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1 Introduction
Many real-world systems are characteristic of dependence on the past, i.e. their present
states not only depend on the current situation, but also on the previous history. This is
called time delay. Indeed, phenomena with time delays are common in the fields of both
natural and social sciences, such as physics, engineering, biology, economics and finance;
see for example [–].

Stochastic optimal control problems with time-delay systems have received a lot of re-
search attention recently. However, this kind of control problem remains practically in-
tractable due to its infinite-dimensional nature. Fortunately, when the distributed (aver-
age) and pointwise time delays are involved in the state process, optimal control problems
are found to be solvable under certain conditions. For the applications of the dynamic pro-
gramming principle to this field, see [, ]. For Pontryagin’s maximum principle applied
to it, see [–]. Along this line, by a duality between linear stochastic differential delay
equations (SDDEs) and anticipated backward stochastic differential equations (ABSDEs)
established in [], the maximum principle for stochastic delay optimal control problems
was studied by [–].

Let us mention that it is inadequate to only focus on exact optimality. As is well known,
optimal controls may not exist in many situations, and insisting on exact optimality is not
only unrealistic but also unnecessary for many real systems. Let us give an example to show
that optimal control may not exist even in deterministic optimal delay control problems.
The system evolves by Xt =

∫ t
 us–δ ds for  ≤ t ≤ , where δ = / and u· is chosen from

the admissible control set U , which is the collection of measurable functions u : [, ] →
{–, }. We assume that ut =  for –δ ≤ t < –δ/ and ut = – for –δ/ ≤ t <  for any u· ∈ U .
The objective is to minimize J(u·) =

∫ 
δ

(Xt) dt over U . Let us show that infu·∈U J(u·) = .
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Firstly, Xδ = . Then define a sequence of admissible controls {un
t },  ≤ t ≤ δ by un

t = (–)k ,
k/(n) ≤ t ≤ (k + )/(n),  ≤ k ≤ n – . Then the corresponding trajectory Xn· satisfies
|Xn

t | ≤ /(n) for δ ≤ t ≤ . Thus, J(un· ) ≤ /(n) and so infu·∈U J(u·) = . However, there
does not exist u∗· ∈ U satisfying J(u∗· ) = ; otherwise, we have X∗

t =  for δ ≤ t ≤ , which
implies u∗

t =  for  ≤ t ≤ δ, contradicting the definition of the admissible control.
As stated in [], near-optimality has as many attractive features as exact optimality in

view of both theory and applications. First, near-optimal controls may exist under mild
assumptions. Second, by studying near-optimality it is possible to greatly simplify the op-
timization process with only a small loss in the objective of the decision makers, and a
near-optimal solution can satisfactorily serve the ultimate purpose of the decision makers
in most practical situations. Third, many more near-optimal controls are available than
optimal ones, so it is possible to select among them appropriate ones that are easier for
analysis and implementation.

Near-optimality for deterministic control problems was studied in [–]. Near-
optimality for one kind of stochastic control problem with controlled diffusion and non-
convex control domain was studied in [], for which necessary and sufficient conditions
of near-optimality were established. Following [], various kinds of near-optimal stochas-
tic control problems have been investigated; see for example [–] for forward control
systems, and [–] for forward-backward systems.

In view of the importance and wide applicability of time-delay systems and near-
optimality, this paper is the first attempt to study near-optimization for one kind of
stochastic delay control problem. In the control problem, the control domain is convex,
the control variable can enter the diffusion term of the control system, and both the state
and the control variables involve delays. For simplicity and clarity, we only consider lin-
ear systems. Necessary as well as sufficient conditions for a control to be near-optimal are
established. By using the maximum principle and Ekeland’s variational principle, we first
establish a necessary condition for near-optimality, which reveals the ‘minimum’ qualifi-
cation for an admissible control to be ε-optimal. Then we prove a sufficient verification
theorem for near-optimality, which can help to verify whether a candidate control is in-
deed near-optimal and thus can help to find near-optimal controls. Finally, the theoretical
results are applied to some illustrative examples.

The main features of this paper are as follows. This is the first attempt to study
near-optimal controls of stochastic delay control problems with the maximum principle
method and by means of ABSDEs. We establish necessary and sufficient conditions for
any near-optimal controls and give some examples. Since exact optimal control could be
regarded as a particular case of ε-optimal control when ε = , this paper is a generaliza-
tion of [] in the linear system case. We give two sufficient conditions for near-optimality,
which cannot contain each other in general. The functions l and � in the cost functional
can be quadratic functions of x, which generalizes the corresponding assumptions in [,
, ] and some other papers. In most existing literature, the error bound in the neces-
sary condition for an admissible control to be ε-optimal is εγ with γ ∈ [, 

 ) or γ ∈ [, 
 ],

while it is improved in this paper to εγ with γ ∈ [, 
 ]. In two illustrative examples, we

give some near-optimal controls in the explicit form.
The rest of this paper is organized as follows. In Section , we give the formulation of the

problem and present some preliminaries. We establish the necessary conditions for near-
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optimal controls in Section  and the sufficient conditions in Section . The theoretical
results are applied to two examples in Section  and a conclusion is given in Section .

2 Formulation of the problem and preliminaries
For n ≥ , we use R

n to denote the n-dimensional Euclidean space with the usual norm
| · | and inner product 〈·, ·〉. Denote by AT the transpose of a matrix A. Let (�,F ,P) be a
probability space and E the expectation with respect to P. By {Ft , t ≥ } we denote the
completed natural filtration of a standard Brownian motion {Wt , t ≥ }, which is assumed
to be scalar-valued for simplicity. For a < b, denote by M(a, b;Rn) the set of n-dimensional
adapted processes {φt , a ≤ t ≤ b} satisfying E

∫ b
a |φt| dt < ∞, and by S(a, b;Rn) the set of

n-dimensional continuous adapted processes {ψt , a ≤ t ≤ b} satisfying E[supa≤t≤b |ψt|] <
∞. We use C, C′, C′′ to represent positive constants, which can be different from line to
line.

