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Abstract
In this paper, we analyze the boundary value problem of a class of multi-order
fractional differential equations involving the standard Caputo fractional derivative
with the general periodic boundary conditions:

{
L(D)u(t) = f (t,u(t)), t ∈ [0, T ], T > 0,

u(0) = u(T ) > 0, u′(0) = u′(T ) > 0,

where L(D) =
∑n

i=0 aiD
Si , 1 ≤ S0 < · · · < Sn–1 < Sn < 2, ai ∈R, an �= 0, and

f : [0, T ]×R → R is a continuous operation. We get the Green’s function in terms of
the Laplace transform. We obtain the existence and uniqueness of solution for the
class of multi-order fractional differential equations. We investigate the blowing-up
solutions to the special case f (t,u(t)) = |u(t)|p, ai ≥ 0, and give an upper bound on the
blow-up time Tmax.

MSC: Primary 34A08; secondary 34B15

Keywords: fractional differential equations; periodic boundary problem; multi-order
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1 Introduction
The idea of derivatives of noninteger order initially appeared in the letter from Leib-
nizs to L’Hospital in . For many years, studies of the theory of fractional order were
mainly constrained to the field of pure theoretical mathematics. One possible explanation
of such unpopularity could be that there are multiple nonequivalent definitions of frac-
tional derivatives. Another difficulty is that fractional derivatives have no evident geomet-
rical interpretation because of their nonlocal character. However, during the last  years
fractional calculus has started to attract much more attention of physicists and mathemati-
cians. Many researchers found that derivatives of noninteger order are very suitable for the
description of various physical phenomena such as rheology, damping laws and diffusion
processes. These findings invoked the growing interest in studies of the fractal calculus in
various fields such as physics, chemistry and engineering. Existence results for nonlinear
fractional differential equations with integral boundary conditions [] and anti-periodic
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fractional boundary conditions [] have been investigated. Bazhlekova [] studied a linear
initial value problem and derived fundamental solution and impulse response solution.

Ahmad and Nieto [] investigated the existence and uniqueness of solutions for an anti-
periodic fractional boundary value problem given by

⎧⎨
⎩

cDqx(t) = f (t, x(t), cDrx(t)), t ∈ [, T], T > ,  < q ≤ ,  < r ≤ ,

x() = –x(T), cDpx() = –cDpx(T),  < p < ,

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function.

In [], the authors investigated the existence and uniqueness of solutions to a class of
Caputo-type multi-order fractional differential equations with the initial value problem

⎧⎨
⎩(cDμy)(x) –

∑n
i= λi(cDμi y)(x) = g(x),

y(k)() = ck ,

where λi, ck ∈ R, k = , . . . , m – , m –  < μ ≤ m, μ > μ > · · · > μn ≥ , mi –  < μi ≤ mi,
mi ∈N, i = , . . . , n.

Stojanović [] analyzed the existence and uniqueness of solutions for the nonlinear
multi-order fractional differential equation

⎧⎨
⎩L(D)u(t) = f (t, u(t)), t ∈ [, T], T > ,

u() = u(T),

where L(D) =
∑n

i= λi
cDαi ,  ≤ S < · · · < Sn– < Sn < , λi ∈ R, λn �= . Kirane and Malik in

[] studied the profile of blowing-up solutions of the system

⎧⎪⎪⎨
⎪⎪⎩

u′(t) + Dα(u – u())(t) = vq(t), t > ,

v′(t) + Dβ (v – v())(t) = ur(t), t > ,

u() = u > , v() = v > ,

where u > , v > ,  < α,β < . Then Alsaedi et al. in [] were concerned with blowing-up
solutions of the nonlinear fractional system

⎧⎪⎪⎨
⎪⎪⎩

u′(t) – Dα(u – u())(t) = up(t)vq(t), t > ,

v′(t) – Dβ (v – v())(t) = ur(t)vs(t), t > ,

u() = u > , v() = v > ,

where u > , v > , p, q, r, s ∈ R
+.

