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Abstract
This paper is devoted to generalizing the notion of almost periodic functions on time
scales. We introduce a new class of almost periodic time scales called Hausdorff
almost periodic time scales by using the Hausdorff distance and propose a more
general notion of almost periodic functions on these new time scales. Then we
explore some properties of Hausdorff almost periodic time scales and prove that the
family of almost periodic functions on Hausdorff almost periodic time scales is a
Banach space. Especially, our analysis also indicates that a function on a Hausdorff
almost periodic time scale is almost periodic if and only if its affine extension is Bohr
almost periodic on the real numbers R. As an application, we establish the existence
of almost periodic solutions for a single species model on Hausdorff almost periodic
time scales.
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1 Introduction
It is recognized that the calculus of time scales harmonizes continuous analysis and dis-
crete analysis into a unified framework and plays an important role in theoretical research
and practical application [, ]. This means that the theory of dynamic equations on time
scales not only provides a unifying structure for the study of differential equations and
difference equations, but it also explores dynamic equations on general time scales [, ].
Almost periodic functions, essentially originating in landmark work of Bohr [], describe
bounded continuous functions with some approximate periodicity and have been exten-
sively studied and discussed for differential equations and difference equations [, ]. In
view of the two facts above, it is important and of great interest to establish almost periodic
functions on time scales and study almost periodic dynamic equations on time scales.

In , Li and Wang [] defined a class of almost periodic time scales, that is, a time
scale T is called an almost periodic time scale if

� := {τ ∈ R : t ± τ ∈ T,∀t ∈ T} �= {},

and the corresponding almost periodic functions on this time scale. Guan and Wang []
explored the structure of time scales under translation and introduced almost periodic
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functions on two-way translation invariant and positive translation invariant time scales.
Their studies point out that almost periodic time scales in [] and the two-way transla-
tion invariant time scales are equal and there exists the smallest positive number τ such
that the set � = {kτ : k ∈ Z} when T �= R. This implies that almost periodic time scales in
[] are too restrictive and cannot well relate general time scales (also see []). Recently,
Wang and Agarwal [, ] and Li and Li [] introduced a new class of almost periodic
time scales by using the distance between two time scales and established the correspond-
ing almost periodic functions on these time scales. Studies suggest that this type of almost
periodic time scales is more general, feasible and effective. For more details and applica-
tions of almost periodic time scales and almost periodic functions on time scales, we refer
the reader to [–] and the references therein.

Motivated by the existing nice studies and the above considerations, a main novelty of
the present paper is that we develop a new class of almost periodic time scales called Haus-
dorff almost periodic time scales by using the Hausdorff distance and define almost peri-
odic functions on these new time scales. Hausdorff almost periodic time scales are more
general and natural than periodic and positive translation invariant ones, and different
from those proposed in [–]. And it is of the essence that almost periodic functions
still can be well defined on Hausdorff almost periodic time scales. At the same time, there
exist two other interesting topics in this paper. The first one is the question whether the
family of almost periodic functions on Hausdorff almost periodic time scales is a Banach
space. Another important and interesting problem is whether there is a relationship be-
tween almost periodic functions on Hausdorff almost periodic time scales and Bohr al-
most periodic functions on the real numbers.

The organization of this paper is as follows. In Section , with the help of the Hausdorff
distance of two closed subsets of R, we introduce the concept of Hausdorff almost peri-
odic time scales and explore some of its properties. In Section , we define almost periodic
functions on Hausdorff almost periodic time scales and show this concept includes Bohr
almost periodic functions and sequences when T = R and Z. Then we establish a relation
between almost periodic functions on Hausdorff almost periodic time scales and Bohr al-
most periodic functions on the real numbers, and prove that the family of almost periodic
functions on Hausdorff almost periodic time scales are a Banach space in Section . In the
final section, we investigate the existence of almost periodic solutions for a single species
model on Hausdorff almost periodic time scales.

2 Hausdorff almost periodic time scales
This section focuses on a new class of almost periodic time scales called Hausdorff almost
periodic time scales. To obtain our results, we first introduce the concepts of Hausdorff
distance and relatively dense subset, Bohr almost periodic functions onR and Bohr almost
periodic sequences on Z (see []).

Let S := {P : P is a nonempty closed subset of the real numbers R}. For any P, P ∈ S ,
we define the Hausdorff distance by

dH (P, P) = max
{

sup
x∈P

d(x, P), sup
y∈P

d(y, P)
}

,

where d(z, P) = infw∈P |z – w|. If the Hausdorff distance is finite, then it has an equivalent
form, which is more visually appealing. Given any P ∈ S , we denote the ε-expansion of P
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by

Eε(P) =
⋃
x∈P

(x – ε, x + ε).

Then the Hausdorff distance dH (P, P) can be reformulated as

dH (P, P) = inf
{
ε >  | Eε(P) ⊃ P and Eε(P) ⊃ P

}
.