Assume that δ and δ are positive constants, and ξ· : [–δ, ] →R
n is a continuous func-

tion. Given a bounded convex set U ⊂ R
k and a measurable function η· : [–δ, ] → U ,

we define the admissible control set U as the collection of U-valued adapted processes
{vt , –δ ≤ t ≤ T} satisfying vt = ηt for –δ ≤ t ≤ . For v· ∈ U , the controlled system evolves
by

⎧
⎨

⎩

dXv
t = b(t, Xv

t , Xv
t–δ

, vt , vt–δ ) dt + σ (t, Xv
t , Xv

t–δ
, vt , vt–δ ) dWt ,  ≤ t ≤ T ,

Xt = ξt , –δ ≤ t ≤ ,
()

with

b(t, x, xδ , v, vδ) = A(t)x + B(t)xδ + C(t)v + D(t)vδ + E(t),

σ (t, x, xδ , v, vδ) = A(t)x + B(t)xδ + C(t)v + D(t)vδ + E(t),

where the coefficients Ai(·), Bi(·), Ci(·), Di(·), i = , , are bounded adapted processes with
appropriate dimensions, and E(·), E(·) ∈ M(, T ;Rn). The solution Xv· of SDDE () is
called the response of the control v·, and (Xv· , v·) is called an admissible pair. The cost
functional is given by

J(v·) = E

[∫ T


l
(
t, Xv

t , Xv
t–δ , vt , vt–δ

)
dt + �

(
Xv

T
)
]

, v· ∈ U , ()

where l(ω, t, x, xδ , v, vδ) : � × [, T] × R
n × R

n × U × U → R is an adapted function and
�(ω, x) : �×R

n →R is a measurable function. The objective of our control problem is to
find an admissible control u∗· ∈ U which satisfies

J
(
u∗

·
)

= V � inf
v·∈U

J(v·). ()

The following assumption will be in force throughout this paper.
(H) The functions l and � are continuously differentiable in (x, xδ , v, vδ), and there

exist a positive constant C and a continuous function h(v, vδ) : U × U → R such
that the partial derivatives of l and � are bounded by C( + |x| + |xδ| + h(v, vδ)).
Besides, �() is FT -measurable, and E|�()| + E

∫ T
 |l(t, , , , )|dt < ∞.
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For later use, let us assume that B(t) and B(t) are well defined and bounded for T < t ≤
T + δ, D(t) and D(t) are well defined and bounded for T < t ≤ T + δ, lxδ

(t, x, xδ , v, vδ) = 
for T < t ≤ T + δ, and lvδ

(t, x, xδ , v, vδ) =  for T < t ≤ T + δ.
By Theorem . in [], SDDE () admits a unique solution Xv· ∈ S(, T ;Rn). Moreover,

there exists C >  which is independent of v· ∈ U such that

E

[
sup

≤t≤T

∣
∣Xv

t
∣
∣

]
≤ C, ∀v· ∈ U . ()

Then from (H) it follows that J is well defined on U and there exists C >  which is inde-
pendent of v· ∈ U such that |J(v·)| ≤ C.

For the study of near-optimality, let us give the related definitions; see [].

Definition  For ε > , vε· ∈ U is called ε-optimal if |J(vε· ) – V | ≤ ε. A family of admissible
controls {vε· } parameterized by ε >  is called near-optimal if |J(vε· ) – V | ≤ r(ε) holds for
sufficiently small ε, where r(ε) →  as ε → . If the error bound r(ε) satisfies r(ε) = cεγ

for some γ >  independent of c, then vε· is called near-optimal with order εγ .

Denote v
t = (t, Xv

t , Xv
t–δ

, vt , vt–δ ). Let us introduce the following adjoint equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dY v
t = –{EFt [B(t + δ)T Y v

t+δ
+ B(t + δ)T Zv

t+δ
+ lxδ

(v
t+δ

)]

+ A(t)T Y v
t + A(t)T Zv

t + lx(v
t )}dt + Zv

t dWt ,  ≤ t ≤ T ,

Y v
T = �x(Xv

T ),

Y v
t = , Zv

t = , T < t ≤ T + δ,

()

whose solution is defined to be a pair of processes (Y v· , Zv· ) ∈ M(, T ;Rn) × M(, T ;Rn)
satisfying (). Let us assume w.o.l.g. that Y v

t and Zv
t vanish for T < t ≤ T + max{δ, δ} for

all v· ∈ U .

Proposition  Assume (H). Then the adjoint equation () admits a unique solution
(Y v· , Zv· ) for any v· ∈ U . Moreover, there exists C >  which is independent of v· ∈ U such
that

E

[

sup
≤t≤T

∣
∣Y v

t
∣
∣ +

∫ T



∣
∣Zv

t
∣
∣ dt

]

≤ C, ∀v· ∈ U . ()

Proof Set

g(t, y, z, ζs,κr) = A(t)T y + A(t)T z + lx
(
v

t
)

+ E
Ft

[
B(t + δ)Tζs + B(t + δ)Tκr + lxδ

(
v

t+δ

)]
.

First, g is Lipschitz continuous in (y, z, ζs,κr), so the assumption (H) in [] is satisfied.
Next, we have

E

∫ T



∣
∣g(t, , , , )

∣
∣ dt ≤ E

∫ T



∣
∣lx

(
v

t
)∣
∣ dt + E

∫ T



∣
∣EFt

[
lxδ

(
v

t+δ

)]∣
∣ dt.
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Using Jensen’s inequality, Fubini’s theorem and a change of variables lead to

E

∫ T



∣
∣EFt

[
lxδ

(
v

t+δ

)]∣
∣ dt ≤ E

∫ T+δ

δ

∣
∣lxδ

(
v

t
)∣
∣ dt ≤ E

∫ T+δ



∣
∣lxδ

(
v

t
)∣
∣ dt.

Since it is assumed that lxδ
(t, x, xδ , v, vδ) =  for T < t ≤ T + δ, we have

E

∫ T+δ



∣
∣lxδ

(
v

t
)∣
∣ dt = E

∫ T



∣
∣lxδ

(
v

t
)∣
∣ dt.