In this paper, we analyze nonlinear boundary value problems of the multi-order frac-
tional differential equations

L(D)u(t) = f
(
t, u(t)

)
, t ∈ [, T], T > , ()
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with the boundary condition

u() = u(T) > , u′() = u′(T) > , ()

where L(D) =
∑n

i= ai
cDSi ,  ≤ S < · · · < Sn– < Sn < , ai ∈R, an �= , cDSi (i = , , . . . , n) are

the standard Caputo fractional derivatives, and f : [, T] × R → R is continuous opera-
tion.

This equation is a generalization of the classical relaxation equation, and it governs some
fractional relaxation processes.

We investigate the blowing-up solutions to the special case

⎧⎨
⎩L(D)u(t) = |u(t)|p, t > ,

u() = u(T) > , u′() = u′(T) > ,

where L(D) =
∑n

i= ai
cDSi ,  ≤ S < · · · < Sn– < Sn < , ai ≥ , an �= , T is a positive con-

stant, and we give an upper bound on the blow-up time Tmax.
The rest of this paper is organized as follows. In Section , we introduce some basic

definitions and notations. In Section , we find the Green’s function for a multi-order
fractional differential equation, we prove the existence and uniqueness theorems for the
equations. We investigate the blowing-up solutions to the special case f (t, u(t)) = |u(t)|p,
ai ≥ , u() > , and give an upper bound on the blow-up time Tmax.

2 Preliminaries
In this section, we introduce preliminary facts and some basic results, which are used
throughout this paper (refer to [–]).

Definition . Let Cμ = {f (x)|f (x) = xpf(x), f ∈ C[, +∞), p > μ}. If f ∈ Cμ, we define the
Riemann-Liouville fractional integral operator of order α of a function f as follows:

Jαf (x) =


�(α)

∫ x


(x – t)α–f (t) dt, α > , x > ,

where Jf (x) = f (x).

Definition . The Caputo fractional derivative cDα
+ of f (x) is defined as

cDα
+f (x) = Jm–αDmf (x) =


�(m – α)

∫ x


(x – t)m–α–f m(t) dt,

where m –  < α ≤ m, m ∈ N , x > , f ∈ Cm
–.

For brevity of notation, let us take cDα
+ as Dα .

The two-parametric Mittag-Leffler function is defined by

Eα,β (z) =
∞∑

k=

zk

�(kα + β)
, β > ,α > , z ∈ C.
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The Laplace transform of the Caputo derivative is

L
{

Dαf (t)
}

(s) = sα f̃ (s) –
n–∑
k=

sα–k–f (k)(+)
, n –  < α ≤ n.

The Laplace transform of the two-parametric Mittag-Leffler function is

L
{

tβ–Eα,β
(±atα

)}
(s) =

sα–β

(sα ∓ a)
, Re(s) > |a| 

α , Re(β) > ,

L
{

tαk+β–E(k)
α,β

(±atα
)}

(s) =
k!sα–β

(sα ∓ a)k+ , Re(s) > |a| 
α , Re(β) > ,

where E(k)
α,β (y) = dk

dyk Eα,β (y) =
∑∞

j=
(j+k)!yj

j!�(αj+αk+β) , k = , , , . . . .
Let us denote by C[, T] the Banach space of all continuous real-valued functions de-

fined on [, T], T >  with the norm

‖u‖∞ = max
{∣∣u(t)

∣∣ : t ∈ [, T]
}

, T > .

Let us denote by Cn[, T] the class of all real functions on [, T] which have a contin-
uous nth order derivative. S denotes the class of functions α : R+ → [, ) satisfying the
condition α(tn) → , which implies tn → . B denotes the class of increasing functions
φ : [,∞) → [,∞) such that φ(x) < x for all x >  and φ(x)

x ∈ S. (C[, T], d) denotes a met-
ric space where d(u, v) = maxt∈[,T] |u(t) – v(t)|. Obviously, (C[, T], d) is a complete metric
space.

