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Abstract
In this paper, we investigate the existence and multiplicity of nontrivial weak solutions
for a class of nonlinear impulsive (q,p)-Laplacian dynamical systems. The key
contributions of this paper lie in (i) Exploiting the least action principle, we deduce
that the system we are interested in has at least one weak solution if the potential
function has sub-(q,p) growth or (q,p) growth; (ii) Employing a critical point theorem
due to Ding (Nonlinear Anal. 25(11):1095-1113, 1995), we derive that the system
involved has infinitely many weak solutions provided that the potential function is
even.
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1 Introduction and main results
For N ∈N, let (RN , 〈·, ·〉, | · |) be the N-dimensional Euclidean space. For fixed l, k ∈N, set
B := {, , . . . , l} and C := {, , . . . , k}. If f : Rn → R is a smooth function, let ∇f stand for
the gradient operator. For a smooth function f : Rn × R

n → R, denote by ∇x f and ∇x f
the gradient operator with respect to the first component and the second component,
respectively. For a mapping f : R+ →R, f (t+) and f (t–) mean the right-hand side limit and
the left-land side limit at t, respectively. For functions f : Rn → R

n and g : R+ → R
n, let

�(f (g(t))) = f (g(t+)) – f (g(t–)).
In this paper, we consider a nonlinear system with impulsive effects on H

N := R
N ×R

N

for any p, q > , λ > , j ∈ B, and m ∈ C,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

– d(�q(u̇(t)))
dt + �q(u(t)) = λ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],

– d(�p(u̇(t)))
dt + �p(u(t)) = λ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],

�(�q(u̇(tj))) = ∇Ij(u(tj)),
�(�p(u̇(sm))) = ∇Km(u(sm)),

(.)

with the initial condition (u̇(), u̇()) = (u(), u()) ∈ H
N and the terminal condition

(u̇(T), u̇(T)) = (, ) ∈ H
N , where �μ(z) := |z|μ–z for any μ >  and z ∈ R

N ; F : R+ ×
H

N → R; (tj)j∈B and (sm)m∈C are impulsive times with  = t < t < t < · · · < tl < tl+ = T ,
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 = s < s < s < · · · < sk < sk+ = T , and for j ∈ B and m ∈ C, Ij : RN →R and Km : RN →R

are continuously differentiable.
For the nonlinear term F : [, T] ×H

N →R, we assume that
(A) For fixed t ∈ [, T] and x ∈H

N , F(·, x) is measurable and F(t, ·) is continuously
differentiable;

(A) There exist a, a ∈ C(R+;R+) and b ∈ L([, T];R+) such that

∣
∣F(t, x, x)

∣
∣ ≤ [

a
(|x|

)
+ a

(|x|
)]

b(t),
∣
∣∇F(t, x, x)

∣
∣ ≤ [

a
(|x|

)
+ a

(|x|
)]

b(t),
∣
∣Ij(x)

∣
∣ ≤ a

(|x|
)
,

∣
∣∇Ij(x)

∣
∣ ≤ a

(|x|
)
, j ∈ B,

∣
∣Km(x)

∣
∣ ≤ a

(|x|
)
,

∣
∣∇Km(x)

∣
∣ ≤ a

(|x|
)
, m ∈ C

for all (x, x) ∈ R
N ×R

N and a.e. t ∈ [, T].
For N = , p = q = , F(t, x, x) = F(t, x), and Ij ≡  (j ∈ B), system (.) reduces to the

following second order impulsive differential equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 (t) + u(t) = λ∇u F(t, u(t)), a.e. t ∈ [, +∞),

u′
() = u(),

u′
(T) = ,

�(u′
(tj)) = Ij(u(tj)), j ∈ B.

(.)

Recently, Chen and Sun [] investigated the following second order impulsive differential
equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 (t) + u(t) = λf (t, u(t)), a.e. t ∈ [, +∞),

u′
(+) = g(u()),

u′
(+∞) = ,

�(u′
(tj)) = Ij(u(tj)), j ∈ B,

(.)

where f ∈ C(R+ × R;R), g, Ij ∈ C(R;R). In [], the authors not only established the vari-
ational structure of equation (.) but also obtained that (.) enjoys three solutions by
using an abstract critical point theorem taken from []. More precisely, they obtained the
following theorem.

