
Liu et al. Advances in Difference Equations  (2017) 2017:117 
DOI 10.1186/s13662-017-1173-7

R E S E A R C H Open Access

Cluster linear generalized outer
synchronization in community networks via
pinning control with two different switch
periods
Yuhong Liu1*, Hui Li1, Qishui Zhong1 and Shouming Zhong2,3

*Correspondence:
yhliu1210@163.com
1School of Aeronautics and
Astronautics, University of Electronic
Science and Technology of China,
Chengdu, 611731, China
Full list of author information is
available at the end of the article

Abstract
This study investigates the problem of cluster generalized outer synchronization in
community networks via pinning control with two different switch periods. Several
pinning controllers have been designed to achieve linear generalized outer
synchronization. Using Lyapunov stability theory, sufficient linear generalized outer
synchronization criteria for community networks are derived. Finally, numerical
examples are presented to demonstrate the effectiveness of the theoretical results.
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1 Introduction
Recently, complex networks have drawn increasing attention from researchers and engi-
neers in virtue of its wide applications in many fields, such as World Wide Web, communi-
cation networks, social networks, neural networks, epidemic networks, traffic networks,
etc. Lots of network models, such as weighted networks [, ], directed networks [, ],
hierarchical networks [], community networks [–] are introduced to explore the po-
tential applications better. As is well known, the research on network synchronization is
very important due to its potential applications in many fields including secure commu-
nication, laser transmission, image identification, information science, and so on [–].
In recent years, much literature reported the research results of network synchronization,
and it has become a frontier issue [–]. As a result, different types of network synchro-
nization have been put forward, for example, complete synchronization [–], phase
synchronization [, ], projective synchronization [, ] and cluster synchronization
[, ].

Furthermore, many real complex networks cannot synchronize themselves or synchro-
nize with the desired orbits. Therefore, proper controllers should be designed to achieve
the goals by adopting some control schemes, such as adaptive control [], feedback con-
trol [], observer-based control [], impulsive control [], intermittent control [–],
pinning control [, ] and so on. As a matter of fact, there are many examples of rela-
tionships between different networks, which indicates that it is necessary and significant
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to investigate the dynamical systems between different networks. Recently, [] investi-
gated the synchronization between two unidirectionally coupled complex networks with
identical topological structures. [] discussed the synchronization between two complex
dynamical networks with non-identical topological structures via using adaptive control
method. [] discussed adaptive projective synchronization between two complex net-
works with time-varying coupling delay. In the above papers, it is assumed that each node
in drive-response networks has identical dynamics. Later, [] studied the problem of
generalized outer synchronization between two complex dynamical networks with dif-
ferent topologies and diverse node dynamics. Reference [] discussed the linear gener-
alized synchronization between two complex networks with the non-delay coupling and
the same topological structure, each network has identical dynamics. However, detailed
analysis of the linear generalized synchronization between two networks of different topo-
logical structures and time-varying coupling delay has not been attempted in [].

Motivated by the above discussions, this paper investigates the problem of cluster lin-
ear generalized outer synchronization (CLGOS) in community networks via pinning con-
trol with two different switch periods. Several pinning controllers have been designed to
achieve linear generalized outer synchronization. Using Lyapunov stability theory, suffi-
cient linear generalized outer synchronization criteria for community networks are de-
rived. Finally, numerical examples are presented to demonstrate the effectiveness of the
theoretical results. Contributions of this paper can be summarized as follows:

• By adding adaptive semi-periodically intermittent controllers to a small fraction of
nodes in response network, several sufficient conditions are derived based on the
Lyapunov stability theory and strict mathematical proofs.

• Both community networks with identical nodes and non-identical nodes are
investigated. Therefore, our proposed control schemes are more applicable
technically.

The rest of the current paper is organized as follows. Section  introduces the prob-
lem formulation and some necessary definitions, lemmas, and hypotheses. Some sufficient
conditions for the linear generalized outer synchronization are obtained in Section . Sec-
tion  gives some numerical examples to demonstrate the effectiveness of our main results.
Finally, Section  draws the conclusion.