Lemma . (see []) Let (M, d) be a complete metric space and let T : M → M. Suppose
that there exists α ∈ S such that for each u, v ∈ M,

d
(
T(x), T(y)

) ≤ α
(
d(u, v)

)
d(u, v),

then T has a unique fixed point z ∈ M and {Tn(x)} converges to z for each x ∈ M.

3 Main results
Lemma . The fractional differential equation

L(D)u(t) = f
(
t, u(t)

)
, t ∈ [, T], T > ,

with the boundary condition u() = u(T), u′() = u′(T) is equivalent to the fractional inte-
gral equation

u(t) =
∫ T


G(t, s)f

(
s, u(s)

)
ds,

where G(t, s) is the following Green’s function:
For  ≤ s < t,

G(t, s) = C̃(t) +
Ã(t)C̃(T)( – Ẽ(T)) + Ã(t)̃B(T )̃F(T) + B̃(t)C̃(T)D̃(T) + B̃(t)̃F(T)( – Ã(T))

( – Ẽ(T))( – Ã(T)) – B̃(T)D̃(T)
;
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For t ≤ s < T ,

G(t, s) =
Ã(t)C̃(T)( – Ẽ(T)) + Ã(t)̃B(T )̃F(T) + B̃(t)C̃(T)D̃(T) + B̃(t)̃F(T)( – Ã(T))

( – Ẽ(T))( – Ã(T)) – B̃(T)D̃(T)
,

where

Ã(t) =
n∑

r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)

×
n–∏
i=

(
αi

αn

)ki

tαm+β–E(m)
α,β–

(
–

αn–tα

αn

)
,

B̃(t) =
n∑

r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)

×
n–∏
i=

(
αi

αn

)ki

tαm+β–E(m)
α,β

(
–

αn–tα

αn

)
,

C̃(t) =

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)

×
n–∏
i=

(
αi

αn

)ki

(t – s)αm+γ –E(m)
α,γ

(
–

αn–(t – s)α

αn

)
,

D̃(t) =
n∑

r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

tαm+β–

×
[

(αm + β – )E(m)
α,β–

(
–

αn–tα

αn

)
– αtα αn–

αn
E(m+)

α,β–

(
–

αn–tα

αn

)]
,

Ẽ(t) =
n∑

r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

tαm+β–

×
[

(αm + β – )E(m)
α,β

(
–

αn–tα

αn

)
– αtα αn–

αn
E(m+)

α,β

(
–

αn–tα

αn

)]
,

F̃(t) =

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

(t – s)αm+γ –

×
[

(αm + γ – )E(m)
α,γ

(
–

αn–(t – s)α

αn

)
– α

αn–

αn
(t – s)αE(m+)

α,γ

(
–

αn–(t – s)α

αn

)]
,

and (m; k, . . . , kn–), k, . . . , kn– ≥ , m = k + · · · + kn– are the multinomial coefficients,

α = Sn – Sn–, β = Sn +
n–∑
j=

(Sn– – Sj)kj – Sr + , γ = Sn +
n–∑
j=

(Sn– – Sj)kj.

Proof By the Laplace transform of Eq. (), we get

n∑
k=

αksSk ũ(s) –
n∑

k=

αksSk –u() –
n∑

k=

αksSk –u′() = f̃
(
s, u(s)

)
.
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Now taking the inverse Laplace transform, we obtain

u(t) = u()
n∑

r=

L–
{

αrsSr–∑n
k= αksSk

}
+ u′()

n∑
r=

L–
{

αrsSr–∑n
k= αksSk

}
+ L–

{
f̃ (s, u(s))∑n

k= αksSk

}

= u()

{ n∑
r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)

×
n–∏
i=

(
αi

αn

)ki

tαm+β–E(m)
α,β–

(
–

αn–tα

αn

)}

+ u′()

{ n∑
r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)

×
n–∏
i=

(
αi

αn

)ki

tαm+β–E(m)
α,β

(
–

αn–tα

αn

)}

+
∫ t




αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

× (t – s)αm+γ –E(m)
α,γ

(
–

αn–(t – s)α

αn

)
f
(
s, u(s)

)
ds,

where α = Sn – Sn–, β = Sn +
∑n–

j= (Sn– – Sj)kj – Sr + , γ = Sn +
∑n–

j= (Sn– – Sj)kj.
Let t = T , we have

u(T) = u()Ã(T) + u′()̃B(T) +
∫ T


C̃(T)f

(
s, u(s)

)
ds.