Theoremm A ([], Theorem .) Suppose that
(H) g(u), Ij(u) are nondecreasing, and g(u)u ≥ , Ij(u)u ≥  for any u ∈R;
(H) There exist a > , l ∈ (, ), b ∈ L(R+;R+), and c ∈ L(R+;R+) such that

F(t, u) ≤ b(t)
(
a + |u|l), f (t, u) ≤ c(t)|u|l–,

for a.e. t ≥  and u ∈ R, where F(t, u) :=
∫ u

 f (t, s) ds;
(H) There exist d, m, M >  such that

d

M < m + 
l∑

j=

∫ me–tj


Ij(s) ds + 

∫ m


g(s) ds;
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(H)

M ∫ +∞
 max|ξ |≤d F(t, ξ ) dt

d <
∫ +∞

 F(t, me–t) dt

m + 
∑l

j=
∫ me–tj

 Ij(s) ds + 
∫ m

 g(s) ds
.

Then, for each

λ ∈
[ m

 +
∑l

j=
∫ me–tj

 Ij(s) ds +
∫ m

 g(s) ds
∫ +∞

 F(t, me–t) dt
,

d

M
∫ +∞

 max|ξ |≤d F(t, ξ ) dt

]

,

(.) has at least three classical solutions.

Also, Dai and Zhang [] showed by using the least action principle that (.) has at least
one solution if the potential function has subquadratic growth and, by taking advantage
of the fountain theorem due to [], that (.) has infinitely many solutions if the potential
function is even.

To be precise, they obtained the following theorems.

Theoremm B ([], Theorem .) Suppose that
(S) (Ij)j∈B and g satisfy

∫ u
 Ij(s) ds ≥  and

∫ u
 g(s) ds ≥ , u ∈ R, respectively;

(S) There exist a > , α ∈ (, ), and b ∈ L(R+;R+) such that

F(t, u) ≤ b(t)
(
a + |u|α)

for a.e. t ≥  and all u ∈ R.
Then, for λ > , (.) has at least one classical solution.

Theoremm C ([], Theorem .) Besides (S) above, for a.e. t ≥  and all u ∈ R, assume
that

(S) There exist α ∈ (, ) and d ∈ L 
–α (R+;R+) such that

F(t, u) ≥ d(t)|u|α ;

(S) There exist γ ∈ (, ) and h, h ∈ L(R+;R+) such that

f (t, u) ≤ h(t)|u|γ + h(t);

(S) There exist γj > α – , θ > α – , and qj, q > , j ∈ B, such that

Ij(u) ≤ qj|u|γj , g(u) ≤ q|u|θ ;

(S) f (t, u), Ij(u), and g(u) are odd about u.
Then, for any λ > , (.) has infinitely many solutions.
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Recently, by applying the least action principle and saddle point theorem, [–] inves-
tigated the existence of periodic solutions for the following dynamical systems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt �q(u̇(t)) = ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],
d
dt �p(u̇(t)) = ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = ,
u() – u(T) = u̇() – u̇(T) = 

(.)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt �q(u̇(t)) + ∇u F(t, u(t), u(t)) = , a.e. t ∈ [, T],
d
dt �p(u̇(t)) + ∇u F(t, u(t), u(t)) = , a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = ,
u() – u(T) = u̇() – u̇(T) = ,

(.)

respectively. Subsequently, by variational approach, Yang and Chen [, ] discussed the
existence and multiplicity of periodic solutions for the following two classes of nonlinear
(q, p)-Laplacian dynamical systems with impulsive effects:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(ρ(t)�q(u̇(t)))
dt – ρ(t)�λ(u(t)) + ∇u F(t, u(t), u(t)) = , a.e. t ∈ [, T],

d(γ(t)�p(u̇(t)))
dt – γ(t)�η(u(t)) + ∇u F(t, u(t), u(t)) = , a.e. t ∈ [, T],

u() – u(T) = u̇() – u̇(T) = ,
u() – u(T) = u̇() – u̇(T) = ,
�(ρ(tj)�q(u̇(tj))) = ∇Ij(u(tj)), j ∈ B,
�(γ(sm)�p(u̇(sm))) = ∇Km(u(sm)), m ∈ C,