Notation The superscripts T and (–) stand for matrix transposition and matrix inverse,
respectively; Rn denotes the n-dimensional Euclidean space; Il means the l-dimensional
identity matrix. The notation X > Y (X ≥ Y ), where X, Y are symmetric matrices, means
that X – Y is positive definite (positive semidefinite). ∗ denotes the term that is induced by
symmetry. ‖ξ‖ indicates the -norm of a vector ξ , i.e., ‖ξ‖ = ξTξ . col{x, x, . . . , xn} means
[xT

 , xT
 , . . . , xT

n ]T and Sym{X} means X + XT . The shorthand notation diag{M, M, . . . , Mn}
denotes a block diagonal matrix with diagonal blocks being the matrices M, M, . . . , Mn.
λmin(·) and λmax(·) denote the smallest and largest eigenvalue of ·. The symbol ⊗ denotes
the Kronecker product. Matrices, if their dimensions are not explicitly stated, are assumed
to have appropriate dimensions for algebraic operations.
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2 Problem formulation and preliminaries
Consider the following complex networks with time-varying coupling delay consisting of
N nodes and s communities with  ≤ s < N

ẋi(t) = fϕi
(
xi(t)

)
+ c

s∑

k=

∑

j∈Vk

aij�xj(t)

+ c
s∑

k=

∑

j∈Vk

bij�xj
(
t – τ (t)

)
, i ∈ , , . . . , N , ()

where xi ∈ R
n is the state variables of node i in networks X. fϕi(·) : Rn −→ R

n is a contin-
uously differentiable nonlinear function. c is the coupling strength, and � is an inner-
coupling matrix. τ (t) is the time-varying coupling delay satisfying  ≤ τ̇ (t) ≤ μ < .
A = (aij)N×N ∈ R

N×N and B = (bij)N×N ∈ R
N×N are the outer-coupling matrices with the

sum of each row being zero. If there is a connection from node i to node j (j 	= i), then
the coupling aij(bij) 	= ; otherwise, aij(bij) =  (j 	= i), and the diagonal elements of ma-
trix are defined as aii = –

∑N
j=,j 	=i aij or bii = –

∑N
j=,j 	=i bij. The function ϕ is defined as ϕ:

{, , . . . , N} → {, , . . . , s}; if a node i ∈ Vk , then ϕi = k; Vk (k = , , . . . , s) denotes the set of
all nodes belong to the sth community.

Consider the controller response complex dynamical network as follows:

ẏi(t) = f̃ϕi
(
yi(t)

)
+ c

s∑

k=

∑

j∈Vk

aij�yj(t)

+ c
s∑

k=

∑

j∈Vk

bij�yj
(
t – τ (t)

)
+ ui(t), i ∈ , , . . . , N , ()

where yi ∈R
n is the response state variables of node i in networks Y. f̃ϕi(·) : Rn −→R

n is a
continuously differentiable nonlinear function. ui(t) ∈R

n (i = , , . . . , N ) are the nonlinear
controllers ro be designed later, and the other parameters involved in system () all have
the same meaning with the corresponding parameters in system ().

Remark . The nonlinear vector-valued functions fϕi and f̃ϕi can be identical or non-
identical.

Remark . There are no limitations for the division of the clusters, the number of nodes
in each cluster and the connections between nodes.

Remark . All nodes within a cluster have the same dynamics, and the dynamics of the
nodes in different clusters can be different.

Remark . The proposed approach on the case with undirected topology is similar to
the one that on the case with directed topology. So in this paper the underlying topology
is assumed to be undirected.

Suppose that the networks () will be controlled onto some desired inhomogeneous state
as {y(t), . . . , ym (t)} → φ(t), {ym+(t), . . . , ym (t)} → φ(t), . . . , {yms–+(t), . . . , yms (t)} →
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φs(t), i.e., M = {{φ(t), . . . ,φ(t)}, {φ(t), . . . ,φ(t)}, . . . , {φs(t), . . . ,φs(t)}} ∈ R
n×N is desired

cluster synchronization pattern under the pinning control.