Thus,

E

∫ T



∣
∣g(t, , , , )

∣
∣ dt ≤ E

∫ T



(∣∣lx
(
v

t
)∣∣ +

∣
∣lxδ

(
v

t
)∣∣)dt.

Recall that U is a bounded set. Then, in view of (H), we can use () to show that there
exists C > , which is independent of v·, such that

E

∫ T



∣
∣g(t, , , , )

∣
∣ dt ≤ C.

Besides, E|�x(Xv
T )| ≤ C′

E( + |Xv
T |) ≤ C. Consequently, by Theorem . in [] we con-

clude that () admits a unique solution. Finally, the estimate () can easily be obtained by
Proposition . in []. �

Let us define a metric d on U by

d(u·, v·) =

√

E

∫ T


|ut – vt| dt.

Then it is well known that (U , d) is a complete metric space.
Next result gives the continuity of Xv· in v· ∈ U .

Proposition  Assume (H). Then there exists C >  satisfying

E

[
sup

≤t≤T

∣
∣Xu

t – Xv
t
∣
∣

]
≤ Cd(u·, v·), ∀u·, v· ∈ U .

Proof Using the estimate () in [], we get

E

[
sup

≤t≤T

∣
∣Xu

t – Xv
t
∣
∣

]
≤ E

∫ T



∣
∣b

(
u

t
)

– b
(
t, Xu

t , Xu
t–δ , vt , vt–δ

)∣∣ dt

+ E

∫ T



∣
∣σ

(
u

t
)

– σ
(
t, Xu

t , Xu
t–δ , vt , vt–δ

)∣∣ dt.

Then it follows that

E

[
sup

≤t≤T

∣
∣Xu

t – Xv
t
∣
∣

]
≤ CE

∫ T


|ut – vt| dt + CE

∫ T


|ut–δ – vt–δ | dt,



Zhang Advances in Difference Equations  (2017) 2017:98 Page 6 of 19

where by the definition of admissible controls, we can use a change of variables to get

E

∫ T


|ut–δ – vt–δ | dt = E

∫ T–δ

–δ

|ut – vt| dt ≤ E

∫ T


|ut – vt| dt.

Thus, the proof is complete. �

Let us assume, moreover,
(H) (�x, lx, lxδ

, lv, lvδ
) are Lipschitz in (x, xδ , v, vδ).

The following result shows that (Y v· , Zv· ) is continuous in v· ∈ U .

Proposition  Assume (H) and (H). Then there exists C >  such that

E

[

sup
≤t≤T

∣
∣Y u

t – Y v
t
∣
∣ +

∫ T



∣
∣Zu

t – Zv
t
∣
∣ dt

]

≤ Cd(u·, v·), ∀u·, v· ∈ U .

Proof Set Ȳt = Y u
t – Y v

t , Z̄t = Zu
t – Zv

t . Let us prove by dividing [, T] backwardly. Firstly,
for t ∈ I = [T – δ, T], (Ȳt , Z̄t) solves a linear BSDE

⎧
⎨

⎩

–dȲt = {A(t)T Ȳt + A(t)T Z̄t + lx(u
t ) – lx(v

t )}dt – Z̄t dWt ,

ȲT = �x(Xu
T ) – �x(Xv

T ).

The basic prior estimate of BSDEs gives

E

[

sup
t∈I

|Ȳt| +
∫

t∈I

|Z̄t| dt
]

≤ CE

[
∣
∣�x

(
Xu

T
)

– �x
(
Xv

T
)∣∣ +

∫

t∈I

∣
∣lx

(
u

t
)

– lx
(
v

t
)∣∣ dt

]

.

Then, in view of (H), using Proposition  and a change of variables lead to

E

[

sup
t∈I

|Ȳt| +
∫

t∈I

|Z̄t| dt
]

≤ Cd(u·, v·). ()

Next, on I = [T – δ, T – δ], (Ȳ·, Z̄·) solves a BSDE with terminal value ȲT–δ and gener-
ator function f (t, y, z) = A(t)T y + A(t)T z + �(t), where �(t) = lx(u

t ) – lx(v
t ) +E

Ft [B(t +
δ)T Ȳt+δ + B(t + δ)T Z̄t+δ + lxδ

(u
t+δ

) – lxδ
(v

t+δ
)]. On the one hand, by (), E|ȲT–δ | ≤

Cd(u·, v·). On the other hand, by Jensen’s inequality and a change of variables we get

E

∫

t∈I

∣
∣�(t)

∣
∣ dt ≤ CE

∫

t∈I

∣
∣lx

(
u

t
)

– lx
(
v

t
)∣∣ dt

+ CE

∫

t∈I

(|Ȳt| + |Z̄t| +
∣
∣lxδ

(
u

t
)

– lxδ

(
v

t
)∣
∣)dt.

Then, by (H), () and Proposition , we can use a change of variables again to get

E

∫

t∈I

∣
∣�(t)

∣
∣ dt ≤ Cd(u·, v·).

So,

E

[

sup
t∈I

|Ȳt| +
∫

t∈I

|Z̄t| dt
]

≤ C′
E

[

|ȲT–δ | +
∫

t∈I

∣
∣�(t)

∣
∣ dt

]

≤ Cd(u·, v·).
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Thus, we derive

E

[

sup
T–δ≤t≤T

|Ȳt| +
∫ T

T–δ

|Z̄t| dt
]

≤ Cd(u·, v·).

In the same way, we can get the result after finite steps. �

Next we prove that J is a continuous functional of v· ∈ U .

Proposition  Assume (H). Then there exists C >  such that |J(u·) – J(v·)| ≤ Cd(u·, v·)
holds for all u·, v· ∈ U .

Proof Set X̄t = Xu
t – Xv

t , v̄t = ut – vt . We have

�
(
Xu

T
)

– �
(
Xv

T
)

=
∫ 



〈
�x

(
Xv

T + λX̄T
)
, X̄T

〉
dλ,

l
(
u

t
)

– l
(
v

t
)

=
∫ 



{〈
lx(�t), X̄t

〉
+

〈
lxδ

(�t), X̄t–δ

〉
+

〈
lv(�t), v̄t

〉
+

〈
lvδ

(�t), v̄t–δ

〉}
dλ,

with �t = (t, Xv
t + λX̄t , Xv

t–δ
+ λX̄t–δ , vt + λv̄t , vt–δ + λv̄t–δ ). By (H), () and Proposition ,

we can use the Cauchy-Schwartz inequality to get

E
∣
∣�

(
Xu

T
)

– �
(
Xv

T
)∣
∣ ≤ Cd(u·, v·).

