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Abstract
In this paper, we study the convergence of iterative learning control for some
fractional equation. Firstly, by using the Laplace transform and the M-L function, we
show the concept of mild solutions. Secondly, by using the Gronwall inequality, we
show the sufficient conditions of convergence for the open P-type and the close
P-type iterative learning control. At last, we give some examples to illustrate our main
results.
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1 Introduction
In this paper, we will study the convergence of iterative learning control of the following
fractional system:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t x(t) = Ax(t) + f (x(t), u(t), t), t ∈ J = [, b],

x() = x,

y(t) = g(x(t), u(t), t),

()

where cDα
t denotes the Caputo fractional derivative of order α,  < α < . A ∈ Rn×n, the

functions f , g are continuous and u(t) is a control vector.
Iterative learning control (ILC) was described by Uchiyama in  in Japanese, but

only few people noticed it. Arimoto et al. developed the ILC idea and studied the effective
algorithm until , they made it to be the iterative learning control theory, and more
and more people paid attention to it.

Fractional calculus and fractional difference equations have attracted lots of authors in
the past years [–], because they have been proved to be valuable tools in the modeling
of many phenomena in engineering, physics, science, controllability, and they also provide
an excellent tool to describe the hereditary properties of various materials and processes.
The work on fractional order systems in iterative learning control appeared in , and
extensive attention has been paid to this field and great progress has been made in the
following  years [, , –]; many fractional nonlinear systems were researched
[–] and some operators have been studied [, ]. In [], the author discussed the
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controllability of fractional control systems with control delay, and only used the Mittag-
Leffler function to deduce the solution. Because it is exponentially bounded, we think that
it should to be extensive studied and applied.

Motivated by the above mentioned works, we pay attention to and consider the system
(), the rest of this paper is organized as follows. In Section , we will show some definitions
and preliminaries which will be used in the following parts. In Section , we give some
results for P-type ILC for some fractional system. In Section , some simulation examples
are given to illustrate our main results. In this paper, the norm for the n-dimensional vector
x = (x, x, . . . , xn)T is defined as ‖x‖ = max≤i≤n |xi|.

2 Preliminaries
In this section, we will give some definitions and preliminaries which will be used in the
paper.

Definition . The integral

Iα
t f (t) =


�(α)

∫ t


(t – s)α–f (s) ds, α > ,

is called a Riemann-Liouville fractional integral of order α, where � is the gamma function.
For a function f (t) given in the interval [,∞), we have the expression

RLDα
t f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s) dt,

where n = [α]+, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α > .

Definition . Caputo’s derivative for a function f : [,∞) → R can be written as

cDα
t f (t) = RLDα

t

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, n = [α] + ,

where [α] denotes the integer part of real number α.

Definition . The definition of the two-parameter function of the Mittag-Leffler type is
described by

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α > ,β > , z ∈ C,

if β = , we get the Mittag-Leffler function of one parameter,

Eα(z) =
∞∑

k=

zk

�(αk + )
.

Now, according to [, , –], we shall give Lemma ..
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Lemma . The general solution of equation () is given by

x(t) = Sα,(A, t)x +
∫ t


Sα,α(A, t – s)f

(
x(s), u(s), s

)
ds, ()

where

Sα,β (A, t) =
∞∑

k=

Aktαk+β–

�(αk + β)
.

Lemma . (Lemma . in []) The operators Sα,(t) and Sα,α(t) are exponentially
bounded, we have the constants C = 

α
, C = 

α
‖A‖ –α

α ,

∥
∥Sα,(A, t)

∥
∥ ≤ Ce‖A‖ 

α t ,
∥
∥Sα,α(A, t)

∥
∥ ≤ Ce‖A‖ 

α t . ()

Lemma . ([] Generalized Gronwall inequality) Let u(t) be a continuous function on
t ∈ [, T] and let v(t –s) be continuous and nonnegative on the interval  ≤ s ≤ T . Moreover,
let W (t) be a positive continuous and non-decreasing function on t ∈ [, T]. If

u(t) ≤ W (t) +
∫ t


v(t – s)u(s) ds, t ∈ [, T],

then

u(t) ≤ W (t)e
∫ t

 v(t–s) ds, t ∈ [, T].