(.)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(�q(u̇(t)))
dt = ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],

d(�p(u̇(t)))
dt = ∇u F(t, u(t), u(t)), a.e. t ∈ [, T],

u() – u(T) = u̇() – u̇(T) = ,
u() – u(T) = u̇() – u̇(T) = ,
�(�q(u̇(tj))) = ∇Ij(u(tj)), j ∈ B,
�(�p(u̇(sm))) = ∇Km(u(sm)), m ∈ C,

(.)

respectively, where p, q,λ,η >  and ρ,ρ,γ,γ ∈ C([, T];R+).
Motivated by [, , –], in this paper, we are interested in the existence and multiplic-

ity of a nontrivial weak solution for system (.) by using the least action principle and a
critical point theorem due to Ding []. To be precise, we obtain the following results.

Theorem . Suppose that
(HIK) For x, x ∈R

N ,

l∑

j=

Ij(x) ≥ ,
k∑

m=

Km(x) ≥ ;
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(HF) There exist α ∈ [, q), α ∈ [, p), a > , and d ∈ L([, T];R+) such that

F(t, x, x) ≤ d(t)
(
a + |x|α + |x|α

)
, ∀(x, x) ∈R

N ×R
N .

Then, for each λ > , system (.) has at least one weak solution in Xq × Xp, where, for s > ,

Xs =
{

u : [, T] →R
N |u is absolutely continuous and u̇ ∈ Ls[, T]

}
.

Remark . There exist examples satisfying Theorem .. For example, let q = , p = ,

Ij(x) =
(|x| + c

)ξ (j ∈ B), Km(x) = ln
(|x| + c

)ξ (m ∈ C), (.)

where c, c, ξ, ξ > , and for all t ∈ [, T],

F(t, x, x) = sin t|x| + cos t|x|,

or

F(t, x, x) = t ln
(
 + |x|

)
+

et|x|
 + |x| .

Theorem . In addition to (HIK), we assume that
(HF) There exist a >  and d ∈ L([, T];R+) such that

F(t, x, x) ≤ d(t)
(
a + |x|q + |x|p

)
, ∀(x, x) ∈R

N ×R
N .

Then, for each  < λ < min{ 
q(D(q))q , 

p(D(p))p }, (.) has at least one weak solution in Xq ×Xp,
where

D(s) :=
(

T– 
s– +

(s – )T
 s

s– · (s – )

) s–
s

, s = p, q.

Remark . There exist examples satisfying Theorem .. For example, let q = , p = ,
and Ij, Km defined by (.). For all t ∈ [, T], let

F(t, x, x) = et|x| + sin t|x|,

or

F(t, x, x) = t|x| ln
(
 + |x|

)
+

(
t + 

)|x|.

Theorem . Along with (HIK) and (HF), for x, x ∈ R
N , j ∈ B, m ∈ C, and t ∈ [, T],

we suppose that
(HIK) There exist ν ≥ q, ν ≥ q, and δ >  such that

Ij(x) ≤ d|x|ν , Km(x) ≤ d|x|ν , |x| ≤ δ;

(HIK) Ij(x) = Ij(–x), Km(x) = Km(–x), Ij() = , Km() = ;
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(HF) There exist μ ∈ (, q), μ ∈ (, p), d > , and δ >  such that

F(t, x, x) ≥ d
(|x|μ + |x|μ

)
, |x| ≤ δ, |x| ≤ δ;

(HF) F(t, x, x) = F(t, –x, –x), F(t, , ) ≡ .
Then, for each  < λ < min{ 

q(D(q))q , 
p(D(p))p }, (.) has infinitely many weak solutions in

Xq × Xp.

