficiently small, that there exists a positive

integer k̄ such that

xi(k) ≤ xi – ε for all q ≥ k̄. (.)

It follows from (.) and the last two equations of system (.) that for all q ≥ k̄

ui(k + ) ≥ (
 – eu

i
)
ui(k) + f l

i (xi – ε), i = , . (.)

By (H), (H) and Lemma ., we have

lim inf
k→+∞

ui(k) ≥ f l
i (xi – ε)

eu
i

, i = , . (.)

Letting ε → , it follows from (.) that

lim inf
k→+∞

ui(k) ≥ f l
i xi
eu

i

def= ui, i = , . (.)

The proof of Theorem . is completed. �
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Remark . Comparing with assumptions given by Chen and Chen [], we can see our as-
sumptions in Theorem . are more reasonable, and our result indicate that feedback con-
trol variables and toxic substances have no influence on the permanence of system (.).

Corollary . If, in system (.), di(k) = ei(k) = fi(k) =  (i = , ) for k ∈ Z, then system (.)
will be reduced to (.). Suppose that assumptions (H), (H) and (H) hold, then the system
(.) has permanence.

Remark . From Corollary ., we can see that we improve the sufficient conditions
which ensure the permanence of system (.) by Li and Chen [] and Huo and Li []. We
can also find that the toxic substances have no influence on the permanence of system (.).

4 Global stability
On the basis of permanence, further, we consider the stability of system (.) and obtain
sufficient conditions for the global stability of system (.).

Theorem . In addition to the conditions of Theorem ., suppose

(H) λi = max
{∣∣ –

(
al

ii + bl
ix–i

)
xi

∣∣,
∣∣ –

(
au

ii + bu
i x̄–i

)
x̄i

∣∣}

+
(
au

i–i + bu
i x̄i

)
x̄–i + du

i < , i = , ,

(H) μi =  – el
i + f u

i x̄i < , i = , ,

then the system (.) is globally stable.

Proof Let (x(k), x(k), u(k), u(k)) and (x∗
 (k), x∗

(k), u∗
 (k), u∗

(k)) be any two positive solu-
tions of system (.). Set

yi(k) = ln xi(k) – ln x∗
i (k), vi(k) = ui(k) – u∗

i (k), i = , .

Next, we can only prove the following equations:

lim
k→+∞

yi(k) = , lim
k→+∞

vi(k) = , i = , .

Since

yi(k + ) = ln xi(k + ) – ln x∗
i (k + )

= ln xi(k) – ln x∗
i (k) – aii(k)

(
xi(k) – x∗

i (k)
)

– ai–i(k)
(
x–i(k)

– x∗
–i(k)

)
– bi(k)

(
xi(k)x–i(k) – x∗

i (k)x∗
–i(k)

)
– di(k)

(
ui(k) – u∗

i (k)
)

=
[
 –

(
aii(k) + bi(k)x∗

–i(k)
)
θi(k)

](
ln xi(k) – ln x∗

i (k)
)

–
(
ai–i(k) + bi(k)xi(k)

)
θ–i(k)

(
ln x–i(k) – ln x∗

–i(k)
)

– di(k)
(
ui(k) – u∗

i (k)
)

=
[
 –

(
aii(k) + bi(k)x∗

–i(k)
)
θi(k)

]
yi(k)

–
(
ai–i(k) + bi(k)xi(k)

)
θ–i(k)y–i(k) – di(k)vi(k), i = , . (.)
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Similarly,

vi(k + ) =
(
 – ei(k)

)
vi(k) + fi(k)θi(k)yi(k), i = , , (.)

where θi(k) lies between xi(k) and x∗
i (k), i = , .

It follows from (H) and (H) that there exists an ε >  such that

λ∗
i = max

{∣∣ –
(
al

ii + bl
i(x–i – ε)

)
(xi – ε)

∣∣,
∣
∣ –

(
au

ii + bu
i (x̄–i + ε)

)
(x̄i + ε)

∣
∣}

+
(
au

i–i + bu
i (x̄i + ε)

)
(x̄–i + ε) + du

i < , i = , , (.)