A set A ⊂ R is said to be relatively dense in B ⊂ R if there exists a number l >  with
the property that the intersection of any interval of length l and B contains a τ ∈ A. The
number l is called the inclusion length of A in B.

A continuous function f on R is said to be Bohr almost periodic if for every ε >  the set
of ε-translation numbers of f is relatively dense in R, that is, there exists a number lε > 
with the property that any interval of length lε contains a τ ∈R such that |f (t)– f (t +τ )| < ε

for all t ∈ R. The number τ is called an ε-translation number of f . Similarly, a sequence
{ai}i∈Z is said to be Bohr almost periodic if for every ε >  the set of ε-translation numbers
of {ai}i∈Z is relatively dense in Z.

Now we introduce Hausdorff almost periodic time scales. A time scale T is defined as
a nonempty closed subset of the real numbers R. Let τ a real number and {t + τ : t ∈ T}
by T

τ . Then the number τ is called a δ-translation number of T if dH (T,Tτ ) < δ for δ > .

Definition . A time scale T is said to be Hausdorff almost periodic if, for any δ > , the
set δT of all δ-translation numbers of T is relatively dense in R.

Remark . A periodic time scale is always a Hausdorff almost periodic time scale. In
fact, if T is a T-periodic time scale and let δT = {zT | z ∈ Z}, then dH (T,Tτ ) =  for each
τ ∈ δT.

Here we show that the following two time scales are Hausdorff almost periodic time
scales rather than periodic time scales.

Example . Assume that {αi}i∈Z and {βi}i∈Z are Bohr almost periodic sequences.
() Let T := {τi = iT + αi, i ∈ Z} for some T >  and |αi| < T/ for any i ∈ Z. If p ∈ Z is an

ε-translation number of the sequence {αi}i∈Z, then

dH
(
T,TpT)

= max
{

sup
i∈Z

{
d
(
τi,TpT)}

, sup
i∈Z

{
d(T, τi + pT)

}}

≤ sup
i∈Z

d(τi+p, τi + pT)

= sup
i∈Z

|αi+p – αi| < ε,

which indicates that T is a Hausdorff almost periodic time scale. It is noteworthy
that this time scale T is always used as the impulse moments in almost periodic
impulsive differential equations (see []).

() Let T :=
⋃

i∈Z[ + i + αi,  + i + βi], and {αi}i∈Z, {βi}i∈Z be zero mean value with
|αi|, |βi| <  for any i ∈ Z. If γ ∈ Z is a common ε-translation number of {αi}i∈Z and
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{βi}i∈Z, then T ⊂ Eε(Tγ ) and Eε(T) ⊃ T
γ , that is, dH (T,Tγ ) < ε. This implies

that it is a Hausdorff almost periodic time scale.

Let T be a time scale, we define the function fT : R � t 	→ dH (T,Tt) ∈R, which obviously
is continuous. The following theorem reveals a relationship of almost periodicity between
a time scale T and its fT.

Theorem . A time scale T is Hausdorff almost periodic if and only if the function fT is
Bohr almost periodic on R.

Proof Necessity. Suppose T is a Hausdorff almost periodic time scale. For any ε > , there
is a relatively dense subset P of R such that

dH
(
T,Tτ

)
< ε, ∀τ ∈ P.

For each t ∈R and τ ∈ P, we have

∣∣fT(t) – fT(t + τ )
∣∣ =

∣∣dH
(
T,Tt) – dH

(
T,Tt+τ

)∣∣

≤ dH
(
T

t ,Tt+τ
)

= dH
(
T,Tτ

)
< ε.

Thus,

sup
t∈R

∣∣fT(t) – fT(t + τ )
∣∣ ≤ ε, ∀τ ∈ P,

which indicates fT is Bohr almost periodic on R.
Sufficiency. If fT is a Bohr almost periodic function on R, and let τ be an ε-translation

number of fT, then

dH
(
T,Tτ

)
= fT(τ ) = fT(τ ) – fT()

≤ sup
t∈R

∣∣fT(t + τ ) – fT(t)
∣∣ < ε.

This means that the time scale T is Hausdorff almost periodic since the set of ε-translation
numbers of fT is relatively dense in R. �

Remark . From fT() =  and the proof of the theorem above, we conclude that T is
periodic if and only if there exists a τ �=  such that fT(τ ) = . In this case, the function fT
is a continuous periodic function on R.

Corollary . If a time scale T is Hausdorff almost periodic, then infT = –∞ and
supT = +∞.

Proof If infT > –∞, then, for each t < , Tt
� E–t/(T) and fT(t) ≥ –t/. It follows that

inft→–∞ fT(t) = +∞. But Theorem . implies that fT is a Bohr almost periodic func-
tion which is bounded. This is a contradiction, so infT = –∞. With similar arguments,
supT = +∞. �
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3 Almost periodic functions on Hausdorff almost periodic time scales
In this section, we first define almost periodic functions on Hausdorff almost periodic
time scales. We let a δ-neighborhood of t ∈R be Nδ(t) and its closure be Nδ(t).