Definition . Let φϕi (t) = Pxi(t) + Q : Rn → R
n (i = , , . . . , N ) be continuously differen-

tiable vector maps. If ϕi 	= ϕj, φϕi 	= φϕj . Generalized outer synchronization between the
drive-response networks are achieved if

lim
t→∞

∥
∥ei(t)

∥
∥ = lim

t→∞
∥
∥yi(t) – φϕi (t)

∥
∥ = , i ∈ , , . . . , N , ()

where P and Q are constant matrices with proper dimension.

Assumption . Assuming that there are positive constants L, L̃ such that f and f̃ satisfy
the following inequalities:

(
yi(t) – φϕi (t)

)T(f
(
yi(t)

)
– f

(
φϕi (t)

))≤ L
(
yi(t) – φϕi (t)

)T
�
(
yi(t) – φϕi (t)

)
,

(
yi(t) – φϕi (t)

)T(f̃
(
yi(t)

)
– f̃

(
φϕi (t)

))≤ L̃
(
yi(t) – φϕi (t)

)T
�̃
(
yi(t) – φϕi (t)

)
,

()

where � and �̃ are positive definite matrix, i = , , . . . , N . Here, x and y are time-varying
vectors.

Lemma . For a diagonal matrix D = diag{d, d, . . . , dl︸ ︷︷ ︸
i={,,...,l}⊆V̄ϕi

, , . . . , } with di > , (i =

, , . . . , l;  ≤ l ≤ N ) and a symmetric matrix M ∈ R
N×N , let M – D =

[ E–D̄ S
∗ Ml

]
, where Ml

is the minor matrix of M by removing its first l ( ≤ l ≤ N ) row-column pairs, E and S are
matrices with appropriate dimensions, D̄ = diag{d, d, . . . , dl}. If di > λmax(E – SM–

l ST ),
then M – D <  is equivalent to Ml < .

Proof Let D̄ = diag{d, d, . . . , dl︸ ︷︷ ︸
i={,,...,l}⊆V̄ϕi

}. Using matrix decomposition, M ∈ R
N×N , let M – D =

[ E–D̄ S
∗ Ml

]
, where Ml is the minor matrix of M by removing its first l ( ≤ l ≤ N ) row-column

pairs, E and S are matrices with appropriate dimensions.
Using the Schur complement, it is easy to see that M – D <  is equivalent to Ml < .

We only need to prove that if Ml < , then M –D < . When di >  (i = , , , . . . , l) are suffi-
ciently large such that di > λmax(E – SM–

l ST ) hold, it is easy to see that
E – D̄ – SM–

l ST < . Then, using the Schur complement, we can conclude that M – D < ,
so the proof is finished. �

Lemma . ([]) Assume that A, B are N by N Hermitian matrices. Let α ≥ α ≥ · · · ≥
αN , β ≥ β ≥ · · · ≥ βN and γ ≥ γ ≥ · · ·γN be eigenvalues of A, B and A + B, respectively.
Then one has αi + βN ≤ γi ≤ αi + β, i = , , . . . , N .

3 Main results
In this section, the CLGOS of the drive-response community networks () and () will be
investigated in three cases.
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Case I. Assuming that the nodes dynamics in both community networks are identical,
i.e., nonlinear vector-functions fϕi = f̃ϕi = f for all  ≤ i ≤ N . Then the drive-response net-
works () and () can be written as

ẋi(t) = f
(
xi(t)

)
+ c

s∑

k=

∑

j∈Vk

aij�xj(t)

+ c
s∑

k=

∑

j∈Vk

bij�xj
(
t – τ (t)

)
, i ∈ , , . . . , N , ()

ẏi(t) = f
(
yi(t)

)
+ c

s∑

k=

∑

j∈Vk

aij�yj(t)

+ c
s∑

k=

∑

j∈Vk

bij�yj
(
t – τ (t)

)
+ ui(t), i ∈ , , . . . , N . ()

In this subsection, the intermittent control with two different switched periods is con-
sidered. The sketch of such control strategy is given by Figure . As shown in Figure , T

and T are two periods appearing alternately. η ( < η < ) and η ( < η < ) are called
the rates of control duration in each control period. ( – η)T and ( – η)T are called
non-feedback control widths in control periods T and T, respectively. The rates of con-
trol duration may be different, i.e., η 	= η, while they are assumed to be the same in [].
In this regards, the semi-periodically intermittent control scheme considered here is more
general than [].