With a similar method, together with a change of variables, we have

E

∫ T



∣
∣l
(
u

t
)

– l
(
v

t
)∣∣dt ≤ Cd(u·, v·).

Thus the proof is complete. �

The following Ekeland’s variational principle will play a key role in what follows, for
which one can see [].

Lemma  Let (S, d) be a complete metric space and F : S →R a lower-semicontinuous and
bounded from below function. Assume that vε ∈ S satisfies F(vε) ≤ infv∈S F(v) + ε for some
ε ≥ . Then, for any λ > , there exists vλ ∈ S such that F(vλ) ≤ F(vε), d(vλ, vε) ≤ λ, and
F(vλ) ≤ F(v) + ε

λ
d(v, vλ) for all v ∈ S.

3 Necessary condition for near-optimality
This section is devoted to establishing necessary conditions for near-optimal controls of
the stochastic control problem ()-().

Recall from the previous section that J(v·) is a continuous and bounded from below
functional on the complete metric space (U , d). Now let uε· ∈ U be an ε-optimal control of
problem ()-() with ε > , that is, J(uε· ) ≤ infv·∈U J(v·) + ε. Then applying Lemma  with
λ =

√
ε leads to the existence of ũε· ∈ U such that

J
(
ũε

·
) ≤ J

(
uε

·
)
, ()
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d
(
ũε

· , uε
·
) ≤ √

ε, ()

J
(
ũε

·
) ≤ J(v·) +

√
εd

(
v·, ũε

·
)
, ∀v· ∈ U . ()

In what follows, we first study ũε· , and then turn to uε· . Let u· ∈ M(–δ, T) satisfy ũε· +
u· ∈ U . Then it is easy to see that ut =  for –δ ≤ t < , and the convexity of U shows that
uθ· � ũε· + θu· ∈ U for any θ ∈ [, ]. Since U is bounded, there exists C > , independent
of ε and θ , such that d(uθ· , ũε· ) ≤ Cθ . So () leads to

J
(
uθ

·
)

– J
(
ũε

·
) ≥ –C

√
εθ . ()

Let Xε· , X̃ε· , Xθ· be, respectively, the trajectories associated with uε· , ũε· , uθ· . Let (Y ε· , Zε· )
and (Ỹ ε· , Z̃ε· ) be, respectively, the solutions of the adjoint equation () associated with
(uε· , Xε· ) and (ũε· , X̃ε· ). Set ε

t = (t, Xε
t , Xε

t–δ
, uε

t , uε
t–δ

), ̃ε
t = (t, X̃ε

t , X̃ε
t–δ

, ũε
t , ũε

t–δ
), θ

t =
(t, Xθ

t , Xθ
t–δ

, uθ
t , uθ

t–δ
). Let us introduce the following variational equation:

⎧
⎪⎪⎨

⎪⎪⎩

dX
t = [A(t)X

t + B(t)X
t–δ

+ C(t)ut + D(t)ut–δ ] dt

+ [A(t)X
t + B(t)X

t–δ
+ C(t)ut + D(t)ut–δ ] dWt ,  ≤ t ≤ T ,

X
t = , –δ ≤ t ≤ .

()

It is easy to check that () admits a unique solution X· ∈ S(, T ;Rn).
The following result is a necessary condition for ũε· .

Proposition  Assume (H)-(H). Then there exists C > , independent of ε, such that

E

∫ T



〈
E
Ft

[
D(t + δ)T Ỹ ε

t+δ + D(t + δ)T Z̃ε
t+δ + lvδ

(
̃ε

t+δ

)]

+ C(t)T Ỹ ε
t + C(t)T Z̃ε

t + lv
(
̃ε

t
)
, v – ũε

t
〉
dt ≥ –C

√
ε, ∀v ∈ U . ()

Proof Following the proof of Lemma . in [], we have

lim
θ↓

θ–[J
(
uθ

·
)

– J
(
ũε

·
)]

= E

{
〈
�x

(
X̃ε

T
)
, X

T
〉
+

∫ T



[〈
lx

(
̃ε

t
)
, X

t
〉

+
〈
lxδ

(
̃ε

t
)
, X

t–δ

〉
+

〈
lv
(
̃ε

t
)
, ut

〉
+

〈
lvδ

(
̃ε

t
)
, ut–δ

〉]
dt

}

.

Using a change of variables leads to

E

∫ T



〈
lxδ

(
̃ε

t
)
, X

t–δ

〉
dt = E

∫ T–δ

–δ

〈
E
Ft

[
lxδ

(
̃ε

t+δ

)]
, X

t
〉
dt.

Then, since X
t =  for –δ ≤ t <  and lxδ

(t, x, xδ , v, vδ) =  for T < t ≤ T + δ, we have

E

∫ T



〈
lxδ

(
̃ε

t
)
, X

t–δ

〉
dt = E

∫ T



〈
E
Ft

[
lxδ

(
̃ε

t+δ

)]
, X

t
〉
dt.

Similarly,

E

∫ T



〈
lvδ

(
̃ε

t
)
, ut–δ

〉
dt = E

∫ T



〈
E
Ft

[
lvδ

(
̃ε

t+δ

)]
, ut

〉
dt.



