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Abstract
In this paper, we give improved results on the existence of positive solutions for the
following one-dimensional p-Laplacian equation with nonlinear boundary conditions:

⎧
⎪⎨

⎪⎩

(φp(y′′))′ + b(t)g(t, y(t)) = 0, 0 < t < 1,

λ1φp(y(0)) – β1φp(y′(0)) = 0,

λ2φp(y(1)) + β2φp(y′(1)) = 0, y′′(0) = 0,

where φp(s) = |s|p–2s, p > 1. Constructing an available integral operator and
combining fixed point index theory, we establish some optimal criteria for the
existence of bounded positive solutions. The interesting point of the results is that the
term b(t) may be singular at t = 0 and/or t = 1. Moreover, the nonlinear term g(t, y) is
also allowed to have singularity at y = 0. In particular, our results extend and unify
some known results.
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1 Introduction
In this paper, we investigate the existence of positive solutions for the following one-
dimensional singular p-Laplacian equation with nonlinear boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(φp(y′′))′ + b(t)g(t, y(t)) = ,  < t < ,

λφp(y()) – βφp(y′()) = ,

λφp(y()) + βφp(y′()) = , y′′() = ,

(.)

where φp(s) = |s|p–s, p > , φq = (φp)–, 
p + 

q = , λ,λ > , β,β ≥ , b ∈ C(, ), b(t) may
be singular at t =  and/or t = . g ∈ C([, ]× (, +∞)), and g(t, y) may be singular at y = .

Third-order p-Laplacian equations with nonlinear boundary conditions play an impor-
tant role in both theory and application. They have been paid much more attention to
over the years, see [–] and the references therein. They are often used to model various
phenomena in physics, biology, chemistry, and infections diseases in the positive energy
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problem. However, in various situations, including the cases just mentioned above, only
positive solutions are meaningful; one refers the reader to see [–] for some references
along this line. That is why people are particularly interested in studying positive solutions.
The existence of positive solutions for p-Laplacian equation boundary value problems has
been studied by many authors applying various nice methods such as topological degree,
the Leray-Schauder continuation theorem, coincidence degree theory and so on (see [,
, , –]).

In [], He and Ge studied the following nonlinear boundary value problem:

⎧
⎨

⎩

(φp(y′))′ + q(t)f (t, y(t)) = ,  ≤ t ≤ ,

y() = g(y′()), y() + g(y′()) = .

Their main tool was the fixed point theorem in cones due to Krasnoselskii.
In [], He studied the existence of double positive solutions for the following nonlinear

three-point boundary value problems:

⎧
⎨

⎩

(ϕp(y′))′ + a(t)f (y(t)) = ,  < t < ,

y() – B(y′(η)) = , y() – B(y′()) = ,

and
⎧
⎨

⎩

(ϕp(y′))′ + a(t)f (y(t)) = ,  < t < ,

y() – B(y′()) = , y() – B(y′(η)) = .

He employed a three-functional fixed point theorem due to Avery and Henderson.
Applying the fixed point theorem of cone expansion and compression of norm type, Su

et al. [] presented the existence of multiple positive solutions of the following nonlinear
two-point boundary value problem:

⎧
⎨

⎩

(ψp(y′))′ + a(t)f (y(t)) = ,  < t < ,

αψp(y()) – βψp(y′()) = , γψp(y()) + δψp(y′()) = .

Gupta and Trofimchuk [] established prior bounds and the existence of positive solu-
tions for the following boundary value problem:

⎧
⎨

⎩

y′′(t) = f (t, y(t), y′(t)) + e(t),  < t < ,

y() = , y() =
∑m–

i= aiy(ξi),

where ai ∈ R,  < ξ < ξ < · · · < ξm– < , all ai having the same sign, α =
∑m–

i= ai > ,
∑m–

i= aiξi �= .
Feng and Webb [] considered the following boundary value problem:

⎧
⎨

⎩

y′′(t) = f (t, y(t), y′(t)) + e(t),  < t < ,

y′() = , y() =
∑m–

i= aiy(ξi).
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They presented the existence results with assumptions of nonlinear growth imposed on
the nonlinear term f .

Motivated by the results mentioned above, in this paper we study the existence of pos-
itive solutions for problem (.). We should also assert here that our results are new and
generalize the results in [–, –].

The rest of the paper is organized as follows. In Section , we state some preliminaries
and several lemmas in this work. In Section , we give the main results as well as some
of their proofs. The existence of multiple positive solutions is obtained in Section . The
existence of infinite positive solutions is presented in Section .

2 Preliminaries
Definition . Let X be a real Banach space. A nonempty closed convex set P ⊂ X is called
a cone provided that

(i) y ∈ P, λ ≥  implies λy ∈ P;
(i) y ∈ P, –y ∈ P implies y = .

Definition . Let X be a real Banach space and P be a cone in X. A mapping α is called
the nonnegative continuous concave functional on P if α : P −→ [, +∞) is continuous and

α
(
λt + ( – λ)s

) ≥ λα(t) + ( – λ)α(s), s, t ∈ P,λ ∈ [, ].

Definition . A nonzero solution is said to be a C[, ] solution of problem (.). We
indicate a function y ∈ C[, ] ∩ C(, ) satisfying problem (.) with y(t) not identically
zero on (, ). y(t) is said to be a C[, ] solution, we indicate that y′ ∈ C[, ]. y(t) is called
a positive solution of problem (.) if y(t) is a solution of problem (.) and y(t) >  for each
t ∈ (, ).

Let X = C[, ] be a Banach space with the norm ‖y‖ = sup≤t≤ |y(t)|, and let K = {y ∈ X :
y(t) ≥ ,  ≤ t ≤ }. Then K is a positive cone in X. Throughout the paper, the partial or-
dering is always given by K . For the concepts and properties of Krein-Kutmann theorems
and fixed point index theory, one refers the reader to see [] and []. For ν ∈ (, 

 ), let

P =
{

y ∈ K : min
t∈[ν,–ν]

y(t) ≥ ν‖y‖, and y
(
λt + ( – λ)s

) ≥ λy(t) + ( – λ)y(s), s, t ∈ [, ]
}

.

Obviously, P ⊂ K ⊂ X. Denote Pr = {y ∈ P : ‖y‖ < r}, ∂Pr = {y ∈ P : ‖y‖ = r}, Pr,R = {y ∈ P :
r ≤ ‖y‖ ≤ R} for any  < r < R < +∞.

