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Abstract
In this work, we study a boundary value problem for a fractional q-difference
equation. By using the monotone iterative technique and lower-upper solution
method, we get the existence of positive or negative solutions under the nonlinear
term is local continuity and local monotonicity. The results show that we can
construct two iterative sequences for approximating the solutions.
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1 Introduction
In this paper, we consider the following nonlinear boundary value problem for a fractional
q-difference equation:

{
Dα

q u(t) + f (t, u(t)) = , t ∈ (, ),
u() = Dqu() = Dqu() = ,

(.)

where  < q < ,  < α < , f : [, ] × [, +∞) → [, +∞), Dα
q is the fractional q-derivative

of the Riemann-Liouville type.
As a branch of mathematical analysis, the q-difference calculus has developed into a

demonstrated popular tool for the description of experimental data refer to the mathe-
matical model. In the early twentieth century, Jackson [], the first scholar to develop q-
calculus in a systematic way, introduced the notion of the definite q-integral and some clas-
sical concepts. Furthermore, the fractional q-difference calculus was initially proposed by
Al-Salam [] and Agarwal [], and one can find more details in [–]. Since then, there has
appeared much work on the theory of fractional q-difference calculus and nonlinear frac-
tional q-difference equation boundary value problems; see [–] for example. Moreover,
fractional q-difference equations have wide applications in several fields such as engineer-
ing, economy, chemistry, physic, etc. Compared with the classical fractional differential
equations involving the Caputo fractional derivative (see [–] for instance), fractional
q-difference equations involving the Caputo fractional derivative are general by allowing

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1138-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1138-x&domain=pdf
http://orcid.org/0000-0002-3619-5722
mailto:cbzhai@sxu.edu.cn


Zhai and Ren Advances in Difference Equations  (2017) 2017:82 Page 2 of 13

for q-derivatives. So boundary value problems for fractional q-difference equations have
become of importance and the existence of positive solutions has been studied by a great
number of researchers; see [–] and references therein. The methods used in these pa-
pers are mainly Krasnoselskii fixed point theorem, the lower and upper solution method,
the critical point theory and fixed point theorems on cones and so on. For instance, by
using some fixed point theorems on cones associated with some properties of the Green’s
function, several existence results of positive solution for nonlinear q-fractional bound-
ary value problem are obtained by Liu []. Yang [] investigated the existence of positive
solutions for fractional q-difference equation boundary value problems with �-Laplacian
operator by means of the lower-upper solution method coupled with the Schauder fixed
point theorem. More recently, Ahmad et al. [] obtained the existence of solutions for
Caputo fractional q-difference inclusions with q-antiperiodic boundary conditions by us-
ing a fixed point theorem for upper semi-continuous compact map. In [], the authors
considered the problem (.) and obtained the existence of at least one or two positive
solutions by using the Krasnoselskii fixed point theorem. Different from [, ], we will
discuss the existence of positive solutions or negative solutions for the problem (.). Our
main tool is monotone iterative via lower and upper solutions. Here we do not require
that the nonlinear term f (t, x) is nonnegative, global monotone and global continuous.
We establish the existence of positive solutions or negative solutions under the conditions
of local monotone and local continuous. Moreover, we can approximate the positive so-
lution or negative solution by constructing two iterative sequences.

2 Preliminaries
In this section, we list some well-known concepts on fractional q-calculus.

Let q be a real number with  < q <  and I be a real interval containing . The definition
of the q-analog for a ∈ R is

[a]q :=
 – qa

 – q
.

Let u : I → R with u′() exist, the q-derivative Dq[u] of u is defined by

Dq[u](t) :=

{
u(qt)–u(t)

(q–)t , t �= ,
u′(), t = .

Clearly, if u′(t) exists, then limq→ Dq[u](t) = u′(t). q-derivatives of higher order are defined
by

D
q[u] := u, Dn

q[u] := Dq
[
Dn–

q [u]
]
, n ∈ N.

Let �q be the q-gamma function defined by

�q(z) := ( – q)–z
∞∏

n=

 – qn+

 – qn+z , z ∈ R \ {, –, –, . . .}.

It is clear that

�q() = , �q(z + ) = [z]q�q(z).
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The q-analog of the power function (a – b)(α) with real exponent α ∈ R is defined by

(a – b)(α) := aα

∞∏
n=

 – (b/a)qn

 – (b/a)qn+α
, a, b ∈ R. (.)

