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Abstract
In this paper, we investigate the existence and uniqueness of S-asymptotically
ω-periodic solutions to fractional differential equations of order q ∈ (0, 1) with finite
delay in a Banach space X . Existence and uniqueness theorems, which are new even
in the case of X = Rn or A = 0, are established. As examples of applications of our
existence and uniqueness results, we obtain the S-asymptotically ω-periodic
solutions for the fractional-order autonomous neural networks with delay.
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1 Introduction
As one important branch of the research on evolution equations, the study of fractional
differential equations in Banach spaces is very active recently due to its strong background
in physics, chemistry, engineering, biology, financial sciences, etc. (cf., e.g., [–] and the
references therein). In this paper, we are concerned with the following fractional differen-
tial equation:

⎧
⎨

⎩

cDq
t u(t) = Au(t) + f (t, ut), t ≥ ,

u(t) = φ(t), t ∈ [–δ, ],
(.)

where δ > , q ∈ (, ) and the fractional derivative is understood here in the Caputo sense,
A : D(A) ⊂ X → X is the generator of an analytic semigroup on a Banach space X, f is a
given function, ut : [–δ, ] → X is defined by ut(θ ) = u(t + θ ) for θ ∈ [–δ, ] (cf., e.g., [–
]), and φ ∈ C([–δ, ], X). Our main purpose is to establish existence and uniqueness
theorems about the S-asymptotically ω-periodic solutions to the (.).

Actually, while the almost periodic, almost automorphic, and weighted pseudo almost
periodic solutions to various evolution equations are investigated by many scholars (cf.,
e.g., [, –]), the S-asymptotically ω-periodic solutions to some evolution equations
are also studied by some researchers. There have been several interesting contributions
to the investigation of S-asymptotically ω-periodic solutions of differential equations and
fractional differential equations in finite as well as infinite dimensional spaces (cf. [–,
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, , , ]). We also note that some papers about the existence of S-asymptotically ω-
periodic solutions of fractional differential equations focus on the order q ∈ (, ) ([, ]
and references therein). Therefore, motivated by all this work, we pay attention in this
paper to the study of the existence of S-asymptotically ω-periodic (mild) solutions for
differential equation of fractional order of type (.) for the case q ∈ (, ).

The paper is organized as follows. In Section , we recall some basic notations and
concepts. In Section , we discuss the existence and uniqueness of S-asymptotically ω-
periodic mild solution, and as a special case of our result, we present the corresponding
result in the case of A =  (Theorem .). In Section , we apply our result to a study of the
existence and uniqueness of S-asymptotically ω-periodic solution for the fractional-order
neural network with finite delay.

2 Basic notations and concepts
Throughout this paper, (X,‖ · ‖) is a Banach space, Cb(R+, X) denotes the space of the
continuous bounded functions from [, +∞) to X, endowed with the norm

‖f ‖∞ = sup
t≥

∥
∥f (t)

∥
∥.

C([–δ, ], X) denotes the space of the continuous functions from [–δ, ] to X with the norm

‖x‖[–δ,] = sup
t∈[–δ,]

∥
∥x(t)

∥
∥.

Definition . (Cf., e.g., [, ]) The fractional integral of order q with the lower limit
zero for a function f ∈ L[,∞) is defined as

Iq
t f (t) =


�(q)

∫ t


(t – s)q–f (s) ds, t > ,  < q < ,

where �(·) is the gamma function.

Definition . (Cf., e.g., [, ]) The Caputo derivative of order q for a function f ∈
C[,∞) can be written as

cDq
t f (t) =


�( – q)

∫ t



f ′(s)
(t – s)q ds, t > ,  < q < .

3 Existence and uniqueness theorems
In this section we discuss the existence and uniqueness of S-asymptotically ω-periodic
solutions for problem (.).