Throughout this paper, we suppose that the following conditions hold:

(A) b ∈ C((, ), [, +∞)), b(t) may be singular at t =  and/or t = , b(t) �≡  and

 <
∫ 


b(s) ds < +∞.

(A) g(t, y) ∈ C([, ] × (, +∞); [, +∞)), g(t, y) may be singular at y =  and for any  <
r < R < +∞ such that

lim
n→+∞ sup

y∈Pr,R

∫

E(n)
b(s)g

(
s, y(s)

)
ds = ,

where E(n) = [, 
n ] ∪ [ n–

n , ].
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Remark . It follows from (A) that

sup
y∈Pr,R

∫

[,]
b(s)g

(
s, y(s)

)
ds = sup

y∈Pr,R

∫

E(n)
b(s)g

(
s, y(s)

)
ds + sup

y∈Pr,R

∫

[ 
n ,– 

n ]
b(s)g

(
s, y(s)

)
ds

< +∞.

Remark . It is easy to see φq(s) = |s|q–s. In fact, from 
p + 

q = , we can obtain

(φqφp)(s) = |s|pq–(p+q)+|s|p+q–s = |s|pq–(p+q)s = s.

Remark . By (A), there exists t ∈ (, ) such that b(t) > . Obviously, if g(t, y) is non-
singular at y = , that is, g ∈ C([, ] × (, +∞), [, +∞)), then (A) is satisfied.

Denote

g = lim
u→

min
≤t≤

g(t, u)
up– , g∞ = lim

u→+∞ min
≤t≤

g(t, u)
up– ,

g = lim
u→

max
≤t≤

g(t, u)
up– , g∞ = lim

u→+∞ max
≤t≤

g(t, u)
up– .

Lemma . Suppose that condition (A) holds. Then there exists a constant ν ∈ (, 
 ) sat-

isfying

 <
∫ –ν

ν

b(s) ds < +∞.

Define a function f (t) on [ν,  – ν] given by

f (t) = min

{∫ t

ν

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds,
∫ –ν

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds
}

,

σ ∗ ∈ (, ).

Obviously, f (t) is a continuous and positive function on [ν,  – ν] and has its minimum
and maximum on [ν,  – ν]. Therefore, there exist positive constants m > M >  such that
m ≤ f (t) ≤ M, t ∈ [ν,  – ν].

Lemma . ([]) Let X be a real Banach space and P be a cone in X, with �(P) being a
bounded open set in P, θ ∈ �(P). Suppose that T : �(P) → P is a completely continuous
operator. If there exists u ∈ P \ {θ} such that u – Tu �= μu, ∀u ∈ ∂�(P), μ ≥ . Then the
fixed point index i(T ,�(P), P) = .

Lemma . ([]) Let X be a Banach space and P be a cone in X with �(P) being a bounded
open set in P , θ ∈ �(P). Assume that T : �(P) → P is a completely continuous operator. If
Tu �= ηu, ∀u ∈ ∂�(P), η ≥ , then the fixed point index i(T ,�(P), P) = .

Lemma . ([]) Let X be a real Banach space and P be a positive cone in X. Let �(P) be a
bounded open set in P with θ ∈ �(P). Suppose that T : �(P) → P is completely continuous
and satisfies the following conditions:
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(i) If ‖Tu‖ > ‖u‖, ∀u ∈ ∂�(P), then the fixed point index i(T ,�(P), P) = ;
(ii) If ‖Tu‖ < ‖u‖, θ ∈ �(P), ∀u ∈ ∂�(P), then the fixed point index i(T ,�(P), P) = .

Lemma . Let a ∈ L(, ) be positive. Then the following boundary value problem

(
φp

(
y′′))′ + a(t) = ,  < t < , (.)

⎧
⎨

⎩

λφp(y()) – βφp(y′()) = ,

λφp(y()) + βφp(y′()) = , y′′() = ,
(.)

has a unique positive solution which is given explicitly by

y(t) =

⎧
⎨

⎩

φq( β
λ

φp(
∫ σ∗

 φq(
∫ s

 a(r) dr) ds)) +
∫ t


∫ σ∗

s φq(
∫ r

 a(x) dx) dr ds,  ≤ t ≤ σ ∗,

φq( β
λ

φp(
∫ 
σ∗ φq(

∫ s
 a(r) dr) ds)) +

∫ 
t

∫ s
σ∗ φq(

∫ r
 a(x) dx) dr ds, σ ∗ ≤ t ≤ .

Proof It follows from y′(t) =
∫ σ∗

t φq(
∫ r

 a(x) dx) dr and boundary condition (.) that y′() >
 and y() = φq( β

λ
φp(y′())) > , y′() < , with y() = –φq( β

λ
φp(y′())) < . Then there ex-

ists a constant σ ∗ ∈ [, ] such that y′(σ ∗) = .
Integrating (.) from  to t, we get

φp
(
y′′(t)

)
– φp

(
y′′()

)
= –

∫ t


a(s) ds.

By making use of y′′() = , we obtain

y′′(t) = –φq

(∫ t


a(s) ds

)

. (.)

Integrating (.) from t to σ ∗, we have

y′(σ ∗) – y′(t) = –
∫ σ∗

t
φq

(∫ s


a(r) dr

)

ds.

Since y′(σ ∗) = , we know that

y′(t) =
∫ σ∗

t
φq

(∫ s


a(r) dr

)

ds. (.)

Thus

y′() =
∫ σ∗


φq

(∫ s


a(r) dr

)

ds. (.)

Integrating (.) from  to t, we obtain

y(t) – y() =
∫ t



∫ σ∗

s
φq

(∫ r


a(x) dx

)

dr ds. (.)
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In view of (.) and (.) together with boundary conditions (.), we have

y(t) = y() +
∫ t



∫ σ∗

s
φq

(∫ r


a(x) dx

)

dr ds

= φq

(
β

λ
φp

(
y′()

)
)

+
∫ t



∫ σ∗

s
φq

(∫ r


a(x) dx

)

dr ds

= φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


a(r) dr

)

ds
))

+
∫ t



∫ σ∗

s
φq

(∫ r


a(x) dx

)

dr ds.

Therefore

y(t) = φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


a(r) dr

)

ds
))

+
∫ t



∫ σ∗

s
φq

(∫ r


a(x) dx

)

dr ds, t ∈ [
,σ ∗]. (.)

Again, integrating (.) from σ ∗ to t, we see

y′(t) – y′(σ ∗) = –
∫ t

σ∗
φq

(∫ s


a(r) dr

)

ds.