3 P-type ILC for some fractional system
In this section, we consider the following fractional equation:

⎧
⎨

⎩

cDα
t xk(t) = Axk(t) + f (xk(t), uk(t), t), t ∈ J = [, b],

yk(t) = g(xk(t), uk(t), t).
()

xk denotes the kth iteration of x, uk denotes the kth iteration of u, k is the number of
iterations, k ∈ {, , , . . .}.

Firstly, we will make the following assumptions on the data of our problem.

H() The function f : Rn × Rn × J → Rn satisfies:
(i) f is measurable for all t ∈ J ;

(ii) for  ≤ i ≤ n, there exists a constant Lf >  such that

∣
∣f

(
xk

i (t), uk
i (t), t

)
– f

(
xk

i (t), uk
i (t), t

)∣
∣ ≤ Lf

(∣
∣xk

i (t) – xk
i (t)

∣
∣ +

∣
∣uk

i (t) – uk
i (t)

∣
∣
)

for all xk
i , uk

i , xk
i , uk

i ∈ R.
H() g : Rn × Rn × J → Rn, for βj > , j = , , , ,

⎧
⎪⎨

⎪⎩

β ≤ gk
iu := ∂g(xk

i (t),uk
i (t),t)

∂uk
i (t)

≤ β,

β ≤ gk
ix := ∂g(xk

i (t),uk
i (t),t)

∂xk
i (t)

≤ β,
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we also denote �xk
i (t) := xk+

i (t) – xk
i (t), �uk

i (t) := uk+
i (t) – uk

i (t); ek
i (t) := yd

i (t) – yk
i (t)

is the tracking error function, yd(t) = (yd
 , yd

, . . . , yd
n)T is the objective function.

3.1 Open-loop case
For equation (), we consider the following Open-loop P-type ILC, t ∈ [, b],  ≤ i ≤ n:

⎧
⎨

⎩

xk+
i (t) = xk

i (t) + γ ek
i (t),

uk+
i (t) = uk

i (t) + δek
i (t),

()

where γ and δ are the parameters which will be determined.

Theorem . Assume that the hypotheses H(), H() are satisfied, let yk(·) be the output of
equation (), for the arbitrary input u(·), if

ρ =
∣
∣
(
 – δgk

iu
(
ξ(), ξ(), 

)
– γ gk

ix
(
ξ(), ξ(), 

))∣
∣ < ,

max
{| – δβ – γβ|, | – δβ – γβ|, | – δβ – γβ|, | – δβ – γβ|

}
< , ()

| – δβ| + δβ
(
bLf Ce‖A‖ 

α b) < , ()

γ bβLf CC
(
e‖A‖ 

α b) < , ()

the open-loop P-type ILC () guarantees that limk→∞ yk
i (t) = yd

i (t), or limk→∞ ‖ek(t)‖ = ,
t ∈ J .

Proof Firstly, we know that ek
i (t) := yd

i (t) – yk
i (t), by using the mean value theorem, we get

ek+
i (t) = ek

i (t) + yk
i (t) – yk+

i (t)

= ek
i (t) + g

(
xk

i (t), uk
i (t), t

)
– g

(
xk+

i (t), uk+
i (t), t

)

= ek
i (t) –

[
g
(
xk+

i (t), uk+
i (t), t

)
– g

(
xk

i (t), uk+
i (t), t

)]

–
[
g
(
xk

i (t), uk+
i (t), t

)
– g

(
xk

i (t), uk
i (t), t

)]

= ek
i (t) – gk

ix
(
ξ(t), ξ(t), t

)�xk
i (t) – gk

iu
(
ξ(t), ξ(t), t

)�uk
i (t)

=
(
 – gk

iu
(
ξ(t), ξ(t), t

)
δ

)
ek

i (t) – gk
ix
(
ξ(t), ξ(t), t

)�xk
i (t), ()

where ξ(t) lies in the segment with the end point xk
i (t) and xk+

i (t), ξ(t) lies in the segment
with the end point uk

i (t) and uk+
i (t).