Zhang Advances in Difference Equations  (2017) 2017:98 Page 9 of 19

Consequently, from () it follows that

E
〈
�x

(
X̃ε

T
)
, X

T
〉
+ E

∫ T



〈
lx

(
̃ε

t
)

+ E
Ft

[
lxδ

(
̃ε

t+δ

)]
, X

t
〉
dt

+ E

∫ T



〈
lv
(
̃ε

t
)

+ E
Ft

[
lvδ

(
̃ε

t+δ

)]
, ut

〉
dt ≥ –C

√
ε. ()

On the other hand, applying Itô’s formula to 〈X
t , Ỹ ε

t 〉 gives

E
〈
�x

(
X̃ε

T
)
, X

T
〉
+ E

∫ T



〈
lx

(
̃ε

t
)

+ E
Ft

[
lxδ

(
̃ε

t+δ

)]
, X

t
〉
dt

= E

∫ T



(〈
B(t)T Ỹ ε

t , X
t–δ

〉
–

〈
E
Ft

[
B(t + δ)T Ỹ ε

t+δ

]
, X

t
〉)

dt

+ E

∫ T



(〈
B(t)T Z̃ε

t , X
t–δ

〉
–

〈
E
Ft

[
B(t + δ)T Z̃ε

t+δ

]
, X

t
〉)

dt

+ E

∫ T



〈
C(t)T Ỹ ε

t + C(t)T Z̃ε
t , ut

〉
dt + E

∫ T



〈
D(t)T Ỹ ε

t + DT
 (t)Z̃ε

t , ut–δ

〉
dt.

Then we can use a change of variables to get

E
〈
�x

(
X̃ε

T
)
, X

T
〉
+ E

∫ T



〈
lx

(
̃ε

t
)

+ E
Ft

[
lxδ

(
̃ε

t+δ

)]
, X

t
〉
dt

= E

∫ T



〈
C(t)T Ỹ ε

t + C(t)T Z̃ε
t + E

Ft
[
D(t + δ)T Ỹ ε

t+δ + D(t + δ)T Z̃ε
t+δ

]
, ut

〉
dt.

Combining this equality and () gives

E

∫ T



〈
E
Ft

[
D(t + δ)T Ỹ ε

t+δ + D(t + δ)T Z̃ε
t+δ + lvδ

(
̃ε

t+δ

)]

+ C(t)T Ỹ ε
t + C(t)T Z̃ε

t + lv
(
̃ε

t
)
, ut

〉
dt ≥ –C

√
ε.

Recall that u· is any process in M(–δ, T) satisfying ũε· +u· ∈ U . For any v ∈ U , let us define
vt = v when  < t ≤ T and vt = ηt when –δ ≤ t ≤ . Replacing ut in the previous inequality
with vt – ũε

t leads to the conclusion. �

Let us define

H(t, x, xδ , y, z, v, vδ) =
〈
b(t, x, xδ , v, vδ), y

〉
+

〈
σ (t, x, xδ , v, vδ), z

〉
+ l(t, x, xδ , v, vδ),

Hε(t, v) = H
(
�ε

t , v, uε
t–δ

)
+ E

Ft
[
H

(
�ε

t+δ , uε
t+δ , v

)]
,

where �ε
t = (t, Xε

t , Xε
t–δ

, Y ε
t , Zε

t ). By the dominated convergence theorem, Hε(t, v) is differ-
entiable in v and

Hε
v(t, v) = Hv

(
�ε

t , v, uε
t–δ

)
+ E

Ft
[
Hvδ

(
�ε

t+δ , uε
t+δ , v

)]
.

We are now in a position to establish the necessary condition for near-optimal controls
of the stochastic control problem ()-().
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Theorem  Assume (H)-(H). There exists C >  such that for any γ ∈ [, 
 ], any ε > 

and any ε-optimal control pair (Xε· , uε· ) of the stochastic control problem ()-(), we have

E

∫ T



〈
Hε

v
(
t, uε

t
)
, v – uε

t
〉
dt ≥ –Cεγ , ∀v ∈ U .

Proof The inequality is just

E

∫ T



〈
E
Ft

[
D(t + δ)T Y ε

t+δ + D(t + δ)T Zε
t+δ + lvδ

(
ε

t+δ

)]

+ C(t)T Y ε
t + C(t)T Zε

t + lv
(
ε

t
)
, v – uε

t
〉
dt ≥ –Cεγ , ∀v ∈ U . ()

In view of (), we only need to show that the difference between the terms on the left-
hand sides of () and () is not more than Cεγ for some constant C that is independent
of ε and γ . Note that ε < , γ ≤ 

 .
Firstly consider

� = E

∫ T



{〈
C(t)T Ỹ ε

t , v – ũε
t
〉
–

〈
C(t)T Y ε

t , v – uε
t
〉}

dt.

Note that � = � + � with

� = E

∫ T



〈
C(t)T(

Ỹ ε
t – Y ε

t
)
, v – ũε

t
〉
dt, � = E

∫ T



〈
C(t)T Y ε

t , uε
t – ũε

t
〉
dt.

Since U is bounded, there exists C > , which is independent of ε, such that � ≤
CE

∫ T
 |Ỹ ε

t – Y ε
t |dt. Then, by Proposition , applying the Cauchy-Schwartz inequality we

get � ≤ Cd(uε· , ũε· ), and furthermore � ≤ C
√

ε due to (). On the other hand, using
the Cauchy-Schwartz inequality again, in view of () and (), we get � ≤ C

√
ε. Thus,

� ≤ C
√

ε ≤ Cεγ . Similarly, we can prove

E

∫ T



{〈
C(t)T Z̃ε

t , v – ũε
t
〉
–

〈
C(t)T Zε

t , v – uε
t
〉}

dt ≤ C
√

ε.

Next, let us consider

� = E

∫ T



{〈
lv
(
̃ε

t
)
, v – ũε

t
〉
–

〈
lv
(
ε

t
)
, v – uε

t
〉}

dt.

We have � = � + �, where

� = E

∫ T



〈
lv
(
̃ε

t
)

– lv
(
ε

t
)
, v – ũε

t
〉
dt, � = E

∫ T



〈
lv
(
ε

t
)
, uε

t – ũε
t
〉
dt.

Note that

� ≤ CE

∫ T



∣
∣lv

(
̃ε

t
)

– lv
(
ε

t
)∣
∣dt.
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By (H), we can use a change of variables and the Cauchy-Schwartz inequality to get

� ≤ C

√

E

∫ T



∣
∣X̃ε

t – Xε
t
∣
∣ dt + Cd

(
uε

· , ũε
·
)
.