From y′(σ ∗) = , we have

y′(t) = –
∫ t

σ∗
φq

(∫ s


a(r) dr

)

ds. (.)

Then

y′() = –
∫ 

σ∗
φq

(∫ s


a(r) dr

)

ds. (.)

Integrating (.) from t to , we get

y() – y(t) = –
∫ 

t

∫ s

σ∗
φq

(∫ r


a(x) dx

)

dr ds.

Thus

y(t) = y() +
∫ 

t

∫ s

σ∗
φq

(∫ r


a(x) dx

)

dr ds. (.)

Using (.) and (.) together with boundary conditions (.), we obtain

y(t) = –φq

(
β

λ
φp

(
y()

)
)

+
∫ 

t

∫ s

σ∗
φq

(∫ r


a(x) dx

)

dr ds

= φq

(
β

λ
φp

(∫ 

σ∗
φq

(∫ s


a(r) dr

)

ds
))

+
∫ 

t

∫ s

σ∗
φq

(∫ r


a(x) dx

)

dr ds, t ∈ [
σ ∗, 

]
. (.)

From (.) and (.) we see that the results of Lemma . hold. So the proof is com-
plete. �
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For y ∈ P, we now define the integral operator T : P \ {θ} → P by

(Ty)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φq( β
λ

φp(
∫ σ∗

 φq(
∫ s

 b(r)g(r, y(r)) dr) ds))

+
∫ t


∫ σ∗

s φq(
∫ r

 b(x)g(x, y(x)) dx) dr ds,  ≤ t ≤ σ ∗,

φq( β
λ

φp(
∫ 
σ∗ φq(

∫ s
 b(r)g(r, y(r)) dr) ds))

+
∫ 

t
∫ s
σ∗ φq(

∫ r
 b(x)g(x, y(x)) dx) dr ds, σ ∗ ≤ t ≤ .

Lemma . Suppose that conditions (A) and (A) hold. Then T : Pr,R → P is completely
continuous, and the nonzero fixed point y ∈ Pr,R of T is a positive solution of problem (.).

Proof Firstly, we will show that T : Pr,R → P. By a simple computation, for any y ∈ Pr,R, we
have

⎧
⎪⎪⎨

⎪⎪⎩

(Ty)′′(t) = –φq(
∫ t

 b(s)g(s, y(s)) ds) ≤ ,

λφp((Ty)()) – βφp((Ty)′()) = ,

λφp((Ty)()) + βφp((Ty)′()) = , (Ty)′′() = ,

that is, (Ty)(t) is a nonnegative concave function. We suppose that τ = inf{ζ ∈ [, ] :
sup≤t≤ y(t) = y(ζ )}. Now we shall make the following discussions.

Case () τ ∈ [,ν]. It follows from the concavity of y(t) that each point on chord between
(τ , y(τ )) and (, y()) is below the graph of y(t). Thus, for any t ∈ [ν,  – ν], we get

y(t) ≥ y(τ ) +
y() – y(τ )

 – τ
(t – τ )

≥ min
t∈[ν,–ν]

[

y(τ ) +
y() – y(τ )

 – τ
(t – τ )

]

= y(τ ) +
y() – y(τ )

 – τ
( – ν – τ )

=
 – ν – τ

 – τ
y() +

ν

 – τ
y(τ ) ≥ νy(τ ),

which implies y(t) ≥ ν‖y‖ for t ∈ [ν,  – ν].
Case () τ ∈ [ν,  – ν]. If t ∈ [ν, τ ], we obtain

y(t) ≥ y(τ ) +
y(τ ) – y()

τ
(t – τ ) ≥ min

t∈[ν,τ ]

[

y(τ ) +
y(τ ) – y()

τ
(t – τ )

]

=
ν

τ
y(τ ) +

τ – ν

τ
y() ≥ ν

τ
y(τ ) ≥ νy(τ ),

which implies y(t) ≥ ν‖y‖ for t ∈ [ν, τ ].
If t ∈ [τ ,  – ν], we get

y(t) ≥ y(τ ) +
y() – y(τ )

 – τ
(t – τ )

≥ min
t∈[τ ,–ν]

[

y(τ ) +
y() – y(τ )

 – τ
(t – τ )

]

= y(τ ) +
y() – y(τ )

 – τ
( – ν – τ )

=
 – ν – τ

 – τ
y() +

ν

 – τ
y(τ ) ≥ ν

 – τ
y(τ ) ≥ νy(τ ),

which implies y(t) ≥ ν‖y‖ for t ∈ [τ ,  – ν]. Therefore, y(t) ≥ ν‖y‖ for t ∈ [ν,  – ν].
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Case () τ ∈ [ – ν, ]. By the same argument, for t ∈ [ν,  – ν], we have

y(t) ≥ y(τ ) +
y(τ ) – y()

τ
(t – τ )

≥ min
t∈[ν,–ν]

[

y(τ ) +
y(τ ) – y()

τ
(t – τ )

]

= y(τ ) +
y(τ ) – y()

τ
(ν – τ )

≥ ν

τ
y(τ ) +

τ – ν

τ
y() ≥ ν

τ
y(τ ) ≥ νy(τ ),

which implies y(t) ≥ ν‖y‖ for t ∈ [ν,  – ν]. Using the above discussions, one can get y(t) ≥
ν‖y‖ for t ∈ [ν,  – ν]. Thus TPr,R ⊂ P.

Next, for any  < r < R < +∞, we will show

sup
y∈∂Pr,R

∫ 


b(s)g

(
s, y(s)

)
ds < +∞, (.)

which implies that T : P \ {} → P is well defined.
From (A) and Remark ., for any  < r < R < +∞, there exists a natural number k such

that

sup
y∈Pr,R

∫

E(k)
b(s)g

(
s, y(s)

)
ds < . (.)

Thus

sup
y∈Pr,R

∫ –ν

ν

b(s)g
(
s, y(s)

)
ds < sup

y∈Pr,R

∫ 


b(s)g

(
s, y(s)

)
ds < +∞.

For any y ∈ ∂Pr , let y(t) = maxt∈[,] |y(t)| = r, t ∈ [, ]. Denote

χE[a,b](t) =

⎧
⎨

⎩

, t ∈ [a, b],

, t /∈ [a, b]

is the eigenvalue function of the set E[a, b] = {t : a ≤ t ≤ b}. It follows from the concavity
of y(t) on [, ] that

y(t) ≥ rt
t

χE[,t](t) +
r

 – t
( – t)χE[t,](t)

≥ rtχE[,t](t) + r( – t)χE[t,](t). (.)