μ∗
i =  – el

i + f u
i (x̄i + ε) < , i = , . (.)

By Theorem ., there exists a k ∈ Z such that

xi – ε ≤ xi(k), x∗
i (k) ≤ x̄i + ε for all k ≥ k, i = , .

Then we have

xi – ε ≤ θi(k) ≤ x̄i + ε for all k ≥ k, i = , .

From (.) and (.), we get

∣
∣yi(k + )

∣
∣ ≤ max

{∣∣ –
(
al

ii + bl
i(x–i – ε)

)
(xi – ε)

∣
∣,

∣
∣ –

(
au

ii + bu
i (x̄–i + ε)

)
(x̄i + ε)

∣
∣}

∣
∣yi(k)

∣
∣

+
(
au

i–i + bu
i (x̄i + ε)

)
(x̄–i + ε)

∣∣y–i(k)
∣∣ + du

i
∣∣vi(k)

∣∣, i = , , (.)
∣
∣vi(k + )

∣
∣ ≤ (

 – el
i
)∣∣vi(k)

∣
∣ + f u

i (x̄i + ε)
∣
∣yi(k)

∣
∣, i = ,  (.)

for all k ≥ k.
Set λ = max{λ∗

 ,λ∗
,μ∗

 ,μ∗
}, (.) and (.) imply  < λ < .

It follows from (.) and (.) that

max
{∣∣y(k + )

∣∣,
∣∣y(k + )

∣∣,
∣∣v(k + )

∣∣,
∣∣v(k + )

∣∣}

≤ λmax
{∣∣y(k)

∣
∣,

∣
∣y(k)

∣
∣,

∣
∣v(k)

∣
∣,

∣
∣v(k)

∣
∣}

for all k ≥ k. This yields

max
{∣∣y(k)

∣∣,
∣∣y(k)

∣∣,
∣∣v(k)

∣∣,
∣∣v(k)

∣∣}

≤ λk–k max
{∣∣y(k)

∣
∣,

∣
∣y(k)

∣
∣,

∣
∣v(k)

∣
∣,

∣
∣v(k)

∣
∣}.

Therefore

lim
k→+∞

yi(k) = , lim
k→+∞

vi(k) = , i = , .

The proof of Theorem . is completed. �
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5 Extinction
In this section, we investigate the extinction property of the species in the system (.).

Theorem . Suppose that assumptions (H), (H) and (H) hold, then we have

lim
k→+∞

x(k) = 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.), where (H) = {(H)|i = },
(H) = {(H)|i = }.

Proof It follows from (H) that there exist a positive constant β and a positive integer S

such that

k+λ–∑

s=k

a(s) > β for all k ≥ S. (.)

For any integer k ≥ S and p > , we can find that there exists an integer qp ≥  such that

k + pω –  ∈ (
k + qpλ – , k + (qp + )λ – 

)
.

Therefore, (.) implies

k+pω–∑

s=k

a(s) =
k+qpλ–∑

s=k

a(s) +
k+pω–∑

s=k+qpλ

a(s)

> qpβ – λau
. (.)

Since qp → ∞ as p → ∞, there exist positive integers p and λ >  such that

qpβ – λau
 ≥ β .

Thus, (.) yields

k+pω–∑

s=k

a(s) > β for all k ≥ S.

Hence, we can find that there exist integers p >  and λ >  such that

lim inf
k→∞

k+pω–∑

s=k

a(s) > . (.)

Similarly, it follows from (H) that

lim sup
k→∞

k+pω–∑

s=k

r(s) ≤ . (.)



Miao et al. Advances in Difference Equations  (2017) 2017:112 Page 13 of 19

From (.) and (.), it follows that, for any ε >  sufficiently small, there exist a constant
η and an integer S ≥ S such that

k+pω–∑

s=k

[
r(s) – a(s)ε

] ≤ –η for all k ≥ S. (.)