Remark . There exist examples satisfying Theorem .. For example, let q = , p = ,
and

Ij(x) = c|x| (j ∈ B), Km(x) = c|x| (m ∈ C),

where c, c > . For all t ∈ [, T], let

F(t, x, x) =
(
et + 

)|x| +
(
t + 

)|x|.

If we take ν = ., ν = ., μ = ., and μ = ., it is easy to see that the example satisfies
Theorem ..

2 Variational structure and some preliminaries
For u ∈ Xs with s = q, p, define

‖u‖Xs =
(∫ T



∣
∣u(t)

∣
∣s dt +

∫ T



∣
∣u̇(t)

∣
∣s dt

)/s

.

Set

‖u‖s :=
(∫ T



∣
∣u(t)

∣
∣s dt

)/s

and ‖u‖∞ := max
t∈[,T]

∣
∣u(t)

∣
∣.

Set X := Xq × Xp and define the norm ‖(u, u)‖X = ‖u‖Xq + ‖u‖Xp . Obviously, X is a
reflexive Banach space. Let

C =
{

u : [, T] →R
N |u is continuous

}
.

Xs embeds into C continuously and, according to [], Lemma .,

‖u‖∞ ≤ D(s)‖u‖Xs for any u ∈ Xs. (.)

Lemma . ([], Proposition .) If uk converges to u weakly, then uk uniformly converges
to u on [, T].

If u ∈ Xs, then u is absolutely continuous, whereas u̇ need not be continuous. Hence, it
is possible that ��s(u̇(t)) = �s(u̇(t+)) – �s(u̇(t–)) �= , which leads to impulse effects.

Following the idea [], multiplying by v ∈ Xq on both sides of the first equation in (.)
and integrating from  to T yields that

∫ T



[

–
d
dt

(∣
∣u̇(t)

∣
∣q–u̇(t)

)
+

∣
∣u(t)

∣
∣q–u(t) – λ∇x F

(
t, u(t), u(t)

)
]

v(t) dt = . (.)
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Since v is continuous, v(t–
j ) = v(t+

j ) = v(tj). Combining u̇(T) =  with u̇() = u() im-
plies that

∫ T



(
d(�q(u̇(t))

dt
, v(t)

)

dt

=
l∑

j=

∫ tj+

tj

(
d(�q(u̇(t)))

dt
, v(t)

)

dt

=
l∑

j=

[(
�q

(
u̇

(
t–
j+

))
, v

(
t–
j+

))
–

(
�q

(
u̇

(
t+
j
))

, v
(
t+
j
))]

dt

–
l∑

j=

∫ tj+

tj

(
�q

(
u̇(t)

)
, v̇(t)

)
dt

=
(
�q

(
u̇(T)

)
, v(T)

)
–

(
�q

(
u̇()

)
, v()

)

–
l∑

j=

(
��q

(
u̇(tj)

)
, v(tj)

)
–

∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt

= –
(
�q

(
u()

)
, v()

)
–

l∑

j=

(
��q

(
u̇(tj)

)
, v(tj)

)
–

∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt

= –
(
�q

(
u()

)
, v()

)
–

l∑

j=

(∇Ij
(
u(tj)

)
, v(tj)

)
–

∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt,

which, together with (.), further leads to

(
�q

(
u()

)
, v()

)
+

l∑

j=

(∇Ij
(
u(tj)

)
, v(tj)

)
+

∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt

+
∫ T



∣
∣u(t)

∣
∣q–(u(t), v(t)

)
dt – λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt = .

Analogously, for any v ∈ Xp,

(
�p

(
u()

)
, v()

)
+

k∑

m=

(∇Km
(
u(tm)

)
, v(tm)

)
+

∫ T



(
�p

(
u̇(t)

)
, v̇(t)

)
dt

+
∫ T



∣
∣u(t)

∣
∣p–(u(t), v(t)

)
dt – λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt = .

With the two equalities above in hand, we present the notion of weak solutions for (.).