Definition . Let T be a Hausdorff almost periodic time scale, and f be a function from
T to complex field C. If, for any ε > , there exist a δ = δ(ε) >  and a relatively dense subset
R(δ) of δ-translation number set δT of T satisfying the following conditions:

(i) R(δ) ⊃ (–δ, δ);
(ii) δ(ε) decreases to zero as ε → ;

(iii) for each τ ∈ R(δ), supt∈T sups∈Nδ (t)∩T–τ |f (t) – f (s + τ )| < ε holds,
then f is called an almost periodic function on the Hausdorff almost periodic time scale T.

We denote the set of all almost periodic functions on Hausdorff almost periodic time
scale T by AP(T,C). The set Nδ(t) ∩T

–τ under condition (iii) is a nonempty closed subset
of T–τ since τ ∈ δT, d(t,T–τ ) ≤ dH (T,T–τ ) < δ for each t ∈ T. It is not difficult to show that
f is uniformly continuous on T if f ∈ AP(T,C). Actually, for any t, t′ ∈ T and |t – t′| < δ,
one has t ∈ T

–(t′–t) and t′ – t ∈ R(δ) by condition (i). It follows from condition (iii) that
|f (t) – f (t + (t′ – t))| = |f (t) – f (t′)| < ε.

Now we show that almost periodic functions on Hausdorff almost periodic time scales
includes Bohr almost periodic functions on R and Bohr almost periodic sequences on Z.

Proposition . IfT = R, then Definition . coincides with Bohr almost periodic functions
on R.

Proof Note that dH (R,Rτ ) =  for all τ ∈ R, then δT = R for each δ > . Assume that f is
almost periodic on T = R in Definition .. Then f is continuous on R and for any ε > ,
there exist a δ >  and a relatively dense subset R(δ) of R such that supt∈R |f (t) – f (t +τ )| < ε

for each τ ∈ R(δ) since condition (iii) holds in Definition .. This means that f is Bohr
almost periodic on R.

On the other hand, let f be a Bohr almost periodic function on R. Then f is uniformly
continuous on R and for any ε > , there is an η(ε) >  such that |f (t)– f (t)| < ε if |t – t| <
η(ε). Let δ(ε) = η(ε/) and R(δ) be the ε/-translation numbers of f . It is easy to show that
these ε, δ(ε) and R(δ) satisfy the conditions (i)-(iii) in Definition .. This completes the
proof. �

Proposition . If T = Z, then Definition . coincides with Bohr almost periodic se-
quences on Z.

Proof Assume that f is almost periodic on T = Z in Definition .. Let ε >  be sufficiently
small such that δ(ε) < /. For any τ ∈ R(δ), we have

sup
n∈Z

sup
s∈Nδ (n)∩Z–τ

∣∣f (n) – f (s + τ )
∣∣ < ε. (.)

Let τ̃ be the closest integer of τ . Then d(τ , τ̃ ) ≤ dH (Zτ ,Z) < δ and {τ̃ : τ ∈ R(δ)} is relatively
dense in Z. It follows that s + τ = (s + τ – τ̃ ) + τ̃ ∈ Z in (.), which implies that s + τ – τ̃ ∈ Z.
Moreover, since |(s + τ – τ̃ ) – n| < |s – n| + |τ – τ̃ | < δ < , we get s + τ – τ̃ = n. So (.)
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is equivalent to supn∈Z |f (n) – f (n + τ̃ )| < ε, which indicates that f is Bohr almost periodic
on Z.

Now we let f be a Bohr almost periodic sequence on Z. For any real number  < ε < /,
let δ = ε and R(δ) = Eδ(Tεf ), where Tεf ⊂ Z is the set of ε-translation numbers of f . Then
R(δ) is relatively dense in δT and ε, δ and R(δ) satisfy conditions (i) and (ii) in Definition ..
By using similar arguments to the previous paragraph, for each n ∈ Z, τ ∈ R(δ) and s ∈
Nδ(n) ∩Z

–τ , we have s + τ = n + τ̃ with τ̃ ∈ Tεf . Then, for each τ ∈ R(δ),

sup
n∈Z

sup
s∈Nδ (n)∩Z–τ

∣∣f (n) – f (s + τ )
∣∣ = sup

n∈Z

∣∣f (n) – f (n + τ̃ )
∣∣ < ε,

which completes condition (iii). This completes the proof. �

The following theorem shows that almost periodic functions on Hausdorff almost peri-
odic time scales do exist for other Hausdorff almost periodic time scales besides R and Z.

Theorem . Let T be a Hausdorff almost periodic time scale and g̃ be a Bohr almost
periodic function on R. Then g = g̃|T (the restriction of g̃ on T) is almost periodic.

Proof From Theorem ., we conclude that fT is a Bohr almost periodic function on R.
Note that each family of finite almost periodic functions are uniformly almost periodic,
then g̃ and fT are equi-uniformly continuous, that is, for any v > , there are an η(·) > 
such that |g̃(t) – g̃(s)| < v and |fT(t) – fT(s)| < v when |t – s| < η(v). For any ε > , we choose
 < ε̂ < ε such that δ(ε) = η(ε̂/) < ε/ and let R(δ) = Tδ fT ∩ Tδ(δg̃/ε̂), where TδfT is the set
of δ-translation numbers of fT.