Let A be the infinitesimal generator of a uniformly exponentially stable analytic semi-
group of linear operators {T(t)}t≥ on X such that

∥
∥T(t)

∥
∥ ≤ Me–μt , t ≥ ,

where M, μ >  are constants.
Based on the work in [, ], we define the mild solution for problem (.) as follows.
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Definition . A function u ∈ C([–δ, +∞], X) satisfying the equation

u(t) =

⎧
⎨

⎩

φ(t), t ∈ [–δ, ],

Q(t)φ() +
∫ t

 (t – s)q–R(t – s)f (s, us) ds, t > ,
(.)

is called a mild solution of problem (.), where

Q(t) =
∫ ∞


ξq(σ )T

(
tqσ

)
dσ , R(t) = q

∫ ∞


σξq(σ )T

(
tqσ

)
dσ .

Here ξq is a probability density function defined on (,∞) (see []) such that

ξq(σ ) =

π

∞∑

n=

(–σ )n– �(nq)
(n – )!

sin(nπq) ≥ , σ ∈ (,∞).

In fact, we can see that ξq(σ ) is the Wright type function in [, ]. For – < r < ∞, the
following conclusions hold.

(A)
∫ ∞

 σ rξq(σ ) dσ = �(+r)
�(+qr) ;

(A)
∫ ∞

 ξq(σ )e–zσ dσ = Eq(–z), z ∈ C;
(A)

∫ ∞
 qσξq(σ )e–zσ dσ = Eq,q(–z), z ∈ C,

where Eq(·) (Eq,q(·)) is the Mittag-Leffler function (the generalized Mittag-Leffler function)
(cf., e.g., [, ]).

Remark .
(i) Noting that

∫ ∞
 ξq(σ ) dσ = , we get

∥
∥Q(t)

∥
∥ ≤ M and lim

t→∞
∥
∥Q(t)

∥
∥ = . (.)

(ii) In view of (A), we have

∥
∥R(t)

∥
∥ ≤ M

�(q)
, t ≥ , (.)

∫ t


(t – s)q–∥∥R(t – s)

∥
∥ds ≤ qM

∫ t



∫ ∞


σξq(σ )(t – s)q–e–μ(t–s)qσ dσ ds

≤ M
∫ ∞


ξq(σ ) dσ

∫ ∞


e–μτ dτ

=
M
μ

. (.)

(iii) If A ∈ Rn×n is a constant matrix, then A generates a bounded operator semigroup
T(t) = eAt on X . Hence

Q(t) =
∫ ∞


ξq(σ )eAtqσ dσ = Eq

(
Atq),

R(t) = q
∫ ∞


σξq(σ )eAtqσ dσ = Eq,q

(
Atq).
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It follows from Definition . that

u(t) =

⎧
⎨

⎩

φ(t), t ∈ [–δ, ],

Eq(Atq)φ() +
∫ t

 (t – s)q–Eq,q(A(t – s)q)f (s, us) ds, t > ,

is a mild solution of the following problem:

⎧
⎨

⎩

cDq
t u(t) = Au(t) + f (t, ut), t ≥ ,

u(t) = φ(t), t ∈ [–δ, ].
(.)

It is not difficult to see that u(t) actually is the solution for the problem (.).

The following definition of S-asymptotically ω-periodic functions taking values in a Ba-
nach space X is from [].

Definition . A function h ∈ Cb(R+, X) is called S-asymptotically ω-periodic if there ex-
ists ω >  such that limt→∞(h(t + ω) – h(t)) = . In this case, we say that ω is an asymptotic
period of h.

Let SAPω(X) represent the space of all the X-valued S-asymptotically ω-periodic func-
tions endowed with the uniform convergence norm denoted by ‖ · ‖∞. Then, by virtue of
[], Proposition ., SAPω(X) is a Banach space.

Set

SAPω,(X) =
{

x ∈ SAPω(X) : x() = 
}

.

Clearly, SAPω,(X) is a closed subspace of SAPω(X).

Lemma . Let u : [–δ, +∞) → X be a function with u ∈ C([–δ, ], X) and u|[,+∞) ∈
SAPω(X). Then the function t → ut belongs to SAPω(C([–δ, ], X)).