We denote �m
 = [mT , mT + ηT] is the control width in period T, �m

 = [mT +
ηT, mT + T] is the non-feedback control width in period T, �m

 = [mT + T, mT + T +
ηT] is the control width in period T, �m

 = [mT + T + ηT, (m + )T] the non-feedback
control width in period T, where m = , , , . . . .

Figure 1 An intermittent control scheme with
two different switched periods.



Liu et al. Advances in Difference Equations  (2017) 2017:117 Page 6 of 17

The adaptive semi-periodically intermittent controllers are defined as follows:

ui(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pf
(
xi(t)

)
– f

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)
– c

∑N
j= bij�ej

(
t – τ (t)

)

– cki(t)�ei(t), i ∈ V̄ϕi, t ∈ �m
 ∪ �m

 ,

Pf
(
xi(t)

)
– f

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)
– c

∑N
j= bij�ej

(
t – τ (t)

)
,

i ∈ V̄ϕi, t ∈ �m
 ∪ �m

 ,

Pf
(
xi(t)

)
– f

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)
– c

∑N
j= bij�ej

(
t – τ (t)

)
,

i � V̄ϕi, t ∈ �m
 ∪ �m

 ,

Pf
(
xi(t)

)
– f

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)
– c

∑N
j= bij�ej

(
t – τ (t)

)
,

i � V̄ϕi, t ∈ �m
 ∪ �m

 ,

()

where V̄ϕi denotes the set of the nodes in the ϕith community which have direct connec-
tions to the nodes in other communities and the updating laws

˙̃pij = –eT
i (t)�yi

(
t – τ (t)

)
, i, j = , , , . . . , N , ()

and

k̇i(t) =

⎧
⎨

⎩
εieβteT

i (t)�ei(t), t ∈ �m
 ∪ �m

 ,

, t ∈ �m
 ∪ �m

 ,
()

where εi (i ∈ V̄ϕi) and β are positive constants.
According to the definition of the coupling matrix A, B, it is easy to see that

⎧
⎨

⎩
c
∑N

j= aij�Q = ,

c
∑N

j= bij�Q = .
()

Let ei(t) = yi(t) – φϕi (t), g(ei(t)) = f (yi(t)) – f (φϕi(t)), g(·) : Rn −→ R
n is a continuously

differentiable nonlinear function. With the aid of equations ()-(), the error systems can
be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėi(t) = g
(
ei(t)

)
+ c

∑N
j= aij�ej(t) + c

∑N
j= p̃ij�yi

(
t – τ (t)

)
– cki(t)�ei(t),

i ∈ V̄ϕi, t ∈ �m
 ∪ �m

 ,

ėi(t) = g
(
ei(t)

)
+ c

∑N
j= aij�ej(t) + c

∑N
j= p̃ij�yi

(
t – τ (t)

)
,

i ∈ V̄ϕi, t ∈ �m
 ∪ �m

 ,

ėi(t) = g
(
ei(t)

)
+ c

∑N
j= aij�ej(t) + c

∑N
j= p̃ij�yi

(
t – τ (t)

)
,

i � V̄ϕi, t ∈ �m
 ∪ �m

 ,

ėi(t) = g
(
ei(t)

)
+ c

∑N
j= aij�ej(t) + c

∑N
j= p̃ij�yi

(
t – τ (t)

)
,

i � V̄ϕi, t ∈ �m
 ∪ �m

 .