Then (a – b)() = , a(α) = aα , when b = . Further,

(
a(t – s)

)(α) = aα(t – s)(α).

We can see that the q-gamma function can also be written by

�q(z) =
( – q)(z–)

( – q)z– , for z ∈ R \ {, –, –, . . .}.

Remark . (See []) If α >  and a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Let a, b ∈ I and a < b. For u : I → R, the q-integral of u from a to b is defined by

∫ b

a
u(s) dqs :=

∫ b


u(s) dqs –

∫ a


u(s) dqs,

here

∫ t


u(s) dqs = t( – q)

∞∑
n=

qnu
(
tqn), t ∈ I, (.)

provided that the series converges at t = a and t = b. Set

Iq[x](t) :=
∫ t


x(s) dqs.

Then the two operators Iq, Dq are inverse of each other, in the sense that Dq[Iq[u]] = u.
Suppose that u is continuous at t = , then

Iq
[
Dq[u]

]
= u(t) – u().

Assume that u is continuous at t =  and, by using the last equality,

∫ b

a
Dq[u](t) dqt = u(b) – u(a), a, b ∈ I.

It is also clear that the operator Iq is a linear operator. Let Dq[τ → f (τ , t)](t) be the q-
derivative of a function f with respect to τ . Note that Dq[τ → τ n](t) = [n]qtn–, for n ∈ N,
which is similar to the ordinary derivative of tn. Then some properties of the q-integral
are given below:

(i)
∫ b

a u(s)Dq[v](s) dqs = [u(s)v(s)]b
a –

∫ b
a v(sq)Dq[u](s) dqs;

(ii)
∫ t

 sλ dqs = tλ+

[λ+]q
, λ > –;

(iii) Dq[τ → ∫ τ

 g(s, t) dqs](t) =
∫ t

 Dq[τ → g(s, τ )](t) dqs + g(t, qt).
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Definition . (See []) Let α ≥  and u be a function defined on [, ]. The fractional
q-integral of Riemann-Liouville type is I

q [u](t) = u(t) and

Iα
q [u](t) =


�q(α)

∫ t


(t – qs)(α–)u(s) dqs, α > . (.)

Note that when α = , Iα
q [u] = Iq[u].

Lemma . (See []) If α ≥  and u : [, ] → R is continuous, then Iα
q [u] is a continuous

function.

Lemma . If α ≥  and u, v are continuous on [, ] with u(t) ≤ v(t), then Iα
q [u](t) ≤

Iα
q [v](t).

Proof From the definitions (.) and (.), we get

Iα
q [u](t) – Iα

q [v](t) =


�q(α)

∫ t


(t – qs)(α–)u(s) dqs –


�q(α)

∫ t


(t – qs)(α–)v(s) dqs

=


�q(α)
t( – q)

∞∑
n=

qn(t – tqn+)(α–)[u
(
tqn) – v

(
tqn)]

=


�q(α)
tα( – q)

∞∑
n=

qn( – qn+)(α–)[u
(
tqn) – v

(
tqn)].

Since  < qn+ < , u(tqn) ≤ v(tqn), we have Iα
q [u](t)–Iα

q [v](t) ≤ . The proof is completed.�

Lemma . If u(t) is continuous on [, ]. Then | ∫ 
 u(s) dqs| ≤ ∫ 

 |u(s)|dqs.

Proof Since u(t) is continuous,
∫ 

 u(s) dqs,
∫ 

 |u(s)|dqs exist. Hence, the series∑∞
n= qnu(qn),

∑∞
n= qn|u(qn)| convergence. Since  < q < , we have

∣∣∣∣∣
∞∑

n=

qnu
(
qn)∣∣∣∣∣ ≤

∞∑
n=

qn∣∣u(
qn)∣∣.

In view of  – q > , we get

∣∣∣∣∣( – q)
∞∑

n=

qnu
(
qn)∣∣∣∣∣ ≤ ( – q)

∞∑
n=

qn∣∣u(
qn)∣∣,

and from the definition (.), we have | ∫ 
 u(s) dqs| ≤ ∫ 

 |u(s)|dqs. �

Definition . (See []) The fractional q-derivative of the Riemann-Liouville type of u :
I → R is defined by D

q[u](t) = u(t) and

Dα
q [u](t) = D	α


q
[
I	α
–α

q [u]
]
(t), α > ,

where 	α
 is the smallest integer greater than or equal to α. It is easy to prove that if α = ,
Dα

q [u] = Dq[u] and Dα
q [Iα

q [u]] = u.
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Lemma . Let α ≥  and am → a as m → ∞. Then

(am – b)(α) m→∞−→ (a – b)(α), a, b ∈ R.