(I) t = . By using () and (), we get

∣
∣ek+

i ()
∣
∣ =

∣
∣ek

i () – gix
(
ξ(), ξ(), 

)�xk
i () – giu

(
ξ(), ξ(), 

)�uk
i ()

∣
∣

=
∣
∣
(
 – δgk

iu
(
ξ(), ξ(), 

)
– γ gk

ix
(
ξ(), ξ(), 

))∣
∣
∣
∣ek

i ()
∣
∣

≤ ρ
∣
∣ek

i ()
∣
∣,

so

lim
k→∞

∥
∥ek()

∥
∥ = .
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(II) t ∈ (, b). According to assumptions H(), H() and (), we can show that

∣
∣�xk

i (t)
∣
∣ =

∣
∣xk+

i (t) – xk
i (t)

∣
∣

=
∣
∣
∣
∣Sα,(A, t)xk+

i () +
∫ t


Sα,α(A, t – s)f

(
xk+

i (s), uk+
i (s), s

)
ds

– Sα,(A, t)xk
i () +

∫ t


Sα,α(A, t – s)f

(
xk

i (s), uk
i (s), s

)
ds

∣
∣
∣
∣

≤ ∣
∣Sα,(A, t)

∣
∣
∣
∣�xk

i ()
∣
∣ + Lf

∫ t



∣
∣Sα,α(A, t – s)

∣
∣
(∣
∣�xk

i (s)
∣
∣ +

∣
∣�uk

i (s)
∣
∣
)

ds

≤ Ce‖A‖ 
α t∣∣�xk

i ()
∣
∣ + Lf C

∫ t


e‖A‖ 

α (t–s)∣∣�uk
i (s)

∣
∣ds

+ Lf C

∫ t


e‖A‖ 

α (t–s)∣∣�xk
i (s)

∣
∣ds

≤ Ce‖A‖ 
α t∣∣�xk

i ()
∣
∣ + bLf Ce‖A‖ 

α b∥∥�uk∥∥

+ Lf C

∫ t


e‖A‖ 

α (t–s)∣∣�xk
i (s)

∣
∣ds,

let W (t) = Ce‖A‖ 
α t|�xk

i ()| + bLf Ce‖A‖ 
α b‖�uk‖, invoking Lemma . and Lemma .,

we get

∣
∣�xk

i (t)
∣
∣ ≤ (

Ce‖A‖ 
α t∣∣�xk

i ()
∣
∣ + bLf Ce‖A‖ 

α b∥∥�uk∥∥
)
bLf Ce‖A‖ 

α b.

In light of (),

∣
∣ek+

i (t)
∣
∣ ≤ ∣

∣
(
 – δgk

iu
(
ξ(t), ξ(t), t

))
ek

i (t)
∣
∣ + β

∣
∣�xk

i (t)
∣
∣

≤ ∣
∣
(
 – δgk

iu
(
ξ(t), ξ(t), t

))
ek

i (t)
∣
∣ + bβLf CC

(
e‖A‖ 

α b)∣∣�xk
i ()

∣
∣

+ β
(
bLf Ce‖A‖ 

α b)∥∥�uk∥∥,
∥
∥ek+∥∥ ≤ ∣

∣
(
 – δgk

iu
(
ξ(t), ξ(t), t

))∣
∣
∥
∥ek∥∥ + β

∥
∥�xk(t)