It is well known that R(δ) is relatively dense in R (see []). And for each τ ∈ R(δ), we have

dH
(
T,Tτ

)
=

∣∣fT() – fT(τ )
∣∣ ≤ sup

t∈R

∣∣fT(t) – fT(t + τ )
∣∣ < δ,

which implies R(δ) ⊂ δT. It follows that R(δ) is relatively dense in δT.
To complete the proof, we only need to show (i)-(iii) of Definition ..
The condition (ii) in Definition . holds evidently for δ(ε) = η(ε̂/) < ε/.
For any δ′ ∈ (–δ, δ), we get

∣∣fT
(
t + δ′) – fT(t)

∣∣ =
∣∣dH

(
T,Tt+δ′)

– dH
(
T,Tt)∣∣

≤ dH
(
T

t+δ′
,Tt) = dH

(
T

δ′
,T

) ≤ δ′ < δ

and

∣∣(δ/ε̂)g̃
(
t + δ′) – (δ/ε̂)g̃(t)

∣∣ < (δε̂)/(ε̂) = δ.

Then δ′ ∈ R(δ) = Tδ fT ∩ Tδ(δg̃/ε̂) and R(δ) ⊃ (–δ, δ). This implies that condition (i) holds
in Definition ..

Now we prove that condition (iii) holds in Definition .. For the above ε, δ and R(δ), we
have

∣∣g(t) – g(s + τ )
∣∣ ≤ ∣∣g̃(t) – g̃(t + τ )

∣∣ +
∣∣g̃(t + τ ) – g̃(s + τ )

∣∣

< ε̂/ + ε̂/ < ε
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for every τ ∈ R(δ) and all t ∈ T, s ∈ Nδ(t) ∩T
–τ . Then

sup
t∈T

sup
s∈Nδ (t)∩T–τ

∣∣g(t) – g(s + τ )
∣∣ < ε.

The proof is completed. �

4 Two properties
In this section, we consider the proofs of two properties of almost periodic functions on
Hausdorff almost periodic time scales. One is to establish a relationship between almost
periodic functions on Hausdorff almost periodic time scales and Bohr almost periodic
functions on the real numbers. Another is to prove that the family of almost periodic
functions on Hausdorff almost periodic time scales are a Banach space.

To obtain the first property, we first establish two lemmas.

Lemma . Each almost periodic function on Hausdorff almost periodic time scales is
bounded.

Proof Suppose f is almost periodic on a Hausdorff almost periodic time scale T. Let ε = 
and choose the corresponding δ and R(δ) in Definition ., we have

sup
t∈T

sup
s∈Nδ (t)∩T–τ

∣∣f (t) – f (s + τ )
∣∣ <  (.)

for each τ ∈ R(δ). Denote the inclusion length of R(δ) by l. Since f is continuous, it has a
bound M on [–δ, l + δ]T = [–δ, l + δ] ∩ T. For any s ∈ T and each τ ∈ [s – l, s] ∩ R(δ), we
have s – τ ∈ [, l]T–τ . Note that dH (T–τ ,T) < δ, then there is a t ∈ [–δ, l + δ]T such that
d(s – τ , t) < δ. It follows from (.) that

∣∣f (s)
∣∣ ≤ ∣∣f (t) – f

[
(s – τ ) + τ

]∣∣ +
∣∣f (t)

∣∣ <  + M.

This shows that f is bounded. �

If T �= R is unbounded above and below, then, for each t ∈ R\T, we let t∗ = sup{s ∈ T :
s < t} and t∗ = inf{s ∈ T : s > t}. We define the affine extension f̃ of a function f on a time
scale T by

f̃ (t) =

{
f (t), t ∈ T,
t∗–t

t∗–t∗ f (t∗) + t–t∗
t∗–t∗ f (t∗), t ∈R\T,

T �= R,

and

f̃ (t) = f (t), t ∈ T,T = R.

Lemma . If f is bounded and uniformly continuous on a time scale T, then its affine
extension f̃ also is uniformly continuous on R.
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Proof It is clear that the conclusion holds when T = R. We only need to consider T �= R.
Since f is uniformly continuous, for any ε > , there exists an η = η(ε) >  such that, for
any x̃, ỹ ∈ T, |f (x̃) – f (ỹ)| < ε/ when |x̃ – ỹ| < η. Let  < δ < η satisfy δ‖f ‖∞/(η – δ) < ε/,
where ‖f ‖∞ is the supremum norm of f on T.

To prove that f̃ is uniformly continuous on R, for the above ε, δ and any x, y ∈ R with
|x – y| < δ, we consider the following three cases:

Case : x ∈ T, y ∈ T. Then when |x – y| < δ, we have

∣∣f̃ (x) – f̃ (y)
∣∣ =

∣∣f (x) – f (y)
∣∣ < ε.