Definition . For any v = (v, v) ∈ Xq × Xp, if

(
�q

(
u()

)
, v()

)
+

l∑

j=

(∇Ij
(
u(tj)

)
, v(tj)

)
+

∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt

+
∫ T



∣
∣u(t)

∣
∣q–(u(t), v(t)

)
dt – λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt = 
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and

(
�p

(
u()

)
, v()

)
+

k∑

m=

(∇Km
(
u(tm)

)
, v(tm)

)
+

∫ T



(
�p

(
u̇(t)

)
, v̇(t)

)
dt

+
∫ T



∣
∣u(t)

∣
∣p–(u(t), v(t)

)
dt – λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt = ,

then u = (u, u) ∈ Xq × Xp is called a weak solution of (.).

For u = (u, u) ∈ Xq × Xp, define the functional ϕ : X →R by

ϕ(u) = ϕ(u, u)

=

q

∫ T



∣
∣u̇(t)

∣
∣q dt +


p

∫ T



∣
∣u̇(t)

∣
∣p dt – λ

∫ T


F
(
t, u(t), u(t)

)
dt

+

q

∫ T



∣
∣u(t)

∣
∣q dt +


p

∫ T



∣
∣u(t)

∣
∣p dt

+
l∑

j=

Ij
(
u(tj)

)
+

k∑

m=

Km
(
u(sm)

)

+

q
∣
∣u()

∣
∣q +


p
∣
∣u()

∣
∣p

= φ(u, u) + ψ(u, u),

where

φ(u, u) :=

q

∫ T



∣
∣u̇(t)

∣
∣q dt +


p

∫ T



∣
∣u̇(t)

∣
∣p dt – λ

∫ T


F
(
t, u(t), u(t)

)
dt

+

q

∫ T



∣
∣u(t)

∣
∣q dt +


p

∫ T



∣
∣u(t)

∣
∣p dt

+

q
∣
∣u()

∣
∣q +


p
∣
∣u()

∣
∣p,

ψ(u, u) :=
l∑

j=

Ij
(
u(tj)

)
+

k∑

m=

Km
(
u(sm)

)
.

By virtue of (A) and (A), by following the argument of [], Theorem ., one has φ ∈
C(Xq × Xp,R). Thanks to continuous differentiability of (Ij)j∈B and (Km)m∈C , we have ψ ∈
C(Xq × Xp,R). As a consequence, ϕ ∈ C(X,R) and, for all (v, v) ∈ Xq × Xp,

〈
ϕ′(u, u), (v, v)

〉

=
∫ T



(
�q

(
u̇(t)

)
, v̇(t)

)
dt +

∫ T



(
�p

(
u̇(t)

)
, v̇(t)

)
dt

+
∫ T



(
�q

(
u(t)

)
, v(t)

)
dt +

∫ T



(
�p

(
u(t)

)
, v(t)

)
dt

+
(
�q

(
u()

)
, v()

)
+

(
�p

(
u()

)
, v()

)
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– λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt – λ

∫ T



(∇x F
(
t, u(t), u(t)

)
, v(t)

)
dt

+
l∑

j=

(∇Ij
(
u(tj)

)
, v(tj)

)
+

k∑

m=

(∇Km
(
u(sm)

)
, v(sm)

)
.

Definition . shows that the critical point of ϕ is the weak solution of system (.).
The following lemma plays a crucial role in achieving the critical point of ϕ.

Lemma . ([]) Assume that ϕ ∈ C(E,R) is bounded from below (above) and satisfies
the (PS) condition. Then

c = inf
u∈E

ϕ(u)
(

c = sup
u∈E

ϕ(u)
)

is a critical value of ϕ.

Lemma . ([]) Let E be an infinite dimensional Banach space, and let ϕ ∈ C(E,R) with
ϕ() =  be even and satisfy (PS). If E = E ⊕ E, where E is finite dimensional, and ϕ

satisfies that

(ϕ) ϕ is bounded from above on E;
(ϕ) for each finite dimensional subspace Ẽ ⊂ E, there are positive constants ρ = ρ(Ẽ) and

σ = σ (Ẽ) such that ϕ ≥  on Bρ ∩ Ẽ and ϕ|∂Bρ∩Ẽ ≥ σ , where Bρ = {x ∈ E;‖x‖ ≤ ρ},

then ϕ possesses infinitely many nontrivial critical points.