Let (x(k), x(k), u(k), u(k)) be any positive solution of system (.). If, for all ε > , we
have x(k) ≥ ε for all k ≥ S.

Let k = S, then (.) and the first equation of system (.) imply

x(k + pω) ≤ x(k) exp

{k+pω–∑

s=k

[
r(s) – a(s)x(s)

]
}

≤ x(k) exp

{k+pω–∑

s=k

[
r(s) – a(s)ε

]
}

≤ x(k) exp{–η}.

Further, we have

x(k + npω) ≤ x(k) exp{–nη} for all n ∈ Z,

which implies x(k + npω) →  as n → ∞. This leads to a contradiction. Hence, there
exists an integer k ≥ k such that x(k) < ε.

Next, we prove that

x(k) ≤ ε exp
{

pωru

}

for all k ≥ k. (.)

Otherwise, there exists an integer k ≥ k such that x(k) ≤ ε exp{pωru
 } for all k ≤ k ≤ k

and

x(k + ) > ε exp
{

pωru

}

. (.)

We present two cases to prove (.).
Case . If k – k < pω, then from the first equation of system (.), we can obtain

x(k + ) ≤ x(k) exp

{ k∑

s=k

[
r(s) – a(s)x(s)

]
}

≤ x(k) exp

{ k∑

s=k

r(s)

}

≤ x(k) exp
{

(k – k + )ru

}

≤ ε exp
{

pωru

}

,

which contradicts (.).
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Case . If k – k ≥ pω, let k = k + npω + σ , where n ∈ Z and  ≤ σ < pω, then
(.) and the first equation of system (.) imply

x(k + ) ≤ x(k) exp

{ k∑

s=k

[
r(s) – a(s)x(s)

]
}

≤ x(k) exp

{k+npω–∑

s=k

r(s) +
k∑

s=k+npω

r(s)

}

≤ x(k) exp

{ k∑

s=k+npω

r(s)

}

≤ ε exp
{

pωru

}

,

which also leads to a contradiction with (.). According to the arguments of the two cases
above, we find that (.) is true.

Letting ε → , then (.) yields

lim
k→+∞

x(k) = .

Therefore, species x in the system (.) is extinct. The proof of Theorem . is com-
pleted. �

Theorem . Suppose that assumptions (H), (H) and (H) hold, then we have

lim
k→+∞

x(k) = 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.), where (H) = {(H)|i = },
(H) = {(H)|i = }.

Proof The proof of Theorem . is similar to Theorem .. So, here it is omitted. �

Corollary . From Theorem . and Theorem ., we can find that if assumptions (H),
(H) and (H) hold, then

lim
k→+∞

xi(k) = , i = , 

for any positive solution (x(k), x(k), u(k), u(k)) of system (.).

If, in system (.), di(k) = ei(k) = fi(k) =  (i = , ) for k ∈ Z then system (.) will be
reduced to (.).

Corollary . Suppose that assumptions in Theorem . hold, then

lim
k→+∞

x(k) = 

for any positive solution (x(k), x(k)) of system (.).
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Suppose that assumptions in Theorem . hold, then

lim
k→+∞

x(k) = 

for any positive solution (x(k), x(k)) of system (.).
Suppose that assumptions in Corollary . hold, then

lim
k→+∞

xi(k) = , i = , 

for any positive solution (x(k), x(k)) of system (.).

Remark . Comparing with assumptions given in Chen and Chen [], we can see that our
assumptions in Theorem . are more reasonable. We can also find that feedback control
variables and toxic substances have no influence on the extinction of system (.).

Remark . Comparing with assumptions given in Li and Chen [], we can see that our
assumptions in Corollary . are weaker. We can also find that toxic substances have no
influence on the extinction of system (.).