()

Theorem . Suppose that Assumption . holds. Using the adaptive controllers and up-
dated laws ()-(), then the response networks () can linear generalized synchronize with



Liu et al. Advances in Difference Equations  (2017) 2017:117 Page 7 of 17

the drive networks () if there exist positive constants α > β >  such that the following
conditions are satisfied:

c < –
κ

λmax(Âl)
, ()

L� +
β – α


IN +


( – μ)

IN < , ()

β – αθ > , ()

αρ – a∗ > , ()

where

κ =


λmin(�)

(
L‖�‖ +

β


+


( – μ)

)
,

θ = ( – η)
T

T
+ ( – η)

T

T
, ρ =

ηT + ηT

T
,

Â =
Sym{A}


, a∗ = α – β ,

Âl is the minor matrix of A by removing its first l ( ≤ l ≤ N ) row-column pairs.

Proof Construct the following Lyapunov function candidate:

V (t) =
∑

i=

Vi(t), ()

where

V(t) =



N∑

i=

eT
i (t)ei(t),

V(t) =



N∑

i=

N∑

j=

cp̃
ij,

V(t) =


∑

i∈V̄ϕi

exp(–βt)
c(ki(t) – k∗

i )

εi
,

V(t) =


( – μ)

N∑

i=

∫ t

t–τ (t)
ẽT

j (θ )ẽj(θ ) dθ ,

where k∗
i are sufficiently large positive constant to be determined. We write ẽj(θ ) =

(ẽj(θ ), ẽj(θ ), . . . , ẽNj(θ ))T . ˙̃pij = –eT
i (t)�yi(t – τ (t)).
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When t ∈ �m
 ∪ �m

 , differentiating V (t) with respect to time along the solution of ()
yields

V̇(t) =
N∑

i=

eT
i (t)ėi(t)

=
N∑

i=

eT
i (t)

[

g
(
ei(t)

)
+ c

N∑

j=

aij�ej(t) + c
N∑

j=

p̃ij�yi
(
t – τ (t)

)
]

– c
∑

i∈V̄ϕi

eT
i (t)ki(t)�ei(t), ()

V̇(t) =
N∑

i=

N∑

j=

cp̃ij ˙̃pij = –c
N∑

i=

N∑

j=

p̃ijeT
i (t)�yi

(
t – τ (t)

)
, ()

V̇(t) = c
∑

i∈V̄ϕi

(
ki(t) – k∗

i
)
eT

i (t)�ei(t) –
β


e–βt

∑

i∈V̄ϕi

c(ki(t) – k∗
i )

εi
, ()

V̇(t) =


( – μ)

N∑

i=

ẽT
j (t)ẽj(t) –

 – τ̇ (t)
( – μ)

ẽT
j
(
t – τ (t)

)
ẽj
(
t – τ (t)

)
. ()

From ()-(), it is easy to see that

V̇ (t) =
∑

i=

V̇i(t)

=
N∑

i=

eT
i (t)

[

g
(
ei(t)

)
+ c

N∑

j=

aij�ej(t) + c
N∑

j=

p̃ij�yi
(
t – τ (t)

)
]

– c
∑

i∈V̄ϕi

eT
i (t)k∗

i �ei(t) – c
N∑

i=

N∑

j=

p̃ijeT
i (t)�yi

(
t – τ (t)

)

–
β


e–βt

∑

i∈V̄ϕi

c(ki(t) – k∗
i )

εi

+


( – μ)

N∑

i=

ẽT
j (t)ẽj(t) –

 – τ̇ (t)
( – μ)

ẽT
j
(
t – τ (t)

)
ẽj
(
t – τ (t)

)

≤
N∑

i=

eT
i (t)(L� + cÂ�)ei(t) +


( – μ)

N∑

i=

ẽT
j (t)ẽj(t)

–
 – τ̇ (t)
( – μ)

ẽT
j
(
t – τ (t)

)
ẽj
(
t – τ (t)

)

– c
∑

i∈V̄ϕi

eT
i (t)k∗

i �ei(t) – βV(t)

=
N∑

i=

eT
i (t)

(
L� + cÂ� +

β


IN – cK∗�

)
ei(t) +


( – μ)

N∑

i=

ẽT
j (t)ẽj(t)

–
 – τ̇ (t)
( – μ)

ẽT
j
(
t – τ (t)