Case : x ∈ T, y /∈ T or x /∈ T, y ∈ T. Without loss of generality, we only consider x ∈ T,
y /∈ T and x < y, since the rest of the arguments are similar. In this case, we have x ≤ y∗ <
y < x + δ < x + η and |f (x) – f (y∗)| < ε/. If y∗ – x < η, then |f (x) – f (y∗)| < ε/. It follows that

∣∣f̃ (x) – f̃ (y)
∣∣ =

∣∣∣∣f (x) –
y∗ – y
y∗ – y∗

f (y∗) –
y – y∗
y∗ – y∗

f
(
y∗)

∣∣∣∣

≤ y∗ – y
y∗ – y∗

∣∣f (x) – f (y∗)
∣∣ +

y – y∗
y∗ – y∗

∣∣f (x) – f
(
y∗)∣∣

< ε/.

Else if y∗ – x ≥ η, then y∗ – y∗ ≥ η – δ. It follows that

∣∣f̃ (y) – f (y∗)
∣∣ =

∣∣∣∣
y∗ – y
y∗ – y∗

f (y∗) +
y – y∗
y∗ – y∗

f
(
y∗) – f (y∗)

∣∣∣∣

≤ y – y∗
y∗ – y∗

∣∣f (y∗) – f
(
y∗)∣∣

≤ δ‖f ‖∞/(η – δ) < ε/.

Then

∣∣f̃ (x) – f̃ (y)
∣∣ ≤ ∣∣f (x) – f (y∗)

∣∣ +
∣∣f̃ (y) – f (y∗)

∣∣ < ε/.

In conclusion, when |x – y| < δ, we have

∣∣f̃ (x) – f̃ (y)
∣∣ < ε/ < ε.

Case : x, y /∈ T. We only consider x < y since x > y is similar. If x < x∗ ≤ y∗ < y, then
|f (x∗) – f (y∗)| < ε/. It follows from Case  that

∣∣f (y∗) – f̃ (y)
∣∣ < ε/ and

∣∣f (x∗) – f̃ (x)
∣∣ < ε/,

since x∗ and y∗ are in T with |x – x∗| < δ and |y – y∗| < δ. Then

∣∣f̃ (x) – f̃ (y)
∣∣ ≤ ∣∣f̃ (x) – f

(
x∗)∣∣ +

∣∣f (x∗) – f (y∗)
∣∣ +

∣∣f (y∗) – f̃ (y)
∣∣ < ε.
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If x∗ = y∗ < x < y < y∗ = x∗, then

∣∣f̃ (x) – f̃ (y)
∣∣ ≤ ∣∣f (y∗) – f

(
y∗)∣∣ < ε when y∗ – y∗ < η

and

∣∣f̃ (x) – f̃ (y)
∣∣ ≤ y – x

y∗ – y∗

∣∣f (y∗) – f (y∗)
∣∣ ≤ δ‖f ‖∞/η < ε when y∗ – y∗ ≥ η.

In conclusion, |f̃ (x) – f̃ (y)| < ε when |x – y| < δ.
The proof is completed. �

Theorem . If f is a function on a Hausdorff almost periodic time scaleT, then f is almost
periodic if and only if its affine extension f̃ is Bohr almost periodic.

Proof It follows from Proposition . that the conclusion holds when T = R. If T �= R, the
sufficiency is true since Theorem . holds. Then we only need to prove the necessity for
T �= R.

Assume that f is almost periodic on T. Then f is bounded and uniformly continuous
on T. It follows from Lemma . that f̃ is uniformly continuous. This means that, for any
ε > , there exists an η = η(ε) >  such that, for any t, s ∈R, we have

∣∣f̃ (t) – f̃ (s)
∣∣ < ε/

if |t – s| < η. We choose a ε′ >  with ε′ < ε/ and the corresponding δ = δ(ε′), R(δ) in Defi-
nition . with δ(ε′) < η(ε) and Mδ/(η–δ) ≤ ε/, where M is a bound of f in Lemma ..

To complete the proof, we will show that, for any t ∈R and each τ ∈ R(δ), |f̃ (t)– f̃ (t +τ )| <
ε holds. For different cases t and t + τ , this proof is achieved in three steps.

The first step is t, t + τ ∈ T. In this case, it is clear that

∣∣f̃ (t) – f̃ (t + τ )
∣∣ =

∣∣f (t) – f (t + τ )
∣∣ < ε.

The second step is t ∈ T, t + τ /∈ T or t /∈ T, t + τ ∈ T. The arguments for t ∈ T, t + τ /∈ T

and t /∈ T, t +τ ∈ T are similar, so we only consider the former. It follows from dH (T,Tτ ) < δ

that |(t + τ )∗ – (t + τ )| < δ or |(t + τ )∗ – (t + τ )| < δ. We only consider the case |(t + τ )∗ – (t +
τ )| < δ, since the other case, |(t + τ )∗ – (t + τ )| < δ, is similar. It follows that

∣∣f̃ (t) – f
(
(t + τ )∗

)∣∣ ≤ sup
s∈Nδ (t)∩T–τ

∣∣f (t) – f (s + τ )
∣∣ < ε′.