Then by Proposition  and () we get � ≤ C
√

ε. Besides, (H) gives

� ≤ CE

∫ T



(
 +

∣
∣Xε

t
∣
∣ +

∣
∣Xε

t–δ

∣
∣)

∣
∣uε

t – ũε
t
∣
∣dt,

so, by () and (), we can use the Cauchy-Schwartz inequality again to get � ≤ C
√

ε.
Thus, � ≤ C

√
ε ≤ Cεγ . Finally let us consider

� = E

∫ T



{〈
E
Ft

[
D(t + δ)T Ỹ ε

t+δ + D(t + δ)T Z̃ε
t+δ + lvδ

(
̃ε

t+δ

)]
, v – ũε

t
〉

–
〈
E
Ft

[
D(t + δ)T Y ε

t+δ + D(t + δ)T Zε
t+δ + lvδ

(
ε

t+δ

)]
, v – uε

t
〉}

dt.

In fact, by using Fubini’s theorem, a change of variables and recalling our assumptions we
get

� = E

∫ T

δ

{〈
D(t)T Ỹ ε

t + D(t)T Z̃ε
t + lvδ

(
̃ε

t
)
, v – ũε

t–δ

〉

–
〈
D(t)T Y ε

t + D(t)T Zε
t + lvδ

(
ε

t
)
, v – uε

t–δ

〉}
dt

= E

∫ T

δ

{〈
D(t)T Ỹ ε

t , v – ũε
t–δ

〉
–

〈
D(t)T Y ε

t , v – uε
t–δ

〉}
dt

+ E

∫ T

δ

{〈
D(t)T Z̃ε

t , v – ũε
t–δ

〉
–

〈
D(t)T Zε

t , v – uε
t–δ

〉}
dt

+ E

∫ T

δ

{〈
lvδ

(
̃ε

t+δ

)
, v – ũε

t–δ

〉
–

〈
lvδ

(
ε

t
)
, v – uε

t–δ

〉}
dt.

Then similar to � and � we have � ≤ Cεγ . Thus, () can be obtained, and the proof is
complete. �

4 Sufficient conditions for near-optimality
In this section, we study under what conditions an admissible control turns out to be near-
optimal. For this purpose, let us assume, moreover,

(H) l and � are convex in (x, xδ , v, vδ).
(H) l is Lipschitz in (v, vδ).

Theorem  Let (Xε· , uε· ) be an admissible pair and (Y ε· , Zε· ) the corresponding solution of
the adjoint equation ().

(i) Assume (H)-(H). If uε· satisfies

E

∫ T



〈
Hε

v
(
t, uε

t
)
, vt – uε

t
〉
dt ≥ –ε, ∀v· ∈ U , ()

then J(uε· ) ≤ V + ε.
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(ii) Assume (H)-(H). If uε· satisfies

inf
v·∈U

E

∫ T



[
Hε(t, vt) – Hε

(
t, uε

t
)]

dt ≥ –ε, ()

then there exists C′ > , which is independent of ε, such that J(uε· ) ≤ V + C′ε.

Proof For any v· ∈ U , set v̂t = vt – uε
t and X̂t = Xv

t – Xε
t . Applying Itô’s formula to 〈X̂t , Y ε

t 〉
yields

E
〈
�x

(
Xε

T
)
, X̂T

〉
+ E

∫ T



〈
lx

(
ε

t
)

+ E
Ft

[
lxδ

(
ε

t+δ

)]
, X̂t

〉
dt

= E

∫ T



(〈
B(t)T Y ε

t , X̂t–δ

〉
–

〈
E
Ft

[
B(t + δ)T Y ε

t+δ

]
, X̂t

〉)
dt

+ E

∫ T



(〈
B(t)T Zε

t , X̂t–δ

〉
–

〈
E
Ft

[
B(t + δ)T Zε

t+δ

]
, X̂t

〉)
dt

+ E

∫ T



〈
C(t)T Y ε

t + C(t)T Zε
t , v̂t

〉
dt + E

∫ T



〈
D(t)T Y ε

t + DT
 (t)Zε

t , v̂t–δ

〉
dt.

Then by a change of variables we get

E
〈
�x

(
Xε

T
)
, X̂T

〉
+ E

∫ T



(〈
lx

(
ε

t
)
, X̂t

〉
+

〈
lxδ

(
ε

t
)
, X̂t–δ

〉)
dt

= E

∫ T



〈
C(t)T Y ε

t + C(t)T Zε
t + E

Ft
[
D(t + δ)T Y ε

t+δ + D(t + δ)T Zε
t+δ

]
, v̂t

〉
dt.

On the other hand, thanks to (H), we can use a change of variables again to get

J(v·) – J
(
uε

·
) ≥ E

〈
�x

(
Xε

T
)
, X̂T

〉
+ E

∫ T



(〈
lx

(
ε

t
)
, X̂t

〉
+

〈
lxδ

(
ε

t
)
, X̂t–δ

〉)
dt

+ E

∫ T



〈
lv
(
ε

t
)

+ E
Ft

[
lvδ

(
ε

t+δ

)]
, v̂t

〉
dt.

Combining them gives

J(v·) – J
(
uε

·
) ≥ E

∫ T



〈
Hε

v
(
t, uε

t
)
, v̂t

〉
dt. ()

So, if () holds, then J(uε· ) ≤ J(v·) + ε. Thus, the conclusion (i) follows from the arbitrari-
ness of v· ∈ U .

Next we prove (ii). To this end, define d̃ by

d̃
(
u·, u′

·
)

= E

∫ T


νε

t
∣
∣ut – u′

t
∣
∣dt

with νε
t =  + |Y ε

t | + |Zε
t | + E

Ft [|Y ε
t+δ

| + |Zε
t+δ

|]. Then (U , d̃) is a complete metric space.
Define a new functional f (u·) : U →R by

f (u·) = E

∫ T


Hε(t, ut) dt.
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Then, by (H), there exists L >  such that |f (u·) – f (u′·)| ≤ Ld̃(u·, u′·), which shows that f
is continuous on (U , d̃). Besides, the assumption () shows that

f
(
uε

·
) ≤ inf

u·∈U
f (u·) + ε.