)
ẽj
(
t – τ (t)

)
– β

(
V(t) + V(t)

)
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≤ eT (t)
(

L� +
β


IN +


( – μ)

IN

)
e(t) + eT (t)

((
cÂ – cK∗)⊗ �

)
e(t) – βV (t)

≤ eT (t)
((

κIN + cÂ – cK∗)⊗ �
)

– βV (t), ()

where

e(t) = col
{

e(t), e(t), . . . , en(t)
}

,

K∗ = diag
{

k∗
 , k∗

 , . . . , k∗
︸ ︷︷ ︸

i={,,,...,l}⊆V̄ϕi

, , . . . , 
}

,

κ =


λmin(�)

(
L‖�‖ +

β


+


( – μ)

)
.

Let � = κIN + c(Â – K∗) =
[ E–K∗∗ S

∗ �l

]
, in which �l is the minor matrix of � by removing

its l(l ∈ V̄ϕi) row-column pairs, E and S are matrices with appropriate dimensions, K∗∗ =
diag{ck, ck, . . . , ckl︸ ︷︷ ︸

i={,,,...,l}⊆V̄ϕi

}. It is obvious that � is symmetric. According to Lemma ., we know

that if one can select ki > λmax(E – S�–
l ST ), then � <  is equivalent to �l < . Based on

Lemma . and the condition (), we have λmax(�l) ≤ κ + cλmax(Al) < , which implies
that �l < . Then we obtain

V̇ (t) ≤ –βV (t). ()

When t ∈ �m
 ∪ �m

 , differentiating V (t) with respect to time along the solution of ()
and using the condition in () yields

V̇ (t) =
∑

i=

V̇i(t)

=
N∑

i=

eT
i (t)

[

g
(
ei(t)

)
+ c

N∑

j=

aij�ej(t) + c
N∑

j=

p̃ij�yi
(
t – τ (t)

)
]

– c
N∑

i=

N∑

j=

p̃ijeT
i (t)�yi

(
t – τ (t)

)
–

β


e–βt

∑

i∈V̄ϕi

c(ki(t) – k∗
i )

εi

+


( – μ)

N∑

i=

ẽT
j (t)ẽj(t) –

 – τ̇ (t)
( – μ)

ẽT
j
(
t – τ (t)

)
ẽj
(
t – τ (t)

)

≤ eT (t)
(

L� +
β – α


IN +


( – μ)

IN

)
e(t) + eT (t)(cÂ ⊗ �)e(t)

–
β – α



( N∑

i=

eT
i (t)ei(t) +

∑

i∈V̄ϕi

exp(–βt)
c(ki(t) – k∗

i )

εi

)

≤ (α – β)
(
V(t) + V(t)

)

≤ (α – β)V (t) = a∗V (t). ()
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Then we have

V̇i(t) =

⎧
⎨

⎩
–βV (t), t ∈ �m

 ∪ �m
 ,

a∗V (t), t ∈ �m
 ∪ �m

 .
()

From (), it is easy to see that:
When t ∈ �m

 , i.e., t–ηT
T < m ≤ t

T

V (t) ≤ V (mT) exp
(
–β(t – mT)

)

≤ V () exp
(
–βmT + mα

(
( – η)T + ( – η)T

))

≤ V () exp
(
(–β + αθ )t + βηT

)
. ()

When t ∈ �m
 , i.e., t–T

T < m ≤ t–δT
T ,

V (t) ≤ V (mT + T) exp
(
t – (mT + T)

)

≤ V () exp
(
(α – β)(mT + T) – α

(
(m + )ηT + mηT

))

≤ V () exp

(
(a∗ – αρ)t – α(η – η)

TT

T
+ a∗( – η)T

)
. ()

When t ∈ �m
 , i.e., t–T–ηT

T < m ≤ t–T
T ,

V (t) ≤ V (mT + T) exp
(
–β

(
t – (mT + T)

))

≤ V () exp
(
–β(mT + T) + α

(
(m + )( – η)T + m( – η)T

))