6 Examples
The following examples show the feasibility of our main result.

Example . Consider the following system:

x(k + ) = x(k) exp

{
– +


k

–
(
. – . cos(k)

)
x(k) – .u(k)

}

–
(
. – . sin(k)

)
x(k) –

(
. + . cos(k)

)
x(k)x(k),

x(k + ) = x(k) exp

{
. –


k

–
(
. – . sin(k)

)
x(k) – .x(k)x(k)

–
(
. – . cos(k)

)
x(k) –

(
. + . cos(k)

)
u(k)

}
,

u(k + ) = .u(k) + .
(
. + sin(k)

)
x(k),

u(k + ) = –.u(k) + .
(
. + cos(k)

)
x(k).

(.)

Let ω = λ = . By calculating, we obtain

lim inf
k→+∞

k+λ–∑

s=k

a(s) ≥ . > ,

lim sup
k→+∞

k+ω–∑

s=k

r(s) = – < .

It is easy to see that the conditions in Theorem . holds. Therefore, x in system (.) is
extinct. Our numerical simulation supports this result (see Figure ).
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Figure 1 Dynamic behaviors of system (1.3) with initial condition (x1(0), x2(0), u1(0), u2(0)) =
(0.13, 0.35, 0.48, 0.62), (0.45, 0.75, 0.67, 0.42) and (0.7, 0.55, 0.25, 0.75).

Example . Consider the following system:

x(k + ) = x(k) exp

{
 –


k

–
(
. – . cos(k)

)
x(k) – .u(k)

–
(
. – . sin(k)

)
x(k) –

(
. + . cos(k)

)
x(k)x(k)

}
,

x(k + ) = x(k) exp

{
– +


k

–
(
. – . sin(k)

)
x(k) – .x(k)x(k)

–
(
. – . cos(k)

)
x(k) –

(
. + . cos(k)

)
u(k)

}
,

u(k + ) = –.u(k) + .
(
 + sin(k)

)
x(k),

u(k + ) = –.u(k) + .
(
. + cos(k)

)
x(k).

(.)

Let ω = λ = . By calculating, we obtain

lim inf
k→+∞

k+λ–∑

s=k

a(s) ≥ . > ,

lim sup
k→+∞

k+ω–∑

s=k

r(s) = – < .

It is easy to see that the conditions in Theorem . hold. Therefore, x in system (.) is
extinct. Our numerical simulation supports this result (see Figure ).

Example . Consider the following system:

x(k + ) = x(k) exp

{
– +


k

–
(
. – . cos(k)

)
x(k) – .u(k)

–
(
. – . sin(k)

)
x(k) –

(
. + . cos(k)

)
x(k)x(k)

}
,
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Figure 2 Dynamic behaviors of system (1.3) with initial condition (x1(0), x2(0), u1(0), u2(0)) =
(0.45, 0.25, 0.67, 0.42), (0.15, 0.2, 0.3, 0.64) and (0.67, 0.3, 0.55, 0.28).

Figure 3 Dynamic behaviors of system (1.3) with initial condition (x1(0), x2(0), u1(0), u2(0)) =
(0.45, 0.25, 0.67, 0.42), (0.15, 0.2, 0.3, 0.64) and (0.67, 0.3, 0.55, 0.28).

x(k + ) = x(k) exp

{
– +


k

–
(
. – . sin(k)

)
x(k) – .x(k)x(k) (.)

–
(
. – . cos(k)

)
x(k) –

(
. + . cos(k)

)
u(k)

}
,

u(k + ) = –.u(k) + .
(
 + sin(k)

)
x(k),

u(k + ) = .u(k) + .
(
. + cos(k)

)
x(k).

Let ω = λ = . By calculating, we obtain

lim inf
k→+∞

k+λ–∑

s=k

a(s) ≥ . > , lim sup
k→+∞

k+ω–∑

s=k

r(s) = – < ,
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lim inf
k→+∞

k+λ–∑

s=k

a(s) = . > , lim sup
k→+∞

k+ω–∑

s=k

r(s) = – < .

It is easy to see that the conditions in the corollary hold. Therefore, x and x in system
(.) are extinct. Our numerical simulation supports this result (see Figure ).
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