In view of the boundary condition u() = u(T) > , we get

u() =
u′()̃B(T) +

∫ T
 C̃(T)f (s, u(s)) ds

 – Ã(T)
,

u′(t) =
∫ t




αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

(t – s)αm+γ –

×
[

(αm + γ – )E(m)
α,γ

(
–

αn–(t – s)α

αn

)
– α

αn–

αn
(t – s)αE(m+)

α,γ

(
–

αn–(t – s)α

αn

)]

× f
(
s, u(s)

)
ds

+ u′()

{ n∑
r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

tαm+β–

×
[

(αm + β – )E(m)
α,β

(
–

αn–tα

αn

)
– αtα αn–

αn
E(m+)

α,β

(
–

αn–tα

αn

)]}

+ u()

{ n∑
r=

αr

αn

∞∑
m=

(–)m

m!
∑

k+···+kn–=m

(m; k, . . . , kn–)
n–∏
i=

(
αi

αn

)ki

tαm+β–

×
[

(αm + β – )E(m)
α,β–

(
–

αn–tα

αn

)
– αtα αn–

αn
E(m+)

α,β–

(
–

αn–tα

αn

)]}
.
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Applying the boundary condition u′() = u′(T) to the above equation, we get

u′() =
u()D̃(T) +

∫ T
 F̃(T)f (s, u(s)) ds

 – Ẽ(T)
.

Substituting the above value of u′(), u() in u(t), we obtain

u(t) =
∫ t


C̃(t)f

(
s, u(s)

)
ds +

∫ T



Ã(t)C̃(T)( – Ẽ(T)) + Ã(t)̃B(T )̃F(T)
( – Ẽ(T))( – Ã(T)) – B̃(T)D̃(T)

f
(
s, u(s)

)
ds

+
∫ T



B̃(t)C̃(T)D̃(T) + B̃(t)̃F(T)( – Ã(T))
( – Ẽ(T))( – Ã(T)) – B̃(T)D̃(T)

f
(
s, u(s)

)
ds.

Hence the proof is over. �

Theorem . Boundary value problem ()-() has the unique solution if the following con-
ditions hold:

(C) The function f : [, T] ×R →R, T >  is continuous;
(C) There exists φ ∈ B such that

∣∣f (t, y) – f (t, x)
∣∣ ≤ 

Ĝ
φ
(|y – x|), ∀x, y ∈ R.

Proof Let M = C([, T],R). Then (M, d) is a complete metric space, where

d(u, v) = sup
t∈[,T]

∣∣u(t) – v(t)
∣∣.

Let the operator

F : M → M, F(u) =
∫ T


G(t, s)f

(
s, u(s)

)
ds,

where G(t, s) is the Green’s function corresponding to boundary conditions ().
For u �= v,

d
(
F(u), F(v)

)
= sup

t∈[,T]

∣∣Fu(t) – Fv(t)
∣∣

≤ sup
t∈[,T]

∫ T



∣∣G(t, s)
∣∣ · ∣∣f (s, u(s)

)
– f

(
s, v(s)

)∣∣ds

≤ sup
t∈[,T]

∫ T



∣∣G(t, s)
∣∣ 
Ĝ

φ
(∣∣u(s) – v(s)

∣∣)ds

≤ φ
(
d(u, v)

) 
Ĝ

sup
t∈[,T]

∫ T



∣∣G(t, s)
∣∣ds

= φ
(
d(u, v)

)
= α

(
d(u, v)

)
d(u, v).