Proof Since ut is continuous on [–δ, ], we see that there exists θ ∈ [–δ, ] such that

‖ut+ω – ut‖[–δ,] = sup
–δ≤θ≤

∥
∥u(t + ω + θ ) – u(t + θ )

∥
∥ =

∥
∥u(t + ω + θ ) – u(t + θ )

∥
∥.

Setting τ = t + θ , we obtain

lim
t→+∞

∥
∥u(t + ω + θ ) – u(t + θ )

∥
∥ = lim

τ→+∞
∥
∥u(τ + ω) – u(τ )

∥
∥ = . �

Set

C̃b(X) =
{

x ∈ Cb
(
[–δ, +∞), X

)
: x|t≥ ∈ Cb(R+, X), x|[–δ,] = 

}
.

For the function f : R+ × C([–δ, ], X) → X, we write
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(H) there exists a function s → Lf (s) ∈ L([, t], R+) such that

∥
∥f (t,ψ) – f (t,ψ)

∥
∥ ≤ Lf (t)‖ψ – ψ‖[–δ,], for all t ≥ ,ψ,ψ ∈ C

(
[–δ, ], X

)
,

the function s → Lf (s)
(t–s)–q belongs to L([, t], R+) and

� := sup
t≥

∫ t



Lf (s)
(t – s)–q ds <

�(q)
M

; (.)

(H) K := supt≥
∫ t


‖f (s,)‖
(t–s)–q ds < ∞;

(H) there exists ω > , for all ϕ ∈ C([–δ, ], X), limt→∞ ‖f (t + ω,ϕ) – f (t,ϕ)‖ = .

Theorem . Assume that (H)-(H) hold. Then the problem (.) has a unique S-
asymptotically ω-periodic mild solution.

Proof For every φ ∈ C([–δ, ], X), we define the function y(t) = φ(t) for t ∈ [–δ, ], y(t) =
Q(t)φ() for t ≥ . Then y ∈ C([–δ,∞), X). Set

u(t) = x(t) + y(t), t ∈ [–δ, +∞).

It is obvious that u satisfies (.) if and only if x satisfies x =  and for t ≥ ,

x(t) =
∫ t


(t – s)q–R(t – s)f (s, xs + ys) ds.

For each x ∈ C̃b(X), we write C = ‖x‖∞ + M‖φ()‖ + ‖φ‖[–δ,]. Then

‖xt + yt‖[–δ,] ≤ sup
–δ≤θ≤

∥
∥x(t + θ )

∥
∥ + sup

–δ≤θ≤

∥
∥y(t + θ )

∥
∥

≤ sup
≤τ≤t

∥
∥x(τ )

∥
∥ + M

∥
∥φ()

∥
∥ + ‖φ‖[–δ,]

≤ C.

Hence

∥
∥f (t, xt + yt)

∥
∥ ≤ Lf (t)‖xt + yt‖[–δ,] +

∥
∥f (t, )

∥
∥ ≤ CLf (t) +

∥
∥f (t, )

∥
∥. (.)

We consider the operator F : C̃b(X) → C̃b(X) as follows:

(Fx)(t) =

⎧
⎨

⎩

, t ∈ [–δ, ],
∫ t

 (t – s)q–R(t – s)f (s, xs + ys) ds, t ≥ .

In view of (.), (.), (.) and (H), we have

∥
∥
∥
∥

∫ t



R(t – s)f (s, xs + ys)
(t – s)–q ds

∥
∥
∥
∥ ≤ MC

�(q)

∫ t



Lf (s)
(t – s)–q ds +

MK
�(q)

< C +
MK
�(q)

. (.)

So, the operator F is well defined.
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It is clear that the fixed points of F are mild solutions to problem (.).
Now, we show that F is SAPω,(X)-valued.
For each x ∈ SAPω,(X), (.) implies that y|[,∞) ∈ SAPω(X). It follows from Lemma .

that the function t → yt belongs to SAPω(C([–δ, ], X)).
Moreover, we have

∥
∥(Fx)(t + ω) – (Fx)(t)

∥
∥

=
∥
∥
∥
∥

∫ ω



R(t + ω – s)
(t + ω – s)–q f (s, xs + ys) ds +

∫ t+ω

ω

R(t + ω – s)
(t + ω – s)–q f (s, xs + ys) ds

–
∫ t


(t – s)q–R(t – s)f (s, xs + ys) ds

∥
∥
∥
∥

≤ M
�(q)