Proof From the definition (.), we get

(a – b)(α) = aα

∞∏
n=

a – bqn

a – bqn+α
= lim

n→∞ aα

n–∏
k=

a – bqn

a – bqn+α

and

(am – b)(α) = aα
m

∞∏
n=

am – bqn

am – bqn+α
= lim

n→∞ aα
m

n–∏
k=

am – bqn

am – bqn+α
.

Since limn→∞ am = a, we obtain

lim
m→∞(am – b)(α) = lim

m→∞ lim
n→∞ aα

m

n–∏
k=

am – bqn

am – bqn+α

= lim
n→∞ lim

m→∞ aα
m

n–∏
k=

am – bqn

am – bqn+α
= (a – b)(α).

The proof is complete. �

Now we present the following fixed point theorem, which will be the main tool for our
analysis.

Lemma . (See []) Assume that X is a Banach space and K is a normal cone in X,
T : [u, v] → X is a completely continuous increasing operator which satisfies u ≤ Tu,
Tv ≤ v. Then T has a minimal fixed point u∗ and a maximal fixed point v∗ with u ≤
u∗ ≤ v∗ ≤ v. In addition,

u∗ = lim
n→∞ Tnu, v∗ = lim

n→∞ Tnv,

where {Tnu}∞n= is an increasing sequence, {Tnv}∞n= is a decreasing sequence.

3 Existence of q-fractional positive solutions for problem (1.1)
Lemma . (See []) Assume g ∈ C[, ], then the following boundary value problem:

{
Dα

q u(t) + g(t) = ,  < t < ,
u() = Dqu() = Dqu() = ,

has a unique solution

u(t) =
∫ 


G(t, qs)g(t) dqs,
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where

G(t, qs) =


�q(α)

{
( – qs)(α–)tα– – (t – qs)(α–),  ≤ qs ≤ t ≤ ,
( – qs)(α–)tα–,  ≤ t ≤ qs ≤ .

Lemma . (See []) The function G(t, qs) has the following properties:
(i) G(t, qs) ≥ , G(t, qs) ≤ G(, qs),  ≤ t, s ≤ ;

(ii) G(t, qs) ≥ tα–G(, qs),  ≤ t, s ≤ .

Remark . The function G(t, qs) has some other properties:
(a) G(t, qs) ≤ 

�q(α) ( – qs)(α–)tα– ≤ 
�q(α) ,  ≤ t, s ≤ .

(b) We can obtain the following inequalities:
(i) For  ≤ t ≤ t ≤ qs ≤ , we get

∣∣G(t, qs) – G(t, qs)
∣∣ =

∣∣∣∣ 
�q(α)

( – qs)(α–)tα–
 –


�q(α)

( – qs)(α–)tα–


∣∣∣∣
=


�q(α)

( – qs)(α–)∣∣tα–
 – tα–


∣∣

≤ 
�q(α)

(
tα–
 – tα–


)
.

(ii) For  ≤ t ≤ qs ≤ t ≤ , we get

∣∣G(t, qs) – G(t, qs)
∣∣ =

∣∣∣∣ 
�q(α)

[
( – qs)(α–)tα–

 – (t – qs)(α–)]

–


�q(α)
( – qs)(α–)tα–



∣∣∣∣
=


�q(α)

∣∣( – qs)(α–)(tα–
 – tα–


)

– (t – qs)(α–)∣∣
≤ 

�q(α)
∣∣( – qs)(α–)(tα–

 – tα–


)∣∣+∣∣(t – qs)(α–)∣∣
≤ 

�q(α)
[(

tα–
 – tα–


)

+ (t – t)(α–)].