Since t +τ /∈ T, (t +τ )∗ ∈ T and |(t +τ )∗ –(t +τ )| < δ, from case  in the proof of Lemma .,
we have |f̃ (t + τ ) – f ((t + τ )∗)| < ε/. It follows from the two inequalities above that |f̃ (t) –
f̃ (t + τ )| < ε.

The third step is t /∈ T, t + τ /∈ T. We divide this step into two different cases.
Case (a): t∗ – t∗ < η – δ. It follows that |f (t∗) – f (t∗)| < ε/. We consider the following

three cases: (a) (t + τ )∗ < t∗ + τ – δ, (a) (t + τ )∗ > t∗ + τ + δ, (a) t∗ + τ – δ ≤ (t + τ )∗ <
(t + τ )∗ ≤ t∗ + τ + δ.
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(a) It is clear that (t + τ )∗ + δ < t∗ + τ < t + τ < (t + τ )∗. By d(t∗ + τ ,T) < δ, we get (t + τ )∗ –
(t∗ +τ ) < δ. It follows from τ ∈ R(δ) and the uniform continuity of f̃ that |f (t∗)– f ((t +τ )∗)| <
ε′ and |f̃ (t + τ ) – f ((t + τ )∗)| < ε/. Then

∣∣f̃ (t) – f̃ (t + τ )
∣∣ =

∣∣∣∣
t∗ – t
t∗ – t∗

f (t∗) +
t – t∗
t∗ – t∗

f
(
t∗) – f̃ (t + τ )

∣∣∣∣

≤ t – t∗
t∗ – t∗

∣∣f (t∗) – f (t∗)
∣∣ +

∣∣f (t∗) – f
(
(t + τ )∗

)∣∣

+
∣∣f ((t + τ )∗

)
– f̃ (t + τ )

∣∣ < ε.

(a) By similar arguments to case (a), we get |f̃ (t) – f̃ (t + τ )| < ε.
(a) It follows from d(t∗ + τ ,T) < δ that there exists an s ∈ T such that |s – (t∗ + τ )| < δ

and |f (s) – f (t∗)| < ε′. Note that s, (t + τ )∗, (t + τ )∗ ∈ (t∗ + τ – δ, t∗ + τ + δ) and this interval
length is less than η, we have

∣∣f (s) – f
(
(t + τ )∗

)∣∣ < ε/ and
∣∣f (s) – f

(
(t + τ )∗

)∣∣ < ε/,

since f̃ is the uniform continuous. Then

∣∣f (t∗) – f
(
(t + τ )∗

)∣∣ < ε/,
∣∣f (t∗) – f

(
(t + τ )∗

)∣∣ < ε/

and

∣∣f̃ (t) – f̃ (t + τ )
∣∣ =

∣∣∣∣
t∗ – t
t∗ – t∗

f (t∗) +
t – t∗
t∗ – t∗

f
(
t∗) –

(t + τ )∗ – (t + τ )
(t + τ )∗ – (t + τ )∗

f
(
(t + τ )∗

)

–
(t + τ ) – (t + τ )∗
(t + τ )∗ – (t + τ )∗

f
(
(t + τ )∗

)∣∣∣∣

≤ t – t∗
t∗ – t∗

∣∣f (t∗) – f (t∗)
∣∣ +

(t + τ )∗ – (t + τ )
(t + τ )∗ – (t + τ )∗

∣∣f (t∗) – f
(
(t + τ )∗

)∣∣

+
(t + τ ) – (t + τ )∗
(t + τ )∗ – (t + τ )∗

∣∣f (t∗) – f
(
(t + τ )∗

)∣∣

< ε.

In summary of (a)-(a), we have |f̃ (t) – f̃ (t + τ )| < ε.
Case (b): t∗ – t∗ ≥ η – δ. It follows from δ < η that there are the following three cases:

(b) t∗ + δ < t < t∗ – δ, (b) t ≤ t∗ + δ and (b) t∗ – δ ≤ t.
(b) It follows that (t∗ +τ )+δ < t +τ < (t∗ +τ )–δ. Since d(t∗ +τ ,T) < δ and d(t∗ +τ ,T) < δ,

there exist two numbers κ and ν in T such that t∗ +τ –δ < κ < t +τ and t +τ < ν < t∗ +τ +δ.
Thus,

(t∗ + τ ) – δ < (t + τ )∗ < (t + τ )∗ <
(
t∗ + τ

)
+ δ. (.)