[∫ ω


(t + ω – s)q–(CLf (s) +

∥
∥f (s, )

∥
∥
)

ds
]

+
∫ t


(t – s)q–∥∥R(t – s)

∥
∥
∥
∥f (s + ω, xs+ω + ys+ω) – f (s, xs+ω + ys+ω)

∥
∥ds

+
M

�(q)

∫ t


(t – s)q–∥∥f (s, xs+ω + ys+ω) – f (s, xs + ys)

∥
∥ds

= I(t) + I(t) + I(t).

Noting that t + ω – s ≥ t+ω
ω

(ω – s), we have

∫ ω



CLf (s) + ‖f (s, )‖
(t + ω – s)–q ds ≤

(
ω

t + ω

)–q ∫ ω



CLf (s) + ‖f (s, )‖
(ω – s)–q ds,

which implies that

I(t) →  as t → ∞.

By (.), we get

∥
∥f (s + ω, xs+ω + ys+ω) – f (s, xs+ω + ys+ω)

∥
∥

≤ C
[
Lf (s + ω) + Lf (s)

]
+

∥
∥f (s + ω, )

∥
∥ +

∥
∥f (s, )

∥
∥.

By (H), we can see that, for each ε > , there is a positive constant L such that

∥
∥f (s + ω, xs+ω + ys+ω) – f (s, xs+ω + ys+ω)

∥
∥ < ε, s ≥ L.

Noting that (.) and t – s ≥ t
L

(L – s), we deduce that

I(t) ≤ M
�(q)

∫ L



CLf (s + ω) + ‖f (s + ω, )‖ + CLf (s) + ‖f (s, )‖
(t – s)–q ds

+ ε

∫ t

L

(t – s)q–∥∥R(t – s)
∥
∥ds

≤ M
�(q)

[∫ L+ω

ω

CLf (s) + ‖f (s, )‖
(t + ω – s)–q ds +

∫ L



CLf (s) + ‖f (s, )‖
(t – s)–q ds

]

+
Mε

μ
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≤ M
�(q)

(
L + ω

t

)–q[∫ L+ω



(CLf (s) + ‖f (s, )‖) ds
(L + ω – s)–q

]

+
M

�(q)

(
L

t

)–q[∫ L



(CLf (s) + ‖f (s, )‖) ds
(L – s)–q

]

+
Mε

μ

≤ M
�(q)

(
L + ω

t

)–q

[C� + K] +
Mε

μ
. (.)

Since

xt + yt ∈ SAPω

(
C

(
[–δ, ], X

))
,

we know that there is a positive constant L >  such that

∥
∥(xs+ω + ys+ω) – (xs + ys)

∥
∥

[–δ,] ≤ ε, s ≥ L,

then

I(t) ≤ M
�(q)

[

C

∫ L



Lf (s)
(t – s)–q ds +

∫ L



‖f (s, )‖ds
(t – s)–q

]

+
Mε

�(q)

∫ t

L

Lf (s)
(t – s)–q ds

≤ M
�(q)

[

(C� + K)
(

L

t

)–q

+ �ε

]

.

Thus,

∥
∥(Fx)(t + ω) – (Fx)(t)

∥
∥ →  as t → ∞ and ε → .

So

F
(
SAPω,(X)

) ⊆ SAPω,(X).

Moreover, for x, x̃ ∈ SAPω,(X), we have

∥
∥(Fx)(t) – (F x̃)(t)

∥
∥ ≤ M

�(q)

∫ t


(t – s)q–Lf (s)‖xs – x̃s‖[–δ,] ds ≤ M�

�(q)
‖x – x̃‖∞.