≤ V () exp

(
(–β + αθ ) + βηT + α

η – η

T
TT

)
. ()

When t ∈ �m
 , i.e., t

T < m +  ≤ t+T–T–ηT
T ,

V (t) ≤ V
(
(m + )T

)
exp

(
a∗
(
t – (m + )T

))

≤ V () exp
(
a∗(m + )T – (m + )α(ηT + ηT)

)

≤ V () exp
(
(a∗ – αρ)t + a∗( – η)T

)
. ()

Therefore, when t ∈ �m
 ∪�m

 , if β –αθ >  is satisfied, one has limt→∞ V (t) = ; when t ∈
�m

 ∪�m
 , if αρ –a∗ >  is satisfied, one has limt→∞ V (t) = . The conclusion of Theorem .

holds. This completes the proof. �

Case II. Assume that the nodes dynamics in both community networks are non-
identical; in view of the special property, the adaptive semi-periodically intermittent con-



Liu et al. Advances in Difference Equations  (2017) 2017:117 Page 11 of 17

trollers are defined as follows:

ui(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pfϕi
(
xi(t)

)
– f̃ϕi

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)

– c
∑N

j= bij�ej
(
t – τ (t)

)
– cki(t)�ei(t), i ∈ V̄ϕi, t ∈ �m

 ∪ �m
 ,

Pfϕi
(
xi(t)

)
– f̃ϕi

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)

– c
∑N

j= bij�ej
(
t – τ (t)

)
, i ∈ V̄ϕi, t ∈ �m

 ∪ �m
 ,

Pfϕi
(
xi(t)

)
– f̃ϕi

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)

– c
∑N

j= bij�ej
(
t – τ (t)

)
, i � V̄ϕi, t ∈ �m

 ∪ �m
 ,

Pfϕi
(
xi(t)

)
– f̃ϕi

(
φϕi (t)

)
+ c

∑N
j= p̃ij�yi

(
t – τ (t)

)

– c
∑N

j= bij�ej
(
t – τ (t)

)
, i � V̄ϕi, t ∈ �m

 ∪ �m
 ,

()

k̇i(t) =

⎧
⎨

⎩
εieβteT

i (t)�ei(t), t ∈ �m
 ∪ �m

 ,

, t ∈ �m
 ∪ �m

 .
()

Theorem . Suppose that Assumption . holds. Using the adaptive controllers and up-
dated laws ()-(), then the response networks () can linear generalized synchronize
with the drive networks () if there exist positive constants α > β >  such that the following
conditions are satisfied:

c < –
κ̃

λmax(Âl)
, ()

L̃�̃ +
β – α


IN +


( – μ)

IN < , ()

β – αθ > , ()

αρ – a∗ > , ()

where

κ̃ =


λmin(�̃)

(
L̃‖�̃‖ +

β


IN +


( – μ)

IN

)
,

θ = ( – η)
T

T
+ ( – η)

T

T
, ρ =

ηT + ηT

T
,

Â =
Sym{A}


, a∗ = α – β ,

Âl is the minor matrix of A by removing its first l ( ≤ l ≤ N ) row-column pairs.

Proof The proof is omitted here, as it is similar to that of Theorem .. �

4 Numerical examples and simulation
In this section, two numerical examples will be provided to verify and demonstrate the
effectiveness of the proposed method.
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Example  Theorem . is verified. The node dynamics of the first community are chosen
as the well-known Lorenz system:

⎡

⎢
⎣

ẋ

ẋ

ẋ

⎤

⎥
⎦ =

⎡

⎢
⎣

–x + x

x – x – xx

– 
 x + xx

⎤

⎥
⎦ ,

and the node dynamics of the second community are chosen as the well-known Chen
system:

⎡

⎢
⎣

ẋ

ẋ

ẋ

⎤

⎥
⎦ =

⎡

⎢
⎣

–x + x

–x + x – xx

–x + xx

⎤

⎥
⎦ ,

and the node dynamics of the third community are chosen as the well-known Lv system:

⎡

⎢
⎣

ẋ

ẋ

ẋ

⎤

⎥
⎦ =

⎡

⎢
⎣

–x + x

x – xx

–x + xx

⎤

⎥
⎦ .