Therefore, there exists α ∈ S such that d(Fu, Fv) ≤ α(d(u, v))d(u, v), ∀u, v ∈ M. Thus by
Lemma ., F has a unique fixed point. Hence boundary value problem ()-() has the
unique solution. �



Dai et al. Advances in Difference Equations  (2017) 2017:130 Page 8 of 12

We can prove the following existence and uniqueness theorems for boundary value
problem ()-() (refer to []).

Theorem . Boundary value problem ()-() has at least one solution if the following
conditions hold:

(D) The function f : [, T] ×R →R, T >  is continuous;
(D) There exist p ∈ C([, T],R+) and ψ : (,∞) → (,∞) continuous and nondecreasing

such that |f (t, v)| ≤ p(t)ψ(|v|) for t ∈ [, T] and v ∈R;
(D) There exists a constant M >  such that M > p̂ψ(M)Ĝ, where p̂ = supt∈[,T]{p(t)}.

Theorem . Assume that there exists k >  such that

∣∣f (t, y) – f (t, x)
∣∣ ≤ K |y – x|, ∀x, y ∈R, t ∈ [, T].

If KĜ < , then there exists the unique solution for boundary value problem ()-().

The above analysis can be performed for the fractional differential equations

L(D)u(t) = f
(
t, u(t)

)
, t ∈ [, T], T > , ()

with the general periodic and antiperiodic boundary conditions

au() + bu(T) = , cu′() + du′(T) = , a, b, c, d ∈R, ()

where L(D) = anDSn + an–DSn– + · · · + aDS ,  ≤ S < · · · < Sn– < Sn < , ai ∈ R, an �= ,
DSi (i = , , . . . , n) are the standard Caputo fractional derivatives, f : [, T] × R → R (or
f : R →R) is a continuous operation.

From Theorems . and ., the solution of boundary value problem ()-() can be ex-
tended to the interval [, T]. Let ũ be the solution of ()-() on [, T], then by means of∫ T

 G(t, s)f (s, ũ(s)) ds is continuous and Lemma ., boundary value problem ()-() has a
solution

˜̃u =
∫ T


G(t, s)f

(
s, ũ(s)

)
ds +

∫ T

T
G(t, s)f

(
s, u(s)

)
ds,

on [T , T].
The pair of functions

u(t) =

⎧⎨
⎩ũ(t), t ∈ [, T],

˜̃u(t), t ∈ [T , T],

is the solution of boundary value problem ()-() on [, T]. We can continue in the same
way until T → ∞.

We focus on the blowing-up solution of the following boundary value problem of a class
of multi-order fractional differential equations involving the Caputo derivative:

L(D)u(t) =
∣∣u(t)

∣∣p, t > , ()
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where L(D) = an
cDSn + an–

cDSn– + · · · + a
cDS ,  ≤ S < · · · < Sn– < Sn < , ai ≥ , with the

boundary condition

u() = u(T) = u > , u′() = u′(T) = u′
. ()

By means of the above analysis and Theorem ., boundary value problem ()-() has a
continuous solution.

The relation between the Riemann-Liouville and the Caputo fractional derivatives is

cDαu(t) = RLDα
[
u(t) – u() – u′()t

]
,  ≤ α < .

Therefore, boundary problem ()-() is equivalent to the following boundary problem:

L(D)
[
u(t) – u() – u′()t

]
=

∣∣u(t)
∣∣p, t > , ()

where L(D) =
∑n

i= ai
RLDSi ,  ≤ S < · · · < Sn– < Sn < , ai ≥ , with the boundary condition

u() = u(T) = u > , u′() = u′(T) = u′
. ()

Let the test function considered in []

ϕ(t) =

⎧⎨
⎩T–λ(T – t)λ, t ∈ [, T],

, t > T .