Hence

∥
∥(Fx)(t) – (F x̃)(t)

∥
∥∞ ≤ M�

�(q)
‖x – x̃‖∞,

which means that F is a contraction mapping. Then the proof now can be finished by
using the contraction mapping principle. �

Remark . In the proof of Theorem ., we can see the result is true when (H) changes
to

(
H′) : lim

t→∞

∫ t


(t – s)q–∥∥f (s + ω,ϕ) – f (s,ϕ)

∥
∥ds = ,

because now we can directly obtain limt→∞ I(t) = .
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In the case of A ≡ , (.) takes the form of
⎧
⎨

⎩

cDq
t u(t) = f (t, ut), t ≥ ,

u(t) = φ(t), t ∈ [–δ, ].
(.)

It is well known that (.) is equivalent to the following integral equation:

u(t) =

⎧
⎨

⎩

φ(t), t ∈ [–δ, ],

φ() +
∫ t

 (t – s)q–f (s, us) ds, t ≥ .

Thus, we study (.) just like the case of

Q(t) = R(t) ≡ I

in (.). Clearly, we just need to revise (.) and (.), that is, if we replace (H), (H) by

(
H′) : K := sup

t≥

∥
∥
∥
∥

∫ t



f (s, )
(t – s)–q ds

∥
∥
∥
∥ < ∞

and (H′), respectively, then we can obtain the corresponding result of problem (.),
hence we have the following result.

Theorem . Assume that (H) (M ≡ ), (H′) and (H′) hold. Then the following frac-
tional differential equation:

⎧
⎨

⎩

cDq
t u(t) = f (t, ut), t ≥ ,

u(t) = φ(t), t ∈ [–δ, ],

has a unique S-asymptotically ω-periodic solution.

4 Applications
Example . Let X = R. For the vector x = (x, x)T ∈ R, we define

‖x‖ =
∑

i=

|xi|.

For the matrix A = (aij)×, we define

‖A‖ = max
≤j≤

∑

i=

|aij|.

We consider the following fractional-order neural network model with finite delay
(FNND) on X:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cD


t x(t) = –x(t) + sin π t

(t+t

 )




[x(t + θ ) + x(t + θ ) + ], t > ,

cD


t x(t) = –x(t) + cos π t

(t+t

 )




[x(t + θ ) + x(t + θ ) + ], t > ,

x(θ ) = x(θ ) = ., – ≤ θ ≤ .

(.)
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Problem (.) can be written in the vector form as follows:

cD


t x(t) = Bx(t) + F(t, xt), t ≥ ,

x(t) = ., t ∈ [–, ],

where

x(t) =
(
x(t), x(t)

)T ,

B = diag{–, –},
F(t, xt) = A(t)f (xt) + C(t),

A(t) =
(
aij(t)

)

× =

⎛

⎝

 sin π t

(t+t

 )




sin π t

(t+t

 )




cos π t

(t+t

 )




cos π t

(t+t

 )




⎞

⎠ ,

f (xt) = (xt , xt)T ,

C(t) =
(

 sin π t

(t + t 
 ) 


,

 cos π t

(t + t 
 ) 



)T

.

It is well known ([]) that B generates a bounded operator semigroup

T(t) = eBt = diag
{

e–t , e–t}

and

∥
∥T(t)

∥
∥ ≤ e–t , t ≥ 

(i.e. M = , μ = ). Moreover, (.) is now the solution of (.) (Remark .(iii)).
For ϕ, ϕ̃ ∈ C([–, ], X), it is easy to see that

∥
∥F(t,ϕ) – F(t, ϕ̃)

∥
∥ ≤ 

(t + t 
 ) 


‖ϕ – ϕ̃‖[–,] := Lf (t)‖ϕ – ϕ̃‖[–,].

Since

(
t + t



)– 

 ≤ t– 
 ,

∫ t


(t – s)– 

 s– 
 ds = π ,

∫ ∞



dt
 + tα

=
π

α sin(π/α)
(
α ∈ (, )

)
,

we deduce that (t + t 
 )– 

 ∈ L(, t) and

∫ t


(t – s)– 

 Lf (s) ds

=



∫ t


(t – s)– 

 s– 
 · ( + s



)– 

 ds
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≤ 


(∫ t



[
(t – s)– 

 s– 

] 

 ds
) 

 ·
(∫ t



((
 + s



)– 


) ds

) 


≤ π



(



√



) 


.