∥
∥

≤ ∣
∣
(
 – δgk

iu
(
ξ(t), ξ(t), t

))∣
∣
∥
∥ek∥∥ + bβLf CC

(
e‖A‖ 

α b)∥∥�xk()
∥
∥

+ β
(
bLf Ce‖A‖ 

α b)∥∥�uk∥∥

≤ ∣
∣ – δgk

iu
(
ξ(t), ξ(t), t

)
) + δβ

(
bLf Ce‖A‖ 

α b)∣∣
∥
∥ek∥∥

+ γ bβLf CC
(
e‖A‖ 

α b)∥∥�ek()
∥
∥,

where

η = | – δβ| + δβ
(
bLf Ce‖A‖ 

α b) < ,

η = γ bβLf CC
(
e‖A‖ 

α b) < ,
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From () and (), we have

lim
k→∞

∥
∥ek∥∥ = ,

the proof is completed. �

3.2 Closed-loop case
For equation (), we consider the closed-loop P-type ILC, t ∈ [, b]:

⎧
⎨

⎩

xk+
i (t) = xk

i (t) + γ ek
i (t),

uk+
i (t) = uk

i (t) + δek+
i (t),

()

we set

η =
∣
∣
∣
∣

βδ

 + δβ

∣
∣
∣
∣

(
bLf Ce‖A‖ 

α b), η =
∣
∣
∣
∣


 + δβ

∣
∣
∣
∣, ()

η =
∣
∣
∣
∣

β

 + δβ

∣
∣
∣
∣bLf CC

(
e‖A‖ 

α b). ()

Theorem . Assume that the hypotheses H(), H() are satisfied, let yk(·) be the output
of the system (), yd(t) be the given function, for the arbitrary input u(·), if

max

{∣
∣
∣
∣

 – γβ

 + δβ

∣
∣
∣
∣,

∣
∣
∣
∣

 – γβ

 + δβ

∣
∣
∣
∣,

∣
∣
∣
∣

 – γβ

 + δβ

∣
∣
∣
∣,

∣
∣
∣
∣

 – γβ

 + δβ

∣
∣
∣
∣

}

< , ()

η

 – η
< ,

η

 – η
< , ()

the closed-loop P-type ILC () guarantees that limk→∞ yk
i (t) = yd

i (t), or limk→∞ ‖ek(t)‖ = ,
t ∈ J .

Proof According to H(), H() and (),

∣
∣ek+

i ()
∣
∣ =

∣
∣ek

i () – gk
ix
(
ξ(), ξ(), 

)�xk
i () – gk

iu
(
ξ(), ξ(), 

)�uk
i ()

∣
∣

=
∣
∣
(
 – γ gk

ix
(
ξ(), ξ(), 

))∣
∣
∣
∣ek

i ()
∣
∣ – δgk

iu
(
ξ(), ξ(), 

)∣
∣ek+

i ()
∣
∣,

∣
∣ek+

i ()
∣
∣ =

∣
∣
∣
∣

 – γ gk
ix(ξ(), ξ(), )

 + δgk
iu(ξ(), ξ(), )

∣
∣
∣
∣

∣
∣ek

i ()
∣
∣.

It can easily be seen from (), limk→∞ ‖ek()‖L = .
For t ∈ (, b], we obtain

ek+
i (t) =


 + δgk

iu(ξ(t), ξ(t), t)
(
ek(t) – gk

ix
(
ξ(t), ξ(t), t

)�xk
i (t)

)
,
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∥
∥ek+∥∥ =

∣
∣
∣
∣


 + δgk

iu(ξ(t), ξ(t), t)

∣
∣
∣
∣

∥
∥ek∥∥ –

∣
∣
∣
∣

gk
ix(ξ(t), ξ(t), t)

 + δgk
iu(ξ(t), ξ(t), t)

∣
∣
∣
∣

∥
∥�xk∥∥

L

≤ η
∥
∥ek∥∥ +

∣
∣
∣
∣

β

 + δβ

∣
∣
∣
∣

(
bLf CC

(
e‖A‖ 

α b)∥∥�xk()
∥
∥

+
(
bLf Ce‖A‖ 

α b)∥∥�uk∥∥
)

≤ η
∥
∥ek∥∥ + η

∥
∥�xk()

∥
∥ + η

∥
∥ek+∥∥.