Consequently, applying Lemma  for λ = ε leads to the existence of ũε· ∈ U which satisfies

d̃
(
ũε

· , uε
·
) ≤ ε, ()

F
(
ũε

·
) ≤ inf

u·∈U
F(u·), ()

where

F(u·) � f (u·) + εd̃
(
ũε

· , u·
)

= E

∫ T



[
Hε(t, ut) + ενε

t
∣
∣ũε

t – ut
∣
∣]dt.

Note that () implies a pointwise maximum principle, that is, for a.e. t ∈ [, T], a.s.,
Hε(t, v) + ενε

t |ũε
t – v| attains its minimum over U at ũε

t . By Propositions .. and ..
in [], this yields

 ∈ ∂vHε
(
t, ũε

t
)

+
[
–ενε

t , ενε
t
]
,

where ∂ϕ(x) denotes Clarke’s generalized gradient of ϕ at x. Since Hε(t, v) is differentiable
in v, the previous inclusion implies the existence of βε

t ∈ [–ενε
t , ενε

t ] such that Hε
v(t, ũε

t ) =
–βε

t . Thus,

∣
∣Hε

v
(
t, ũε

t
)∣∣ ≤ ενε

t . ()

Then, by (H) and the equality

Hε
v
(
t, uε

t
)

= Hε
v
(
t, ũε

t
)

+
[
Hv

(
�ε

t , uε
t , uε

t–δ

)
– Hv

(
�ε

t , ũε
t , uε

t–δ

)]

+ E
Ft

[
Hvδ

(
�ε

t+δ , uε
t+δ , uε

t
)

– Hvδ

(
�ε

t+δ , uε
t+δ , ũε

t
)]

,

there exists C > , independent of ε, such that

∣
∣Hε

v
(
t, uε

t
)∣
∣ ≤ ενε

t + Cνε
t
∣
∣ũε

t – uε
t
∣
∣.

This, together with () and (), leads to the existence of C′′ > , independent of ε, such
that

E

∫ T



∣
∣Hε

v
(
t, uε

t
)∣
∣dt ≤ C′′ε.

Consequently, considering the boundedness of U , we can use () to derive

J(v·) – J
(
uε

·
) ≥ –E

∫ T



∣
∣Hε

v
(
t, uε

t
)∣∣|v̂t|dt ≥ –C′ε.

Since v· ∈ U is arbitrarily chosen, this completes the proof. �
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Remark  Theorem (i) shows that, under (H)-(H), an admissible control uε· of prob-
lem ()-() is ε-optimal if it satisfies (). By Theorem (ii), we know that, under (H)-(H),
if an admissible control uε· of problem ()-() satisfies

inf
v·∈U

E

∫ T



[
Hε(t, vt) – Hε

(
t, uε

t
)]

dt ≥ –
(
ε/C′),

then it is indeed ε-optimal. Note that the conclusions in Theorem (i) and (ii) cannot
contain each other in general.

5 Applications
In this section, the theoretical results are applied to two examples.

Example  Take U = [, ]. Assume that X· satisfies

dXv
t = vt–δ dWt ,  ≤ t ≤ T ; Xv

t = ξt , –δ ≤ t ≤ .

The objective is to minimize

J(v·) = E

[∫ T


vt dt +



(
Xv

T
)

]

.

In this case, the adjoint equation is described by

dY v
t = Zv

t dWt ,  ≤ t ≤ T ; Y v
T = Xv

T ; Y v
t = Zv

t = , T < t ≤ T + δ.

Comparing the adjoint equation with the system equation, by the uniqueness of the solu-
tions, we get (Y v

t , Zv
t ) = (Xv

t , vt–δ) for  ≤ t ≤ T .
Note that H(t, x, xδ , y, z, v, vδ) = vδz + v and

Hε(t, v) =
(
 + E

Ft
[
Zε

t+δ

])
v +

(
Zε

t uε
t–δ + E

Ft
[
uε

t+δ

])
.

Thus, Hε
v(t, uε

t ) =  + E
Ft [Zε

t+δ]. Besides, since Zε
t = uε

t–δ for  ≤ t ≤ T and Zε
t =  for T <

t ≤ T + δ, we have  + E
Ft [Zε

t+δ] = f ε(t), with f ε(t) =  + uε
t for  ≤ t ≤ T – δ and f ε(t) = 

for T – δ < t ≤ T . Thus,

inf
v·∈U

E

∫ T


Hε

v
(
t, uε

t
)(

vt – uε
t
)

dt = –E
∫ T


f ε(t)uε

t dt.

By Theorem (i), an admissible control uε· is ε-optimal if

E

∫ T


f ε(t)uε

t dt = E

[∫ T–δ



(
 + uε

t
)
uε

t dt +
∫ T

T–δ

uε
t dt

]

≤ ε

and thus if

E

∫ T


uε

t dt ≤ ε/.
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Finally, let us give some examples of ε-optimal controls with sufficiently small ε:

uε
t =

ε

T
,
εt
T ,

min{Wt , ε}
T

.

Example  We consider a cash management problem. Denote by X· the cash flow of an
agent, and v· the control strategy which is the rate of cash disturbance (cash inflow or cash
outflow). Since there exist necessary and unavoidable time delays in practice, we assume
that the dynamics of the cash flow is described by

⎧
⎨

⎩

dXv
t = [B(t)Xv

t–δ
+ D(t)vt–δ ] dt + [B(t)Xv

t–δ
+ D(t)vt–δ ] dWt ,  ≤ t ≤ T ,

Xv
t = ξt , –δ ≤ t ≤ ,

where the time-varying coefficients are bounded adapted processes. Our objective is to
minimize the following functional:

J(v·) = E

[∫ T






N(t)
(
vt – α(t)

) dt – QXv
T

]

,

where N(·) and α(·) are bounded adapted process, and Q is a bounded FT -measurable
random variable. N(·) and Q are weight coefficients, and α(·) is interpreted as a dynamic
benchmark. For clarity, we assume that U = [c, d] with suitable constants c and d, c ≥ ,
N(t) >  and Q > . In this case, the objective contains two parts: one is to maximize an
expected terminal reward, and the other to minimize a square criterion on the control
strategy v·, which is to prevent it from large deviation. Let us assume w.o.l.g. that α(t) ∈ U
for all t ∈ [, T], and vt = c for all admissible control v· and t ∈ (T – δ, T].