Consequently, from (.), we have

r
R

≤ y(t) ≤ r < R for any t ∈
[


k

,
k – 

k

]

. (.)

Denote

G = max

{

g(t, y) : (t, y) ∈
[


k

,
k – 

k

]

×
[

r
k

, R
]}

. (.)
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It follows from (A) and (A) with (.)-(.) that

sup
y∈∂Pr,R

∫ 


b(s)g

(
s, y(s)

)
ds ≤ sup

y∈∂Pr,R

∫

E(k)
b(s)g

(
s, y(s)

)
ds

+ sup
y∈∂Pr,R

∫ k–
k


k

b(s)g
(
s, y(s)

)
ds

≤  + G
∫ 


b(s) ds < +∞. (.)

Thus (.) holds. It also implies that T : Pr,R → P is well defined and T(Q) is uniformly
bounded for any bounded set Q ⊂ Pr,R.

Now, we prove that for any  < r < R < +∞, T(Pr,R) is equicontinuous. In fact, from (A),
for any ε > , there exists a natural number k such that

sup
y∈Pr,R

∫

E(k)
b(s)g

(
s, y(s)

)
ds < φp

(
ε



)

.

Let

Ĝ = max
k∈N

{

φq

(∫ k–
k


k

b(x)g
(
x, y(x)

)
dx

)

: (t, y) ∈
[


k

,
k – 

k

]

×
[

r
k

, R
]}

.

Then

∫ k–
k


k

b(x)g
(
x, y(x)

)
dx ≤ φp(Ĝ).

For the above ε > , take  < δ < ε

Ĝ+ε
such that for any t′, t′′ ∈ [, ] satisfying |t′ – t′′| < δ

and for any s ∈ [ 
k

, k–
k

], we have

∣
∣(Ty)

(
t′) – (Ty)

(
t′′)∣∣ =

∣
∣
∣
∣

∫ t′′

t′

∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t′′

t′

∫ σ∗

s
φq

(∫ k–
k


k

b(x)g
(
x, y(x)

)
dx

)

dr ds
∣
∣
∣
∣

+ 
∣
∣
∣
∣

∫ t′′

t′

∫ σ∗

s
φq

(∫

E(k)
b(x)g

(
x, y(x)

)
dx

)

dr ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t′′

t′

∫ σ∗

s
Ĝ dr ds

∣
∣
∣
∣ + 

∣
∣
∣
∣

∫ t′′

t′

∫ σ∗

s

ε


dr ds

∣
∣
∣
∣

= Ĝ
∣
∣
∣
∣–



(
σ ∗ – s

)∣∣t′′
t′

∣
∣
∣
∣ +

ε



∣
∣
∣
∣–



(
σ ∗ – s

)∣∣t′′
t′

∣
∣
∣
∣

= Ĝ
∣
∣
∣
∣



(
t′ – t′′)(σ ∗ – t′ – t′′)

∣
∣
∣
∣ +

ε



∣
∣
∣
∣



(
t′ – t′′)(σ ∗ – t′ – t′′)

∣
∣
∣
∣

< Ĝ · ε

Ĝ + ε
+

ε


· ε

Ĝ + ε
≤ ε


+

ε


= ε.
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This implies that T(Pr,R) is equicontinuous. Thus, by the Ascoli-Arzela theorem, we know
that T : Pr,R → P is compact.

Finally we show that T : Pr,R → P is continuous. Suppose that yn, y ∈ Pr,R and ‖yn –
y‖ →  (n → ∞). Then r ≤ ‖yn‖ ≤ R and r ≤ ‖y‖ ≤ R. For any ε > , by making use of
(A), there exists a natural number n >  such that

sup
y∈Pr,R

{

φq

(
βi

λi
φp

(∫ 


φq

(∫

E(n)
b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 



∫ 


φq

(∫

E(n)
b(x)g

(
x, y(x)

)
dx

)

dr ds
}

<
ε


for i = , . (.)

On the other hand, from (.), we have

r
n

≤ yn(t) ≤ R, t ∈
[


n

,
n – 

n

]

.

Since g(t, y) is uniformly continuous on [ 
n

, n–
n

] × [ r
n

, R], we have

lim
n→+∞

∣
∣g

(
s, yn(s)

)
– g

(
s, y(s)

)∣
∣ = 

holds uniformly on s ∈ [ 
n

, n–
n

]. Then the Lebesgue dominated convergence theorem
yields that

∫ n–
n


n

b(s)
∣
∣g

(
s, yn(s)

)
– g

(
s, y(s)

)∣
∣ds →  (n → ∞).

Thus, for the above ε > , there exists a natural number N , for any n > N , we have

φq

(
βi

λi
φp

(∫ 


φq

(∫ n–
n


n

b(r)
∣
∣g

(
r, yn(r)

)
– g

(
r, y(r)

)∣
∣dr

)

ds
))

+
∫ 



∫ 


φq

(∫ n–
n


n

b(x)
∣
∣g

(
x, yn(x)

)
– g

(
x, y(x)

)∣
∣dx

)

dr ds

<
ε


for i = , . (.)

It follows from (.) and (.) that for any n > N , we see

‖Tyn – Ty‖ ≤ φq

(
βi

λi
φp

(∫ 


φq

(∫

E(n)
b(r)

∣
∣g

(
r, yn(r)

)
– g

(
r, y(r)

)∣
∣dr

)

ds
))

+ 
∫ 



∫ 


φq

(∫

E(n)
b(x)

∣
∣g

(
x, yn(x)

)
– g

(
x, y(x)

)∣
∣dx

)

dr ds

+ φq

(
βi

λi
φp

(∫ 


φq

(∫ n–
n


n

b(r)
∣
∣g

(
r, yn(r)

)
– g

(
r, y(r)

)∣
∣dr

)

ds
))
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+
∫ 



∫ 


φq

(∫ n–
n


n

b(x)
∣
∣g

(
x, yn(x)

)
– g

(
x, y(x)

)∣
∣dx

)

dr ds

<  · ε


+

ε


= ε for i = , .