(iii) For  ≤ qs ≤ t ≤ t ≤ , we get

∣∣G(t, qs) – G(t, qs)
∣∣ =

∣∣∣∣ 
�q(α)

[
( – qs)(α–)tα–

 – (t – qs)(α–)

– ( – qs)(α–)tα–
 + (t – qs)(α–)]∣∣∣∣

≤ 
�q(α)

[∣∣( – qs)(α–)(tα–
 – tα–


)∣∣

+
∣∣(t – qs)(α–) – (t – qs)(α–)∣∣]

≤ 
�q(α)

[(
tα–
 – tα–


)

+ (t – qs)(α–) – (t – qs)(α–)].

(c) G(t, qs) >  for (t, s) ∈ (, ) × (, ) (see []).
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Let X = C[, ], the Banach space of all continuous functions on [, ], with norm ‖u‖ =
max{|u(t)| : t ∈ [, ]}. In our considerations, we need the standard cone K ⊂ X by

K =
{

u ∈ [, ] : u(t) ≥ ,  ≤ t ≤ 
}

.

It is clear that the cone K is normal. In addition, we always use Lemmas .-. in the
following analysis.

Theorem . Assume that

(F) there exist a real number d >  and g ∈ L[, ], such that

(i) f : [, ] × [, d] → [, +∞) is continuous, f (t, u) ≤ g(t) for (t, u) ∈ [, ] × [, d]
and f (t, u) ≤ f (t, v) for  ≤ t ≤ ,  ≤ u ≤ v ≤ d;

(i) the following inequality holds:


�q(α)

∫ 


( – qs)(α–)f

(
s, dsα–)dqs ≤ d;

(F) there exists c ∈ (, d) such that

∫ 


G(, qs)f

(
s, csα–)dqs ≥ c.

Then the problem (.) has two positive solutions u∗, v∗ ∈ D, where D = {u ∈ C[, ] | ctα– ≤
u(t) ≤ dtα–, t ∈ [, ]}. In addition, let u(t) = ctα–, v(t) = dtα– and construct the follow-
ing sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . , one has limn→∞ un = u∗, limn→∞ vn = v∗.

Proof From the non-negativeness and continuity of G and f , we can define an operator
T : C[, ] → C[, ] by

Tu(t) =
∫ 


G(t, qs)f

(
s, u(s)

)
dqs,  ≤ t ≤ .

From Lemma ., we can see that u is the solution of the problem (.) if and only if u is
the fixed point of T . We will show that T has fixed points in the order interval [u, v].

We need to show that T : [u, v] → C[, ] is a completely continuous operator. For
u ∈ [u, v], we have  ≤ ctα– ≤ u(t) ≤ dtα– ≤ d,  ≤ t ≤ . Since G(t, qs) is continuous, it
follows from the hypothesis (F)-(i) that T is continuous. So we only prove T is compact.
Let M =

∫ 
 g(s) dqs, then  ≤ M < +∞. From the hypothesis (F)-(i) and Lemma ., we

get

‖Tu‖ = max
≤t≤

∣∣∣∣
∫ 


G(t, qs)f

(
s, u(s)

)
dqs

∣∣∣∣
≤ max

≤qs≤
G(, qs)

∫ 


f
(
s, u(s)

)
dqs
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≤ 
�q(α)

∫ 


g(s) dqs

=
M

�q(α)
.

This shows that the set T([u, v]) is uniform bounded in C[, ]. After that, for given
t, t ∈ [, ] with t < t, and u ∈ [u, v], we obtain

∣∣Tu(t) – Tu(t)
∣∣ ≤

∫ 



∣∣G(t, qs) – G(t, qs)
∣∣f (s, u(s)

)
dqs

≤ max
≤qs≤

∣∣G(t, qs) – G(t, qs)
∣∣ ∫ 


g(s) dqs

= M max
≤qs≤

∣∣G(t, qs) – G(t, qs)
∣∣.

In view of Remark .(b) and Lemma ., one has Tu(t) → Tu(t), as t → t. So we claim
that the set T([u, v]) is equi-continuous in C[, ]. By means of the Arzela-Ascoli theo-
rem, T : [u, v] → C[, ] is a completely continuous operator. By the hypothesis (F)-(i),
T is an increasing operator.

From (F), (F) and Lemma ., for any t ∈ [, ], one can see that

Tu(t) =
∫ 


G(t, qs)f

(
s, u(s)

)
dqs =

∫ 


G(t, qs)f

(
s, csα–)dqs

≥
∫ 


tα–G(, qs)f

(
s, csα–)dqs ≥ tα–c = u(t)

and

Tv(t) =
∫ 


G(t, qs)f

(
s, v(s)

)
dqs =

∫ 


G(t, qs)f

(
s, dsα–)dqs

≤ tα–

�q(α)

∫ 


( – qs)(α–)f

(
s, dsα–)dqs ≤ tα–d = v(t).