Similar to the discussion of the Chen system in [], one can discuss the Lorenz and Lv
systems and choose the positive constant L =  such that Assumption . holds.

For simplicity, in the numerical simulations, assuming P =
[

  
  
  

]
, Q =

[




]
, � =

[
  
  
  

]
,

T = ., T = ., η = ., η = ., the time-varying τ (t) =  – .e–t , then τ̇ (t) = .e–t ∈
(, .] ≤ 


.= μ < . A complex network consisting of  nodes with three communities is

shown in Figure  (A = B).
The feedback control gain is ki =  for i ∈ V̄ϕi. By simple calculation, θ = 

 , ρ = .,
for Theorem ., one can choose α = , β = , and c < – κ

λmax(Âl)
such that conditions

()-() hold. Therefore, the CLGOS can be achieved for any initial values. Figures -
show the orbits of linear generalized outer synchronization errors.

Figure 2 A complex network consisting of 19 nodes with three communities where aij = aji = 1 if there
exists a connection between nodes i and j (j �= i), otherwise aij = aji = 0.
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Figure 3 The orbits of linear generalized outer
synchronization errors in the first community.

Figure 4 The orbits of linear generalized outer
synchronization errors in the second community.

Figure 5 The orbits of linear generalized outer
synchronization errors in the third community.

Example  Choosing the node dynamics as the following well-known time-delayed Chua
oscillator:

ẋ(t) = Mx(t) + g
(
x(t)

)
+ g

(
x(t – τ )

)
,
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where

x(t) =
(
x(t), x(t), x(t)

)T , τ = .,

M =

⎡

⎢
⎣

–a( + m) a 
 – 
 –b –d

⎤

⎥
⎦ ,

g
(
x(t)

)
=

⎡

⎢
⎣

–.a(m – m)(|x(t) + | – |x(t) – |)



⎤

⎥
⎦ ,

g
(
x(t – τ )

)
=

⎡

⎢
⎣




–bχ sin(υx(t – τ ))T

⎤

⎥
⎦ ,

a = , b = , d = ., m = –., m = –., υ = ., χ = .. Choose the posi-
tive constant L =  such that Assumption . holds. For simplicity, in the numerical sim-

ulations, assuming P =
[

  
  
  

]
, Q =

[




]
, � =

[
  
  
  

]
, T = ., T = ., η = ., η = .,

the time-varying τ (t) =  – .e–t , then τ̇ (t) = .e–t ∈ (, .] ≤ 


.= μ < . A complex net-
work consisting of  nodes with three communities is shown in Figure  (A = B). The com-
munity network is constructed by integrating three BA networks consisting of  nodes
with m = m = . For any pair of communities, four edges are chosen to connect them ran-
domly (Figure ). The feedback control gains as ki =  for i ∈ V̄ϕi. By simple calculations,
θ = 

 , ρ = ., for Theorem ., one can choose α = , β = , and c < – κ

λmax(Âl)
such

that condition ()-() hold. Therefore, the CLGOS can be achieved for any initial values.
Figures - show the orbits of linear generalized outer synchronization errors.

5 Conclusions
In this paper, we investigated the problems of CLGOS in community networks via pin-
ning control with two different switch periods. Using Lyapunov stability theory, lin-
ear matrix inequality (LMI), sufficient CLGOS criteria for community networks are

Figure 6 A community network is constructed
by integrating three BA networks consisting of
50 nodes with m0 = m = 8. For any pair of
communities, four edges are chosen to connect
them randomly.
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Figure 7 The orbits of linear generalized outer
synchronization errors in the first community.

Figure 8 The orbits of linear generalized outer
synchronization errors in the second community.

Figure 9 The orbits of linear generalized outer
synchronization errors in the third community.

derived. Both community networks with identical nodes and non-identical nodes are in-
vestigated. Therefore, our proposed control schemes are better applicable technically. Fi-
nally, numerical examples are provided to demonstrate the effectiveness of the proposed
method.
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