This implies that T : Pr,R → P is continuous. Thus T : Pr,R → P is completely continuous.
Obviously, if T has a nonzero fixed point y �= , then y ∈ C[, ] ∩ C(, ) and satisfies

problem (.). On the other hand, by the maximum principle, we see that y(t) > , t ∈ (, ).
Hence y is a positive solution of problem (.). This completes the proof. �

3 The existence of at least one positive solution
For convenience, we let ω∗ and ω∗ be positive constants satisfying ω∗ > 

m and

 < ω∗ =


max{( + φq( β
λ

))φq(
∫ 

 b(r) dr), ( + φq( β
λ

))φq(
∫ 

 b(r) dr)} .

Thus, for any positive constants l, L, r̂, R̂ satisfying ω∗ < l < +∞,  < L < ω∗ and  < r̂ < R̂ <
+∞, we have the following theorems.

Theorem . Suppose that conditions (A) and (A) hold. In addition, assume that

(lr̂)p– ≤ g(t, y), (t, y) ∈ [, ] × [ν r̂, r̂] and

g(t, y) ≤ (LR̂)p–, (t, y) ∈ [, ] × (, R̂].
(.)

Then boundary value problem (.) has at least one positive solution ŷ satisfying r̂ ≤ ŷ ≤ R̂.

Proof From the first part of (.), g(t, y) ≥ (lr̂)p–, for (t, y) ∈ [, ] × [ν r̂, r̂], let ψ ≡ . We
prove that

y �= Ty + μψ for y ∈ ∂Pr̂ and μ ≥ . (.)

If not, there exist y ∈ ∂Pr̂ and μ ≥  such that y = Ty + μψ . Let μ∗ = mint∈[,] y(t).
Then, for t ∈ (,σ ∗), we have

y(t) = Ty(t) + μ

= φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥ (lr̂)
∫ t



∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lr̂)
∫ t

ν

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lr̂)f (t) + μ ≥ (lr̂)m + μ > r̂ = ‖y‖ > μ∗.
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On the other hand, for t ∈ [σ ∗, ], by the same argument, we have

y(t) = Ty(t) + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥ (lr̂)
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lr̂)
∫ –ν

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lr̂)f (t) + μ ≥ (lr̂)m + μ > r̂ = ‖y‖ > μ∗.

From the above discussions, we see y > μ∗, which implies μ∗ > μ∗, a contradiction with
the definition of μ∗. Thus, we know that (.) holds. It follows from Lemma . that

i(T , Pr̂ , P) = . (.)

Without loss of generality, we may assume that T has no fixed point on ∂Pr̂ and ∂PR̂.
Now we prove that

Ty �= ηy, ∀y ∈ ∂PR̂,η ≥ . (.)

In fact, if not, there exist y ∈ ∂PR̂ and η ≥  such that Ty = ηy. Let y∗
 (t) = min{y(t), R̂},

thus y∗
 ∈ ∂PR̂. Thus, for t ∈ (,σ ∗), we have

y =

η 

Ty

=

η 

φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+

η 

∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds

≤ φq

(
β

λ

∫ 


b(r)g

(
r, y(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

=
(

 + φq

(
β

λ

))∫ 


b(r)g

(
r, y(r)

)
dr

≤ LR̂
(

 + φq

(
β

λ

))

φq

(∫ 


b(r) dr

)

< ω∗ · R̂ · 
ω∗

= R̂ =
∥
∥y∗


∥
∥.

On the other hand, for t ∈ [σ ∗, ], by the same argument, we have

y =

η 

Ty

=

η 

(

φq

(
β

λ
φp

(∫ 

σ∗
φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))
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+
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds
)

≤ φq

(
β

λ

∫ 


b(r)g

(
r, y(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

=
(

 + φq

(
β

λ

))∫ 


b(r)g

(
r, y(r)

)
dr

≤ LR̂
(

 + φq

(
β

λ

))

φq

(∫ 


b(r) dr

)

< ω∗ · R̂ · 
ω∗

= R̂ =
∥
∥y∗


∥
∥.

The above discussions imply that ‖y∗
‖ < ‖y∗

‖, a contradiction with the definition of y∗
 .

Therefore (.) holds. It follows from Lemma . that

i(T , PR̂, P) = . (.)

From (.) and (.) together with the properties of fixed point index, we have

i(T , Pr̂,̂R, P) = i(T , PR̂, P) – i(T , Pr̂ , P) =  –  = .

Thus T has at least one positive fixed point ŷ in Pr̂,̂R, which means that problem (.) has
at least one positive solution ŷ satisfying r̂ ≤ ŷ ≤ R̂. This completes the proof. �

Theorem . Suppose that conditions (A) and (A) hold. In addition, assume that the
following conditions hold:

(H)  < g < ( ω∗
 )p–,

(H) ( ω∗
ν

)p– < g∞ < +∞.

Then problem (.) has at least one positive solution.

Proof From (H), for any  < ε < ( ω∗
 )p– – g, there exists a sufficiently small positive con-

stant r such that  < y ≤ r, for any t ∈ [, ], we have

g(t, y) ≤ yp–(g + ε) < yp–
(

ω∗


)p–

, (t, y) ∈ [, ] × (, r]. (.)

Since y′(σ ∗) = , we find that

φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ σ∗



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds

= φq

(
β

λ
φp

(∫ 

σ∗
φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 

σ∗

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds. (.)



Sun Advances in Difference Equations  (2017) 2017:95 Page 14 of 24

Thus, from (.) and (.), we obtain

‖Ty‖ = (Ty)
(
σ ∗)

≤ φq

(
βi

λi
φp

(∫ 


φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 



∫ 


φq

(∫ 


b(x)g

(
x, y(x)

)
dx

)

dr ds

= φq

(
βi

λi

∫ 


b(r)g

(
r, y(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

<
ω∗r



(

 + φq

(
βi

λi

))

φq

(∫ 


b(r) dr

)

<
ω∗r


· ω∗ =

r


< r = ‖y‖ for i = , .

Indeed, in view of Lemma ., we deduce

i(T , Pr , P) = . (.)

Next from (H), for any  < ε < g∞ – ( ω∗
ν

)p–, there exists a sufficiently large positive
constant R∗ such that for any y ≥ R∗, we have

g(t, y) ≥ (g∞ – ε)yp–, y ≥ R∗, t ∈ [, ]. (.)

Choose R = max{r, R∗
ν

}, and let ϕ(t) ≡ , t ∈ [, ]. Then R > r and ϕ ∈ ∂P. Obviously,
ϕ(t) ∈ PR \ {θ}.

In the following we prove that

y �= Ty + μϕ for y ∈ ∂PR and μ ≥ . (.)