It is easy to check that the assumptions (H)-(H) hold true for this example. The adjoint
equation takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

–dYt = E
Ft [B(t + δ)Yt+δ + B(t + δ)Zt+δ ] dt – Zt dWt ,  ≤ t ≤ T ,

YT = –Q,

Yt = , Zt = , T < t ≤ T + δ.

Note that the solution is independent of the control. Similar to [], if the coefficients Q,
B(·), B(·) are Malliavin differentiable, then this ABSDE can be solved interval by interval
in Malliavin’s sense to get its unique solution (Y·, Z·).

The Hamiltonian H takes the following form:

H(t, x, xδ , y, z, v, vδ) = N(t)
(
v – α(t)

)/ +
[
D(t)y + D(t)z

]
vδ +

[
B(t)y + B(t)z

]
xδ .

Set λ(t) = E
Ft [D(t + δ)Yt+δ + D(t + δ)Zt+δ ] and H(t, v) = N(t)(v – α(t))/ + λ(t)v. Then

by the definition of Hε(t, v) we have

Hε
v(t, v) = N(t)

(
v – α(t)

)
+ λ(t), Hε(t, v) – Hε(t, u) = H(t, v) – H(t, u).

Set Pt = (α(t)N(t) – λ(t))/N(t) and γ ε
t = infv·∈U E

∫ T
 [Hε(t, vt) – Hε(t, uε

t )] dt. Then

γ ε
t = inf

v·∈U
E

∫ T



[
H

ε(t, vt) – H
ε
(
t, uε

t
)]

dt.
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By Remark , an admissible control uε· is ε-optimal if it satisfies

γ ε
t ≥ –

(
ε/C′).

Particularly, if Pt ∈ U for all t ∈ [, T], then it is easy to check that

γ ε
t = –E

∫ T






N(t)
(
uε

t – Pt
) dt.

Consequently, an adapted process uε· is ε-optimal if it takes values in U and satisfies

E

∫ T


N(t)

(
uε

t – Pt
) dt ≤ 

(
ε/C′). ()

By (), in order to find an ε-optimal control, we need to compute C′. To this end, we
follow the proof of Theorem (ii). Let () hold. Recall that U = [c, d] with c ≥ , and
α(t) ∈ U . Since

Hε(t, v) – Hε(t, u) =
[
N(t)

(
u + v – α(t)

)
/ + λ(t)

]
(v – u),

we have

∣
∣Hε(t, v) – Hε(t, u)

∣
∣ ≤ νt|v – u|,

where

νt =  + dN(t) + E
Ft

[∣
∣D(t + δ)Yt+δ

∣
∣ +

∣
∣D(t + δ)Zt+δ

∣
∣
]
.

So f (u·) � E
∫ T

 Hε(t, ut) dt satisfies

∣
∣f (u·) – f (v·)

∣
∣ ≤ d̃(u·, v·) �

∫ T


νt|ut – vt|dt.

On the one hand, by () we have |Hε
v(t, ũε

t )| ≤ ενt . On the other hand, Hε
v(t, uε

t ) =
Hε

v(t, ũε
t ) + N(t)(uε

t – ũε
t ). Thus,

∣
∣Hε

v
(
t, uε

t
)∣
∣ ≤ ενt + N(t)

∣
∣uε

t – ũε
t
∣
∣ ≤ ενt + νt

∣
∣ũε

t – uε
t
∣
∣/d,

and so

∣
∣Hε

v
(
t, uε

t
)(

vt – uε
t
)∣
∣ ≤ dενt + νt

∣
∣ũε

t – uε
t
∣
∣.

Therefore,

J(v·) – J
(
uε

·
) ≥ –E

∫ T



∣
∣Hε

v
(
t, uε

t
)(

vt – uε
t
)∣
∣dt ≥ –dE

∫ T


νt dtε – d̃

(
ũε

· , uε
·
)
.
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Figure 1 The function Yt .

Next, in view of (), we have

J(v·) – J
(
uε

·
) ≥ –

(

 + dE
∫ T


νt dt

)

ε,

and thus

J
(
uε

·
) ≤ V +

(

 + dE
∫ T


νt dt

)

ε,

due to the arbitrariness of v· ∈ U . So C′ could be any constant satisfying

C′ ≥  + dE
∫ T


νt dt.

Finally, let us give a numerical simulation. Assume that the coefficients are all deter-
ministic and time-invariant. Take c = , d = , T = , δ = δ = ., B(t) = B(t) = .,
Q = , D(t) = D(t) = ., N(t) = , α(t) = . In this case, it is easy to check that Zt = 
for  ≤ t ≤ ., and Yt solves the following ODE:

Y ′
t = –.Yt+.,  ≤ t ≤ ; Y = –; Yt = ,  < t ≤ .,

which can be solved explicitly by subdividing [, ] backwardly to get

Yt = –, . ≤ t ≤ ,

Yt = – – .(. – t), . ≤ t ≤ .,

...

The graph of Yt is shown in Figure . Then it is easy to check that  + d
∫ T

 νt dt < , so we
can take C′ = . Since Pt = –.Yt+. ∈ U , we can conclude that an adapted process uε·
is ε-optimal if it takes values in U and satisfies

E

∫ 



(
uε

t + .Yt+.
) dt ≤ (ε/).
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Let us give an example of ε-optimal control for sufficiently small ε:

uε
t =

⎧
⎨

⎩

–.Yt+. + ε/,  ≤ t ≤ .;

, . < t ≤ .

6 Conclusion
We study near-optimal controls for one kind of stochastic delay control problem with
convex control domain. By the stochastic maximum principle and Ekeland’s variational
principle, we establish necessary conditions for a control to be near-optimal. Sufficient
conditions are also given, which show when an admissible control is indeed near-optimal.
Two illustrative examples are given, for which some near-optimal controls in the explicit
form are obtained. Future work includes the nonconvex control domain case and linear
quadratic problems in terms of the Riccati equations.
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