3 Proofs of theorems

Proof of Theorem . It follows from (HIK), (HF), and (.) that

ϕ(u) = ϕ(u, u)

=

q

∫ T



∣
∣u̇(t)

∣
∣q dt +


p

∫ T



∣
∣u̇(t)

∣
∣p dt – λ

∫ T


F
(
t, u(t), u(t)

)
dt

+

q

∫ T



∣
∣u(t)

∣
∣q dt +


p

∫ T



∣
∣u(t)

∣
∣p dt

+
l∑

j=

Ij
(
u(tj)

)
+

k∑

m=

Km
(
u(sm)

)
+


q
∣
∣u()

∣
∣q +


p
∣
∣u()

∣
∣p

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ

∫ T


d(t)

(
a +

∣
∣u(t)

∣
∣α +

∣
∣u(t)

∣
∣α)dt

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ‖u‖α∞

∫ T


d(t) dt

–λ‖u‖α∞

∫ T


d(t) dt – λa

∫ T


d(t) dt

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ
(
D(q)

)α‖u‖α
Xq

∫ T


d(t) dt

– λ
(
D(p)

)α‖u‖α
Xp

∫ T


d(t) dt – λa

∫ T


d(t) dt.
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Owing to α ∈ [, q) and α ∈ [, p), we readily obtain that ϕ(u) → +∞ as ‖u‖X → ∞, i.e.,
ϕ satisfies the coercive condition on X. So ϕ is bounded below on X.

Hereinafter, we claim that ϕ satisfies the (PS) condition. If {ϕ(un, un)} is bounded and
‖ϕ′(un, un)‖ →  as n → ∞, then there exists a positive constant D such that

∣
∣ϕ(un, un)

∣
∣ ≤ D,

∥
∥ϕ′(un, un)

∥
∥ ≤ D, ∀n ∈N.

Since ϕ satisfies a coercive condition on X, we infer that ‖un‖Xq and ‖un‖Xp is bounded.
Next, in light of the reflexive property of Xs, there exists a subsequence, still denoted by
{un = (un, un)}, such that

un ⇀ u on Xq, un ⇀ u on Xp.

Thus, Lemma . gives that

un → u in C
(
, T ;RN)

and un → u in C
(
, T ;RN)

.

Following the argument in [–], we can derive that ‖un – u‖X → , where u = (u, u).
Consequently, ϕ satisfies the (PS) condition. Thus, with the help of Lemma ., we deduce
that ϕ has at least one critical point on X. Hence system (.) has at least one solution
on X. �

Proof of Theorem . By (HIK), (HF), and (.), it follows that

ϕ(u) = ϕ(u, u)

=

q

∫ T



∣
∣u̇(t)

∣
∣q dt +


p

∫ T



∣
∣u̇(t)

∣
∣p dt – λ

∫ T


F
(
t, u(t), u(t)

)
dt

+

q

∫ T



∣
∣u(t)

∣
∣q dt +


p

∫ T



∣
∣u(t)

∣
∣p dt

+
l∑

j=

Ij
(
u(tj)

)
+

k∑

m=

Km
(
u(sm)

)

+

q
∣
∣u()

∣
∣q +


p
∣
∣u()

∣
∣p

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ

∫ T



[
d(t)

(
a +

∣
∣u(t)

∣
∣q +

∣
∣u(t)

∣
∣p)]dt

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ‖u‖q
∞

∫ T


d(t) dt

– λ‖u‖p
∞

∫ T


d(t) dt – λa

∫ T


d(t) dt

≥ 
q
‖u‖q

Xq +

p
‖u‖p

Xp – λ
(
D(q)

)q‖u‖q
Xq

∫ T


d(t) dt

– λ
(
D(p)

)p‖u‖p
Xp

∫ T


d(t) dt – λa

∫ T


d(t) dt. (.)
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In view of λ < min{ 
q(D(q))q , 

p(D(p))p }, one has ϕ(u) → +∞ as ‖u‖X → ∞, that is, ϕ satisfies
the coercive condition on X. Hence ϕ is bounded below on X. By carrying out a similar
argument to derive Theorem ., we get that system (.) has at least one solution in X.