Otherwise, there exist y ∈ ∂PR and μ >  such that y = Ty +μϕ. Let ξ = min{y(t) : t ∈
[ν,  – ν]} and notice that for any t ∈ [ν,  – ν], we have mint∈[ν,–ν] y(t) ≥ ν‖y‖ = νR ≥ R∗.

Consequently, from (.), for any t ∈ [ν,  – ν] and  < t < σ ∗, we have

y(t) = Ty(t) + μϕ(t)

= φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)

(
ω∗y(x)

ν

)p–

dx
)

dr ds + μ
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≥ ω∗ν‖y‖
ν

∫ t

ν

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ ω∗ · ξ · f (t) + μ ≥ ω∗ · ξ · m + μ > ξ + μ > ξ . (.)

On the other hand, by the same argument, for t ∈ [σ ∗, ] and t ∈ [ν,  –ν], from (.) and
(.), we have

y(t) = Ty(t) + μϕ(t)

= φq

(
β

λ
φp

(∫ 

σ∗
φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)

(
ω∗y(x)

ν

)p–

dx
)

dr ds + μ

≥ ω∗ν‖y‖
ν

∫ –ν

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ ω∗ · ξ · f (t) + μ ≥ ω∗ · ξ · m + μ > ξ + μ > ξ . (.)

From (.) and (.), we easily obtain ξ > ξ , a contradiction with the definition of ξ . From
the above discussion we see that (.) holds. It follows from Lemma . that

i(T , PR , P) = . (.)

From (.) and (.) together with the properties of fixed point index, we have

i(T , Pr,R , P) = i(T , PR , P) – i(T , Pr , P) =  –  = –.

Thus T has at least one positive fixed point y∗ in Pr,R , which means that problem (.)
has at least one positive solution y∗ satisfying r ≤ y∗ ≤ R. This completes the proof. �

Theorem . Suppose that conditions (A) and (A) hold. In addition, assume that the
following conditions hold:

(H) ( ω∗
ν

)p– < g < +∞,
(H)  < g∞ < ( ω∗

 )p–.

Then problem (.) has at least one positive solution.

Proof From (H), for any  < ε < g – ( ω∗
ν

)p–, there exists a sufficiently large positive con-
stant r such that for any t ∈ [, ] and  < y ≤ r, we have

g(t, y) ≥ (g – ε)yp– >
(

ω∗

ν

)p–

yp–, (t, y) ∈ [, ] × (, r].
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Thus, for any y ∈ ∂Pr , we get

g(t, y) ≥
(

ω∗

ν

)p–

yp– ≥ (
ω∗r

)p–, (t, y) ∈ [, ] × (, r].

Let ϕ ≡ . Now we prove that

y �= Ty + μϕ for any y ∈ ∂Pr and μ ≥ . (.)

Otherwise, there exist y ∈ ∂Pr and μ >  such that y = Ty + μϕ. Let ζ = min{y(t) :
t ∈ [ν,  – ν]}, then for any t ∈ [ν,  – ν] and  < t < σ ∗, we have

y = Ty(t) + μϕ(t)

= φq

(
β

λ
φp

(∫ σ∗


φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)

(
ω∗y(x)

ν

)p–

dx
)

dr ds + μ

≥ ω∗ν‖y‖
ν

∫ t

ν

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

> ω∗ · ζ · f (t) + μ ≥ ω∗ · ζ · m + μ > ζ + μ > ζ . (.)

On the other hand, by the same argument, for t ∈ [σ ∗, ] and t ∈ [ν,  – ν], from (.), we
have

y = Ty(t) + μϕ(t)

= φq

(
β

λ
φp

(∫ 

σ∗
φq

(∫ s


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, y(x)

)
dx

)

dr ds + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)

(
ω∗y(x)

ν

)p–

dx
)

dr ds + μ

≥ ω∗ν‖y‖
ν

∫ –ν

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

> ω∗ζ · f (t) + μ > ω∗ · ζ · m + μ > ζ + μ > ζ . (.)

From (.) and (.), we easily obtain ζ > ζ , a contradiction with the definition of ζ .
From the above discussion we see that (.) holds. It follows from Lemma . that

i(T , Pr , P) = . (.)
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Next from (H), for any  < ε < ( ω∗
 )p– – g∞, there exists a sufficiently small positive

constant R∗ such that y ≥ R∗, t ∈ [, ], we have

g(t, y) ≤ yp–(g∞ + ε) < yp–
(

ω∗


)p–

, (t, y) ∈ [, ] × [R∗, +∞).

Let M = supy∈∂PR∗
∫ 

 b(s)g(s, y(s)) ds. Then M < +∞ by (.). Take

R > max

{

R∗, r,
(


ω∗

)(
M

∫ 
 b(r) dr

) 
p–

}

. (.)

Notice y ∈ ∂PR∗ implies that y(t) ≤ ‖y‖ ≤ R∗. In addition, for any y ∈ ∂PR , let D[y] = {t ∈
[, ] : y ≥ R∗}, then for any t ∈ D[y], clearly, R∗ ≤ y ≤ ‖y‖ = R. Let y(t) = min{y(t), R∗},
then y ∈ ∂PR∗ . Thus, for any y ∈ ∂PR , from (.) and (.), we have

‖Ty‖ = max
≤t≤

(Ty)(t) = (Ty)
(
σ ∗)

≤ φq

(
βi

λi
φp

(∫ 


φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

ds
))

+
∫ 



∫ 


φq

(∫ 


b(x)g

(
x, y(x)

)
dx

)

dr ds

= φq

(
βi

λi

∫ 


b(r)g

(
r, y(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫

D[y]
b(r)g

(
r, y(r)

)
dr +

∫

[,]\D[y]
b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫ 


b(r)

(
ω∗


y(r)
)p–

dr +
∫ 


b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫ 


b(r)

(
ω∗


y(r)
)p–

dr + M

)

≤
(

 + φq

(
βi

λi

))

φq

((
ω∗


R

)p– ∫ 


b(r) dr +

(
ω∗


R

)p– ∫ 


b(r) dr

)

=
(

 + φq

(
βi

λi

))

φq

((
ω∗


R

)p–


∫ 


b(r) dr

)

=
(

 + φq

(
βi

λi

))

φq

(


∫ 


b(r) dr

)
ω∗


R <
R


< R = ‖y‖ for i = , .

Therefore ‖Ty‖ < ‖y‖ for any y ∈ ∂PR . It follows from Lemma . that

i(T , PR , P) = . (.)

From (.) and (.) together with the properties of fixed point index, we have

i(T , Pr,R , P) = i(T , PR , P) – i(T , Pr , P) =  –  = .