Hence, we get Tu ≥ u, Tv ≤ v. We construct the following sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . . From the monotonicity of T , we have un+ ≥ un, vn+ ≤ vn, n = , , . . . . By
using Lemma ., we know that the operator T has two positive solutions u∗, v∗ ∈ C[, ]
with u ≤ u∗ ≤ v∗ ≤ v, that is, ctα– ≤ u∗(t) ≤ v∗(t) ≤ dtα–,  < t ≤ . In addition,
limn→∞ un = u∗, limn→∞ vn = v∗. �

Theorem . Assume that

(F) there exist a real number d >  and g ∈ L[, ], such that

(i) f : [, ] × [, d] → R is continuous, |f (t, u)| ≤ g(t) for (t, u) ∈ [, ] × [, d] and
f (t, u) ≤ f (t, v) for  ≤ t ≤ ,  ≤ u ≤ v ≤ d;



Zhai and Ren Advances in Difference Equations  (2017) 2017:82 Page 9 of 13

(i) the following inequality holds:


�q(α)

∫ 


(–qs)(α–) max

{
f
(
s, dsα–), 

}
dqs+

∫ 


G(, qs) min

{
f
(
s, dsα–), 

}
dqs ≤ d;

(F) there exists c ∈ (, d) such that

∫ 


G(, qs) max

{
f
(
s, csα–), 

}
dqs +


�q(α)

∫ 


( – qs)(α–) min

{
f
(
s, csα–), 

}
dqs ≥ c.

Then the problem (.) has two positive solutions u∗, v∗ ∈ D, where D = {u ∈ C[, ] | ctα– ≤
u(t) ≤ dtα–, t ∈ [, ]}. In addition, let u(t) = ctα–, v(t) = dtα– and construct the follow-
ing sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . , one has limn→∞ un = u∗, limn→∞ vn = v∗.

Proof Consider the same operator T : C[, ] → C[, ] as defined in the proof of Theo-
rem .:

Tu(t) =
∫ 


G(t, qs)f

(
s, u(s)

)
dqs,  ≤ t ≤ .

We also show that T has fixed points in the order interval [u, v].
Similar to the proof of Theorem ., T : C[, ] → C[, ] is a completely continuous

operator. From the hypothesis (F)-(i), T is an increasing operator. Further, by using the
conditions (F), (F), Remark . and Lemma ., for any t ∈ [, ], one obtains

Tu(t) =
∫ 


G(t, qs)f

(
s, u(s)

)
dqs

=
∫ 


G(t, qs)f

(
s, csα–)dqs

=
∫ 


G(t, qs) max

{
f
(
s, csα–), 

}
dqs +

∫ 


G(t, qs) min

{
f
(
s, csα–), 

}
dqs

≥
∫ 


tα–G(, qs) max

{
f
(
s, csα–), 

}
dqs

+


�q(α)

∫ 


( – qs)(α–)tα– min

{
f
(
s, csα–), 

}
dqs

= tα–
[∫ 


G(, qs) max

{
f
(
s, csα–), 

}
dqs

+


�q(α)

∫ 


( – qs)(α–) min

{
f
(
s, csα–), 

}
dqs

]

≥ tα–c = u(t)
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and

Tv(t) =
∫ 


G(t, qs)f

(
s, v(s)

)
dqs

=
∫ 


G(t, qs)f

(
s, dsα–)dqs

=
∫ 


G(t, qs) max

{
f
(
s, dsα–), 

}
dqs +

∫ 


G(t, qs) min

{
f
(
s, dsα–), 

}
dqs

≤ 
�q(α)

∫ 


( – qs)(α–)tα– max

{
f
(
s, dsα–), 

}
dqs

+ tα–
∫ 


G(, qs) min

{
f
(
s, dsα–), 

}
dqs

= tα–
[


�q(α)

∫ 


( – qs)(α–) max

{
f
(
s, dsα–), 

}
dqs

+
∫ 


G(, qs) min

{
f
(
s, dsα–), 

}
dqs

]

≤ tα–d = v(t).