Hence


�( 

 )
sup
t≥

∫ t



Lf (s)

(t – s) 


ds ≤ π

�( 
 )

(



√



) 
 ≈ . < .

Moreover,

∥
∥F(t, )

∥
∥ ≤ 

(t + t 
 ) 


,

sup
t≥

∫ t


(t – s)– 


∥
∥F(s, )

∥
∥ds ≤ π



(



√



) 


< ∞

and

∥
∥F(t + ,ϕ) – F(t,ϕ)

∥
∥ ≤

[


((t + ) + (t + ) 
 ) 


+



(t + t 
 ) 



]

·
(



‖ϕ‖[–δ,] +




)

→ , t → ∞.

Therefore, the conditions in Theorem . are satisfied. Thus, by virtue of Theorem .,
the problem (.) has a unique S-asymptotically -periodic solution. We refer the reader
to Figure  below for a numerical solution of (.).

Example . Let X = R. We consider the following fractional-order model on X:

⎧
⎨

⎩

cD


t x(t) = cos x(t+θ )

(t+t)



+ sin π t, t > ,

x(θ ) = , – ≤ θ ≤ .
(.)

Problem (.) can be written in the form as follows:

cD


t x(t) = F(t, xt), t > ,

x(t) = , t ∈ [–, ],

where

F(t, xt) =
cos xt

(t + t) 


+ sin π t.

For any ϕ, ϕ̃ ∈ C([–, ], X), we have

∥
∥F(t,ϕ) – F(t, ϕ̃)

∥
∥ ≤ 

(t + t) 

‖ϕ – ϕ̃‖[–,] := Lf (t)‖ϕ – ϕ̃‖[–,].
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Figure 1 Numerical solution of equation (4.1).

Noting that

(
t + t)– 

 ≤ t– 
 ,

∫ t


(t – s)– 

 s– 
 ds = π ,

we get

∫ t


(t – s)– 

 Lf (s) ds =



∫ t


(t – s)– 

 s– 
 · ( + s)– 

 ds

=



∫ t


(t – s)– 

 s– 
 · s



(
 + s)– 

 ds

≤ π


. (.)
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Figure 2 Numerical solution of equation (4.2).

So


�( 

 )
sup
t≥

∫ t



Lf (s)

(t – s) 


ds ≤
√

π


≈ . < .

Moreover,

F(t, ) =


(t + t) 


+ sin π t,

∫ t


(t – s)– 

 sin πs ds =  sin π t
∫ √

t


cos πs ds –  cos π t

∫ √
t


sin πs ds.

In view of

∫ +∞


sin s ds =

∫ +∞


cos s ds =

√
π



being Fresnel integrals and (.), we obtain

sup
t≥

∣
∣
∣
∣

∫ t


(t – s)– 

 F(s, ) ds
∣
∣
∣
∣ < .

Clearly,

lim
t→∞

(
t

 + t

) 


= .

Hence, for each ε > , there is a positive constant L >  such that

(
t

 + t

) 
 ≤ ε, t > L.
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Therefore, noting that t – L > t
L (L – s), we obtain

∫ t


(t – s)– 


∥
∥F(s + ,ϕ) – F(s,ϕ)

∥
∥ds

≤ 


∫ L


(t – s)– 

 s– 


[(
s

 + s

) 


+
(

s
 + s

) 

(

s
 + (s + )

) 

]

ds

+



∫ t

L
(t – s)– 

 s– 


[(
s

 + s

) 


+
(

s
 + s

) 

(

s
 + (s + )

) 

]

ds

≤ 


(
L
t

) 

∫ L


(L – s)– 

 s– 
 ds +

ε



∫ t

L
(t – s)– 

 s– 
 ds

≤ π



[(
L
t

) 


+ ε

]

,

i.e. (H′) is satisfied. Thus, the conditions in Theorem . are fulfilled. Hence, by Theo-
rem ., the problem (.) has a unique S-asymptotically -periodic solution. We refer the
reader to Figure  above for a numerical solution of (.).
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