Sun Advances in Difference Equations  (2017) 2017:95 Page 18 of 24

Thus T has at least one positive fixed point y∗∗ in Pr,R with r ≤ y∗∗ ≤ R. Therefore
y∗∗ is a positive solution of problem (.). This completes the proof. �

4 The existence of multiple positive solutions
Theorem . Suppose that conditions (A) and (A) hold. In addition, (H) and (H) hold,
and there exists a positive constant r∗

 >  such that

g(t, y) ≥ (
lr∗


)p–, νr∗

 ≤ y ≤ r∗
,  < t < . (.)

Then problem (.) has at least two positive solutions.

Proof It follows from (H) that there exists a positive constant r∗
 satisfying  < r∗

 ≤ r∗


such that

g(t, y) ≤
(

ω∗


y
)p–

,  < y ≤ r∗
 ,  ≤ t ≤ . (.)

By making use of (H), there exists a positive constant r∗
 satisfying r∗

 > r∗
 >  such that

g(t, y) ≤
(

ω∗


y
)p–

, y ≥ r∗
,  ≤ t ≤ . (.)

Without loss of generality, we may assume that T has no fixed point on ∂Pr∗ and ∂Pr∗ .
From (.)-(.) with the corresponding proofs in Theorems . and ., respectively, to-
gether with the permanence property of fixed point index, we have

i(T , Pr∗ , P) =  (.)

and

i(T , Pr∗ , P) = . (.)

For any y ∈ ∂Pr∗ , by the concavity of function y(t) for t ∈ [, ], we easily get  < ν‖y‖ ≤
y(t) ≤ ‖y‖ = r∗

, t ∈ [, ]. Thus, for any y ∈ ∂Pr∗ , in view of (.) and the corresponding
proof in Theorem . together with the permanence property of fixed point index, we
have

i(T , Pr∗ , P) = . (.)

From (.) and (.) together with the properties of fixed point index, we obtain

i(T , Pr∗ ,r∗ , P) = i(T , Pr∗ , P) – i(T , Pr∗ , P) =  –  = –,

i(T , Pr∗,r∗ , P) = i(T , Pr∗ , P) – i(T , Pr∗ , P) =  –  = .

Hence, T has at least two positive fixed points in Pr∗ ,r∗ and Pr∗,r∗ , respectively. Therefore,
problem (.) has at least two positive solutions. This completes the proof. �
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Theorem . Suppose that conditions (A) and (A) hold. In addition, (H) and (H) hold,
and there exists a positive constant r̃∗

 >
√

� such that

g(t, y) ≤
(

ν( – ν)
y

)p–

,  < y(t) ≤ r̃∗
,  < t < , (.)

where � = max{( + φq( β
λ

))φq(
∫ 

 b(r) dr), ( + φq( β
λ

))φq(
∫ 

 b(r) dr)}.
Then problem (.) has at least two positive solutions.

Proof It follows from (H) that there exists a positive constant r̃∗
 >  satisfying  < r̃∗

 <√
� such that

g(t, y) ≥
(

ω∗
ν

y
)p–

,  < y ≤ r̃∗
 ,  ≤ t ≤ . (.)

By making use of (H), there exists a positive constant r̃∗
 > r̃∗

 >  such that

g(t, y) ≥
(

ω∗
ν

y
)p–

, y ≥ ν r̃∗
,  ≤ t ≤ .

Then, for any y ∈ ∂Pr̃∗ , we have

g(t, y) ≥
(

ω∗
ν

y
)p–

, y ≥ ν r̃∗
 = ν‖y‖, t ∈ [ν,  – ν]. (.)

It follows from Lemma . that T : Pr̃∗ ,r̃∗ −→ P is a completely continuous operator. Now
we extend the operator T , still denoted by T , then T : Pr̃∗ → P is completely continuous.
Without loss of generality, we may assume that T has no fixed point on ∂Pr̃∗ and ∂Pr̃∗ . From
(.) and (.), the corresponding proofs in Theorems . and ., respectively, together
with the permanence property of fixed point index, we have

i(T , Pr̃∗ , P) =  (.)

and

i(T , Pr̃∗ , P) = . (.)

Choose
√

� < r̃∗
 ≤ r̃∗

. For all y ∈ ∂Pr̃∗ , by the concavity of function y(t) on (, ), we
see y(t) ≥ ν‖y‖ for t ∈ (, ) and  < y(t) ≤ r̃∗

 ≤ r̃∗
 for t ∈ (, ). It follows from (.) and

y ∈ ∂Pr̃∗ that

g
(
t, y(t)

) ≤
(

ν( – ν)
y(t)

)p–

≤
(

ν( – ν)
‖y‖ν

)p–

<


r̃∗


p– for t ∈ (, ).

Therefore, for any y ∈ ∂Pr̃∗ , we obtain

‖Ty‖ = max
≤t≤

(Ty)(t) = (Ty)
(
σ ∗)

≤ φq

(
βi

λi
φp

(∫ 


φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

ds
))
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+
∫ 



∫ 


φq

(∫ 


b(x)g

(
x, y(x)

)
dx

)

dr ds

= φq

(
βi

λi

∫ 


b(r)g

(
r, y(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

≤
(

 + φq

(
βi

λi

))

φq

(∫ 


b(r)g

(
r, y(r)

)
dr

)

<
(

 + φq

(
βi

λi

))

r̃∗


φq

(∫ 


b(r) dr

)

=

r̃∗



(

 + φq

(
βi

λi

))

φq

(∫ 


b(r) dr

)

<

r̃∗


· � < r̃∗

 = ‖y‖ for i = , .

Thus ‖Ty‖ < ‖y‖ for any y ∈ ∂Pr̃∗ . From Lemma . we have

i(T , Pr̃∗ , P) = . (.)

By making use of (.) and (.) with (.), combining the properties of fixed point
index, we have

i(T , Pr̃∗ ,r̃∗ , P) = i(T , Pr̃∗ , P) – i(T , Pr̃∗ , P) =  –  = ,

i(T , Pr̃∗ ,r̃∗ , P) = i(T , Pr̃∗ , P) – i(T , Pr̃∗ , P) =  –  = –.