Hence, Tu ≥ u, Tv ≤ v. We construct the following sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . . According to the monotonicity of T , we get un+ ≥ un, vn+ ≤ vn, n = , , . . . .
From Lemma ., we know that the operator T has two positive solutions u∗, v∗ ∈ C[, ]
with u ≤ u∗ ≤ v∗ ≤ v, that is,  < ctα– ≤ u∗(t) ≤ v∗(t) ≤ dtα– ≤ d,  < t ≤ . In addition,
limn→∞ un = u∗, limn→∞ vn = v∗. �

By using the same proof as Theorem ., we can easily obtain the following conclusions.

Theorem . Assume that

(F) there exist a real number c <  and g ∈ L[, ], such that

(i) f : [, ] × [c, ] → R is continuous, |f (t, u)| ≤ g(t) for (t, u) ∈ [, ] × [c, ] and
f (t, u) ≤ f (t, v) for  ≤ t ≤ , c ≤ u ≤ v ≤ .

In addition, there exists d ∈ (c, ) such that (F)-(i) and (F) in Theorem . are also sat-
isfied. Then the problem (.) has two negative solutions u∗, v∗ ∈ D, where D = {u ∈ C[, ] |
ctα– ≤ u(t) ≤ dtα–, t ∈ [, ]}. Let u(t) = ctα–, v(t) = dtα– and we construct the following
sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . , we can obtain limn→∞ un = u∗, limn→∞ vn = v∗.
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Theorem . Assume that

(F) there exist two real numbers c <  < d and g ∈ L[, ], such that

(i) f : [, ] × [c, d] → R is continuous, |f (t, u)| ≤ g(t) for (t, u) ∈ [, ] × [c, d] and
f (t, u) ≤ f (t, v) for  ≤ t ≤ , c ≤ u ≤ v ≤ d.

In addition, (F)-(i) and (F) are also satisfied. Then the problem (.) has two solutions
u∗, v∗ ∈ D, where D = {u ∈ C[, ] | ctα– ≤ u(t) ≤ dtα–, t ∈ [, ]}. Let u(t) = ctα–, v(t) =
dtα– and construct the following sequences:

un+ =
∫ 


G(t, qs)f

(
s, un(s)

)
dqs, vn+ =

∫ 


G(t, qs)f

(
s, vn(s)

)
dqs,

n = , , , . . . , we can get limn→∞ un = u∗, limn→∞ vn = v∗.

Remark . In Theorem ., the two solutions may be sign-changing solutions.

4 An example
In this section, we give an example to illustrate our main results.

Example . Consider the following boundary value problem:

{
D



q u(t) + (u 

 + t) = , t ∈ (, ),
u() = Dqu() = Dqu() = ,

(.)

here α = 
 , q = 

 , f (t, u) = u 
 + t, and g(t) = t + , let c =

√


 , d = 
√

, one can see that
f : [, ] × [, 

√
] → [, +∞) is continuous, f (t, u) ≤ g(t) for (t, u) ∈ [, ] × [, 

√
] and

f (t, u) is increasing in u ∈ [, 
√

] for fixed t ∈ [, ]. Since f (s, cs 
 ) = 

 s, f (s, ds 
 ) = s,

by simple computation, we have


�q(α)

∫ 


( – qs)(α–)f

(
s, dsα–)dqs =


� 


( 

 )

∫ 



(
 –

s


)( 
 )

s dqs

=


( –
√

)� 


( 
 )

≈ . ≤ d,

∫ 


G(, qs)f

(
s, csα–)dqs =




∫ 



[(
 –

s


)( 
 )

–
(

 –
s


)( 
 )]

s dqs

=


( –
√

)� 


( 
 )

–


� 


( 
 )

≈ . ≥ c.

So conditions (F) and (F) are satisfied. By Theorem ., the problem (.) has two positive
solutions u∗, v∗ ∈ C[, ] with

√


 t 
 ≤ u∗ ≤ v∗ ≤ 

√
t 

 . Moreover, let u(t) =
√


 t 

 , v(t) =

√

t 
 and we construct two sequences

un+ =
∫ 


G(t, qs)

(
u



n + s

)
dqs, vn+ =

∫ 


G(t, qs)

(
v



n + s

)
dqs,

n = , , , . . . , where G(t, qs) are given as in Lemma ., we have limn→∞ un = u∗,
limn→∞ vn = v∗.
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