Therefore

∥
∥ek+∥∥ ≤ η

 – η

∥
∥ek∥∥ +

η

 – η

∥
∥ek()

∥
∥,

it implies that limk→∞ ‖ek‖ = , t ∈ J , which completes the proof. �

4 Simulations
In this section, we will give two simulation examples to demonstrate the validity of the
algorithm.

.. Consider the following Open-loop P-type ILC system:

⎧
⎪⎪⎨

⎪⎪⎩

cD.
t xk

 (t) = (xk
 (t)) + xk

 (t) + .uk
 (t), t ∈ J = [, .],

x() = .,

yk
 (t) = xk

 (t) + .uk
 (t),

()

with the iterative learning control

⎧
⎨

⎩

xk+
 (t) = xk

 (t) + .ek
 (t),

uk+
 (t) = uk

 (t) + .ek
 (t),

we set f = (xk
 (t)) and the initial control u(·) = , yd

 (t) = t(–t), t ∈ [, .], and set Lf =
., β = ., β = ., β = ., β = ., γ = ., δ = ., all conditions of Theorem .
are satisfied.

The simulation result can be seen from Figure  and Figure , for the Open-loop P-type
ILC system (), with the increase of the number of iterations, it can track the desired
trajectory gradually by using the algorithm. Firstly, we use the single iteration rate to get

Figure 1 “***” denotes the desired trajectory,
“ooo” denotes the output of the system.
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Figure 2 “***” denotes the desired trajectory,
“—” denotes the output of the system.

Figure 3 “***” denotes the desired trajectory,
“—” denotes the output of the system.

the result, from Figure , we find that late in the iteration, the output of the system jumps
around the desired trajectory, so we adopt the correction method, that is, when ej > ,
uj = uj –.×ej or ej < , uj = uj +.×ej, j is the number of iteration, the result approaches
the desired trajectory stably and quickly; from Figure , the tracking error tends to zero at
the th iteration, so the iterative learning control is feasible and the efficiency is higher.

.. Consider the following Closed-loop P-type ILC system:

⎧
⎪⎪⎨

⎪⎪⎩

cD.
t xk

 (t) = (xk
 (t)) + xk

 (t) + .uk
 (t), t ∈ J = [, .],

x() = .,

yk
 (t) = xk

 (t) + uk
 (t),

()

with the iterative learning control

⎧
⎨

⎩

xk+
 (t) = xk

 (t) + .ek
 (t),

uk+
 (t) = uk

 (t) + ek+
 (t),

we set the initial control u(·) = , yd
 (t) = t, t ∈ [, .], and Lf = ., β = ., β =

., β = ., β = ., γ = ., δ = , all conditions of Theorem . are satisfied. We also
use the correction method, that is, when ej > , uj = uj – m × ej or ej < , uj = uj + m × ej, j
is the number of iteration, m is the parameters, we set m = ., , . and the output of the
system is shown in Figure , Figure  and Figure , the tracking error is shown in Figure ,
Figure  and Figure .
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Figure 4 Number of iterations and the tracking
error.

Figure 5 “***” denotes the desired trajectory,
“—” denotes the output of the system.

Figure 6 Number of iterations and the tracking
error.

Figure 7 “***” denotes the desired trajectory,
“—” denotes the output of the system.
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Figure 8 Number of iterations and the tracking
error.

Table 1 The iteration number and the tracking error and the running time table

m The number of iterations The tracking error Run time (second)

0.7 5 0.0021 88.43
1 2 0.001 37.10
1.2 5 0.010 313.17

From Figure -Figure  and Table , we find the tracking error tends to zero within six
iterations, so the output of the system can track the desired trajectory almost perfectly. By
comparing three cases, when m = , the iteration number is only , and the tracking error
is ., the tracking performance is best and improved over the iteration domain.

5 Conclusions
In this paper, the convergence of iterative learning control for some fractional equation
was discussed. Based on our results, the Open-loop and Closed-loop P-type ILC law were
proposed, by using the Gronwall inequality, the sufficient conditions of convergence for
the two types of iterative learning control were showed. Simulation results showed that
the algorithm is effective. In the future, we will study iterative learning control for some
fractional equation with impulse or delay.
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