Next we show that (t∗ + τ ) + δ > (t + τ )∗. If it is not true, that is, (t∗ + τ ) + δ ≤ (t + τ )∗,
then t∗ + δ ≤ (t + τ )∗ – τ and there exists an s ∈ T such that d(s, (t + τ )∗ – τ ) < δ since
d(T–τ ,T) < δ. This implies that t∗ < s and t∗ ≤ s. Thus (t + τ )∗ < t + τ < t∗ + τ ≤ s + τ and
d(s +τ , (t +τ )∗) = d(s, (t +τ )∗ –τ ) < δ, which means that t∗ – t < δ. This contradicts t < t∗ –δ



Ji et al. Advances in Difference Equations  (2017) 2017:103 Page 11 of 14

in (b). With similar arguments, we have (t∗ + τ ) – δ < (t + τ )∗. Together with (.) gives
(t∗ + τ ) – δ < (t + τ )∗ < (t∗ + τ ) + δ and (t∗ + τ ) – δ < (t + τ )∗ < (t∗ + τ ) + δ. From τ ∈ R(δ), we
have |f (t∗) – f ((t + τ )∗)| < ε′ and |f (t∗) – f ((t + τ )∗)| < ε′. It follows that

∣∣f̃ (t) – f̃ (t + τ )
∣∣ =

∣∣∣∣f (t∗) +
t – t∗
t∗ – t∗

[
f
(
t∗) – f (t∗)

]
– f

(
(t + τ )∗

)

–
(t + τ ) – (t + τ )∗
(t + τ )∗ – (t + τ )∗

[
f
(
(t + τ )∗

)
– f

(
(t + τ )∗

)]∣∣∣∣
≤ ∣∣f (t∗) – f

(
(t + τ )∗

)∣∣ + I + I,

where

I =
(t + τ ) – (t + τ )∗
(t + τ )∗ – (t + τ )∗

∣∣[f
(
t∗) – f (t∗)

]
–

[
f
(
(t + τ )∗

)
– f

(
(t + τ )∗

)]∣∣ ≤ ε′

and

I =
(

t – t∗
t∗ – t∗

–
(t + τ ) – (t + τ )∗
(t + τ )∗ – (t + τ )∗

)∣∣f (t∗) – f (t∗)
∣∣

≤ M
( |(t – t∗) – [(t + τ ) – (t + τ )∗]|

t∗ – t∗

+
|(t∗ – t∗) – [(t + τ )∗ – (t + τ )∗]|

t∗ – t∗
· (t + τ ) – (t + τ )∗

(t + τ )∗ – (t + τ )∗

)

≤ M
(

δ

η – δ
+

δ

η – δ

)
.

The last inequality follows from the inequalities showed above that (t∗ + τ ) – δ < (t + τ )∗ <
(t∗ + τ ) + δ and (t∗ + τ ) – δ < (t + τ )∗ < (t∗ + τ ) + δ. Then |f̃ (t) – f̃ (t + τ )| < ε/.

(b) and (b) In each of these two cases, there is a t̂ ∈ (t∗ +δ, t∗ –δ) and |t – t̂| < δ. It follows
from the proof of case (b) that |f̃ (t̂) – f̃ (t̂ + τ )| < ε/. By using the uniform continuity of
f̃ , we have |f̃ (t̂) – f̃ (t)| < ε′ and |f̃ (t̂ + τ ) – f̃ (t + τ )| < ε′. Then

∣∣f̃ (t) – f̃ (t + τ )
∣∣ <

∣∣f̃ (t) – f̃ (t̂)
∣∣ +

∣∣f̃ (t̂) – f̃ (t̂ + τ )
∣∣ +

∣∣f̃ (t̂ + τ ) – f̃ (t + τ )
∣∣ < ε.

This means that we have |f̃ (t) – f̃ (t + τ )| < ε for case (b).
Combining (a) and (b) gives the conclusion of the theorem. This proof is complete. �

Now we establish the second property.

Theorem . Let T be a Hausdorff almost periodic time scale. Then the family AP(T,C)
of almost periodic functions on T is a Banach space.

Proof We first prove that AP(T,C) is a linear space. Let f , g ∈ AP(T,C) and λ ∈ C a con-
stant. For the affine extensions, it is easy to see that ˜f + g = f̃ + g̃ and λ̃f = λf̃ . From The-
orem ., we conclude that f̃ and g̃ both are almost periodic on R. Note that the family
AP(R,C) of almost periodic functions on R is a Banach space, then f̃ + g̃ and λf̃ are almost
periodic on R. It follows from Theorem . that f + g,λf ∈ AP(T,C).
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Now we show that AP(T,C) is completed. Let {fn} be a Cauchy sequence in AP(T,C).
Let ‖ϕ‖∞ denote the supremum norm of ϕ on its domain. By ‖f̃n – f̃m‖∞ = ‖f̃n – fm‖∞ =
‖fn – fm‖∞, {f̃n} also is a Cauchy sequence in AP(R,C) with a limit function denoted by f.
For the restriction of f̃n and f on T, we have f̃n|T = fn and fn → f|T as n → +∞. This
implies that f|T ∈ AP(T,C) since Theorem . holds. The proof is completed. �

5 An application
As an application, we consider a single species with hibernation in an almost periodic
environment. We assume that the active stage of this species is a time scale T given by ()
in Example .. We consider the following model:

x�(t) =

{
rx( – x), t ∈ [ + k + αk ,  + k + βk),
[(sk – )/( + αk+ – βk)]x(t), t =  + k + βk ,

(.)

where r is the inherent growth rate, sk is the survival rate during the hibernation and an
almost periodic sequence. Let

λk =  + βk+ – αk+, λ = inf{λk},
s = inf{sk} > , l =

(
 – e–rλ/s

)
/
(
 – e–rλ).