�

Proof of Theorem . Keep in mind that ϕ and –ϕ have the same critical points. Let � =
–ϕ. In the sequel, we aim at verifying that all conditions in Lemma . are fulfilled by �. In
fact, from (HIK) and (HF), we find that � is even and �() = . Taking (HIK), (HF),
and (.) into account, we obtain that �(u) → –∞ as ‖u‖X → ∞. Hence � is bounded
above on X so that � satisfies (ϕ) in Lemma ..

Assume that X̃ ⊂ X is finite-dimensional. For any u = (u, u) ∈ X̃ = X̃q × X̃p, where X̃q ⊂
Xq and X̃p ⊂ Xp, we deduce that ‖u‖μ is equivalent to ‖u‖Xq , and ‖u‖μ is equivalent
to ‖u‖Xp . Hence there exist constants d, d >  such that

‖u‖μ ≥ d‖u‖Xq , ‖u‖μ ≥ d‖u‖Xp . (.)

Let ρ = min{min{δ,δ}
D(q) , min{δ,δ}

D(p) }. For any ρ ∈ (,ρ), if ‖u‖X = ρ , then ‖u‖∞ ≤
D(q)‖u‖Xq ≤ D(q)ρ ≤ min{δ, δ} and ‖u‖∞ ≤ D(p)‖u‖Xq ≤ D(p)ρ ≤ min{δ, δ}.
Thus it follows from (HIK), (HF), (.), and Hölder’s inequality that

�(u) = –ϕ(u, u)

= –

q

∫ T



∣
∣u̇(t)

∣
∣q dt –


p

∫ T



∣
∣u̇(t)

∣
∣p dt + λ

∫ T


F
(
t, u(t), u(t)

)
dt

–

q

∫ T



∣
∣u(t)

∣
∣q dt –


p

∫ T



∣
∣u(t)

∣
∣p dt

–
l∑

j=

Ij
(
u(tj)

)
–

k∑

m=

Km
(
u(sm)

)

–

q
∣
∣u()

∣
∣q –


p
∣
∣u()

∣
∣p

≥ –

q
‖u‖q

Xq –

p
‖u‖p

Xp + λd

∫ T



(∣
∣u(t)

∣
∣μ +

∣
∣u(t)

∣
∣μ)dt

–
l∑

j=

d
∣
∣u(tj)

∣
∣ν –

k∑

m=

d
∣
∣u(sm)

∣
∣ν –


q
‖u‖q

∞ –

p
‖u‖p

∞

≥ –

q
‖u‖q

Xq –

p
‖u‖p

Xp + λddμ
 ‖u‖μ

Xq + λddμ
 ‖u‖μ

Xp

– ld‖u‖ν∞ – kd‖u‖ν∞

–

q
(
D(q)

)q‖u‖q
Xq –


p
(
D(p)

)p‖u‖p
Xp

≥ –

q
‖u‖q

Xq –

p
‖u‖p

Xp + λddμ
 ‖u‖μ

Xq + λddμ
 ‖u‖μ

Xp

– ld
(
D(q)

)ν‖u‖ν
Xq – kd

(
D(p)

)ν‖u‖ν
Xp

–

q
(
D(q)

)q‖u‖q
Xq –


p
(
D(p)

)p‖u‖p
Xp .
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Observing that μ ∈ (, q) and μ ∈ (, p), we take sufficiently small ρ ∈ (,ρ) such that
�(u) ≥  on Bρ ∩ X̃ and �(u) >  on ∂Bρ ∩ X̃. Therefore, � satisfies (ϕ) in Lemma ..
Then, according to Lemma ., � has infinitely many critical points in X so that (.) has
infinitely many solutions in X. �
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