Hence, T has at least two positive fixed points in Pr̃∗ ,r̃∗ and Pr̃∗ ,r̃∗ , respectively. Therefore,
problem (.) has at least two positive solutions. This completes the proof. �

5 The existence of infinite positive solutions
Now we shall discuss the existence of infinitely many positive solutions. For convenience,
we make the following assumptions:

(A′
) There exists a nonincreasing sequence {tn}∞n= such that  < tn+ < tn, t < 

 ,
limn→∞ tn = t ≥ , with limt→tn b(t) = ∞, n = , , . . . , and  <

∫ 
 b(t) dt < +∞. More-

over, b(t) does not vanish identical on any subinterval of [, ].

Theorem . Suppose that conditions (A′
) and (A) hold. Let {νk}∞k= be such that νk ∈

(tk+, tk) (k = , , . . .). Let {rk}∞k= and {Rk}∞k= be such that νkrk < rk < Rk , k = , , . . . . For
each natural number k, we assume that g satisfies

(E) g(t, y) ≥ (lrk)p–, (t, y) ∈ [, ] × [νkrk , Rk];
(E) g(t, y) ≤ (LRk)p–, (t, y) ∈ [, ] × (, Rk].

Then boundary value problem (.) has infinitely many positive solutions {yk}∞k= such that
‖yk‖ is between rk and Rk , k = , , . . . .

Proof From (A′
), we know that t < tk+ < νk < tk < 

 , k = , , . . . , then for any k ∈ N , y ∈ P,
we have

y(t) ≥ νk‖y‖, t ∈ [νk ,  – νk]. (.)
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We easily know that {Prk }∞k= and {PRk }∞k= are subsets of P. For a fixed k and for any y ∈ Prk ,
from (.) we have y(t) ≥ νk‖y‖ = νkrk , t ∈ [νk ,  – νk]. For [t,  – t] ⊂ [νk ,  – νk] ⊂ [, ],
let ψ ≡ . We prove that

y �= Ty + μψ for y ∈ ∂Prk and μ ≥ . (.)

If not, there exist ỹ ∈ ∂Prk and μ ≥  such that ỹ = Tỹ + μψ . Let μ∗ = mint∈[,] ỹ(t).
Then, for t ∈ (,σ ∗), we have

ỹ(t) = Tỹ(t) + μ

≥
∫ t



∫ σ∗

s
φq

(∫ r


b(x)g

(
x, ỹ(x)

)
dx

)

dr ds + μ

≥ (lrk)
∫ t



∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)
∫ t

νk

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)
∫ t

t

∫ σ∗

s
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)f (t) + μ ≥ (lrk)m + μ > rk = ‖ỹ‖ > μ∗.

On the other hand, for t ∈ [σ ∗, ], by the same argument, we have

ỹ(t) = Tỹ(t) + μ

≥
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x)g

(
x, ỹ(x)

)
dx

)

dr ds + μ

≥ (lrk)
∫ 

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)
∫ –νk

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)
∫ –t

t

∫ s

σ∗
φq

(∫ r


b(x) dx

)

dr ds + μ

≥ (lrk)f (t) + μ ≥ (lrk)m + μ > rk = ‖ỹ‖ > μ∗.

From the above discussions, we see ỹ > μ∗, which implies μ∗ > μ∗, a contradiction with
the definition of μ∗. Thus, we know that (.) holds. It follows from Lemma . that

i(T , Prk , P) = . (.)

Without loss of generality, we may assume that T has no fixed point on ∂Prk and ∂PRk .
Now we prove that

Ty �= ηy, ∀y ∈ ∂PRk ,η ≥ . (.)
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In fact, if not, there exist ỹ ∈ ∂PRk and η̃ ≥  such that Tỹ = η̃ỹ. Let ỹ∗
 (t) =

min{ỹ(t), Rk}, thus ỹ∗
 ∈ ∂PRk . Thus, for t ∈ (,σ ∗), we have

ỹ ≤ φq

(
β

λ

∫ 


b(r)g

(
r, ỹ(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, ỹ(r)

)
dr

)

=
(

 + φq

(
β

λ

))∫ 


b(r)g

(
r, ỹ(r)

)
dr

≤ LRk

(

 + φq

(
β

λ

))

φq

(∫ 


b(r) dr

)

< ω∗ · Rk · 
ω∗

= Rk =
∥
∥ỹ∗


∥
∥.

On the other hand, for t ∈ [σ ∗, ], by the same argument, we have

ỹ ≤ φq

(
β

λ

∫ 


b(r)g

(
r, ỹ(r)

)
dr

)

+ φq

(∫ 


b(r)g

(
r, ỹ(r)

)
dr

)

=
(

 + φq

(
β

λ

))∫ 


b(r)g

(
r, ỹ(r)

)
dr

≤ LRk

(

 + φq

(
β

λ

))

φq

(∫ 


b(r) dr

)

< ω∗ · Rk · 
ω∗

= Rk =
∥
∥ỹ∗


∥
∥.

The above discussions imply that ‖ỹ∗
‖ < ‖ỹ∗

‖, a contradiction with the definition of ỹ∗
 .

Therefore (.) holds. It follows from Lemma . that

i(T , PRk , P) = . (.)

From (.) and (.) together with the properties of fixed point index, we have

i(T , Prk ,Rk , P) = i(T , PRk , P) – i(T , Prk , P) =  –  = .

Thus T has at least one positive fixed point yk in Prk ,Rk , which means that problem (.)
has at least one positive solution yk satisfying rk ≤ yk ≤ Rk . From the randomness of k we
see that Theorem . holds. This completes the proof. �

Theorem . Suppose that conditions (A′
) and (A) hold. Let {νk}∞k= be such that νk ∈

(tk+, tk) (k = , , . . .). Let {rk}∞k= and {Rk}∞k= be such that νkrk < rk < Rk , k = , , . . . . For
each natural number k, we assume that g satisfies

(E)  < g < ( ω∗
 )p–,

(E) ( ω∗
νk

)p– < g∞ < +∞.
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Then boundary value problem (.) has infinitely many positive solutions {yk}∞k= such that
‖yk‖ is between rk and Rk , k = , , . . . .

Theorem . Suppose that conditions (A′
) and (A) hold. Let {νk}∞k= be such that νk ∈

(tk+, tk) (k = , , . . .). Let {rk}∞k= and {Rk}∞k= be such that νkrk < rk < Rk , k = , , . . . . For
each natural number k, we assume that g satisfies

(E) ( ω∗
νk

)p– < g < +∞,
(E)  < g∞ < ( ω∗

 )p–.

Then boundary value problem (.) has infinitely many positive solutions {yk}∞k= such that
‖yk‖ is between rk and Rk , k = , , . . . .
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