Theorem . If e–rλ < sl, then equation (.) has a unique almost periodic solution on T

in the region D = {x ∈ AP(T,R) : l ≤ x(t) ≤ , for all t ∈ T}.

Proof We easily show that x(t) is a solution of equation (.) if and only if

x(t) =


 + [/(skx( + k + βk)) – ]e–r[t–(+(k+)+αk+)] (.)

for every t ∈ [ + (k + ) + αk+,  + (k + ) + βk+], k ∈ Z. Let t =  + (k + ) + βk+

and xk = x( + k + βk) in (.). A direct calculation shows that {xk}k∈Z is a solution of
the difference equation

xk+ =


 + (/(skxk) – )e–rλk
(.)

if x(t) is a solution of (.). Conversely, if {xk}k∈Z is a solution of (.), then

x(t) =


 + [/(skxk) – ]e–r[t–(+(k+)+αk+)] ,

for t ∈ [ + (k + ) + αk+,  + (k + ) + βk+] is a solution of (.).
We define an operator J on D̃ = {{xk}k∈Z ∈ AP(Z,R) : l ≤ xk ≤ , k ∈ Z} by

J(xk) =


 + (/(sk–xk–) – )e–rλk–
, k ∈ Z,

for any sequence {xk}k∈Z ∈ D̃. It follows from Theorem . of [] that J : D̃ → AP(Z,R). If
{xk}k∈Z ∈ D̃, then we have J(xk) ≤  and

J(xk) ≥ 
 + (/(sl) – )e–rλ = l
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for any k ∈ Z, which implies that J : D̃ → D̃. For any {wk}k∈Z, {vk}k∈Z ∈ D̃, then

sup
k∈Z

∣∣J(wk) – J(vk)
∣∣ ≤ sup

k∈Z
[/(skwkvk)]e–rλk |wk – vk|

[ + (/(skwk) – )e–rλk ][ + (/(skvk) – )e–rλk ]

≤ [
e–rλ/

(
sl)] sup

k∈Z
|wk – vk|.

Thus J is a contraction mapping on D̃. By the contraction mapping principle, J has a unique
fixed point {x∗

k}k∈Z in D̃, that is, {x∗
k}k∈Z is a unique solution of (.) in D̃. Then (.) has a

unique solution,

x(t) =


 + [/(skx∗
k) – ]e–r[t–(+(k+)+αk+)] (.)

for t ∈ [ + (k + ) + αk+,  + (k + ) + βk+] and k ∈ Z. It is easy to see that l ≤ x(t) ≤ 
for any t ∈ T.

Now we show that x ∈ AP(T,C) in (.). It is clear that x(·) is uniformly continuous and
x(t) continuously depends on the initial value /(sk–x∗

k–) for t ∈ [ + k +αk ,  + k +βk]
and k ∈ Z. Then for any ε >  there exists an η = η(ε) such that |x(t) – x(t)| < ε/ when
ti ∈ [ + ki + αki ,  + ki + βki ] with

∣∣/
(
sk–x∗

k–
)

– /
(
sk–x∗

k–
)∣∣ < η (.)

and

∣∣[t – ( + k + αk )
]

–
[
t – ( + k + αk )

]∣∣ < η. (.)

Let δ = min{η/, /}, R(δ) = Eδ/(Qδ) ∪ (–δ, δ), where

Qδ =
{

p : p ∈ Z∩ Tδ/
({

/
(
skx∗

k
)}) ∩ Tδ/

({αk}
) ∩ Tδ/

({βk}
)}

.

It is not difficult to show that R(δ) ⊂ δT and conditions (i) and (ii) in Definition . hold.
Next we prove that condition (iii) in Definition . also holds. For each τ ∈ R(δ), it can

be uniquely decomposed as τ = pτ + τ ′ with pτ ∈ Qδ and |τ ′| < δ. It follows from |αk| < 
and |βk| <  that, for any t ∈ [ + k + αk ,  + k + βk], s ∈ Nδ(t) ∩ T

–τ , we have s + τ ∈
[ + (k + pτ ) + αk+pτ ,  + (k + pτ ) + βk+pτ ]. Then (.) and (.) hold, if we replace k,
k, t and t with k, k + pτ , t and s + τ , respectively. Thus |x(t) – x(s + τ )| < ε/. This means
that, for each τ ∈ R(δ), we have

sup
t∈T

sup
s∈Nδ (t)∩T–τ

∣∣x(t) – x(s + τ )
∣∣ < ε.

This completes the proof. �
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