For  ≤ α < , λ > pα – , it satisfies

∫ T



RLDα
T–ϕ(t) dt = Cα,λT –α , Cα,λ =

�(λ + )
�( – α + λ)

,

∫ T


t · RLDα

T–ϕ(t) dt = Cα–,λT–α , Cα–,λ =
�(λ + )

�( – α + λ)
,

∫ T


ϕ–p(t)

∣∣RLDα
T–ϕ(t)

∣∣p dt = Cp,αT –pα , Cp,α =


λ – pα + 

[
�(λ + )

�( – α + λ)

]p

,

where RLDα
T– is the right-sided (RL) fractional derivative defined by

RLDα
T–f (t) =


�( – α)

d

dt

∫ T

t
(s – t)–αf (s) ds,  ≤ α < .

Theorem . Let  < p < Sn
Sn–S

and u > , then any solution to boundary problem ()-()
blows up in a finite time Tmax. Furthermore, an upper bound on the blow-up time Tmax is
given by ( K

u
)r , where r = p–

pS–pSn+Sn
, K = nq– · aq

max · a–
minCq,S C–

Sn ,λ, and 
p + 

q = .

Proof The proof is by contradiction. Suppose u(t) is a global solution of boundary problem
()-().

Multiplying Eq. () by the function ϕ(t) and integrating over [, T], we obtain

n∑
i=

ai

∫ T


ϕ(t) · RLDSi

[
u(t) – u() – u′()t

]
dt =

∫ T


ϕ(t) · ∣∣u(t)

∣∣p dt.
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The formula for the integration by parts in [, T] is given by (see [])

∫ T


f (t)RLDαg(t) dt =

∫ T


g(t)RLDα

T–f (t) dt. ()

By virtue of (), we obtain

n∑
i=

ai

∫ T


u(t) · RLDSi

T–ϕ(t) dt

=
n∑

i=

ai

∫ T


u · RLDSi

T–ϕ(t) dt

+
n∑

i=

aiu′


∫ T


t · RLDSi

T–ϕ(t) dt +
∫ T


ϕ(t) · ∣∣u(t)

∣∣p dt.

Using Hölder’s inequality, for 
p + 

q = , we obtain

∫ T


u(t) · RLDSi

T–ϕ(t) dt ≤
[∫ T



∣∣u(t)
∣∣p · ϕ(t) dt

] 
p

×
[∫ T



∣∣ϕ(t)
∣∣– q

p · ∣∣RLDSi
T–ϕ(t)

∣∣q dt
] 

q
, ()

∫ T


u(t) · RLDSi

T–ϕ(t) dt ≤ C

q

q,Si
T

–qSi
q

[∫ T



∣∣u(t)
∣∣p · ϕ(t) dt

] 
p

. ()

Let N =
∫ T

 |u(t)|p · ϕ(t) dt, we get

n∑
i=

ai

∫ T


u(t) · RLDSi

T–ϕ(t) dt ≤ N

p

n∑
i=

aiC

q

q,Si
T

–qSi
q ,

n∑
i=

ai

∫ T


u · RLDSi

T–ϕ(t) dt ≤ N

p

n∑
i=

aiC

q

q,Si
T

–qSi
q , ()

∫ T



∣∣u(t)
∣∣p · ϕ(t) dt = N ≤ N


p

n∑
i=

aiC

q

q,Si
T

–qSi
q ,

then

N

q ≤

n∑
i=

aiC

q

q,Si
T

–qSi
q . ()

By inequalities ()-(), we obtain

n · amin · uCSn ,λT –Sn ≤
n∑

i=

ai

∫ T


u · RLDSi

T–ϕ(t) dt

≤
n∑

i=

aiC

q

q,Si
T

–qSi
q ×

[ n∑
i=

aiC

q

q,Si
T

–qSi
q

] q
p
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=

[ n∑
i=

aiC

q

q,Si
T

–qSi
q

]q

≤ [
namaxC


q

q,S
T

–qS
q

]q

= nq · aq
max · Cq,S T –qS ,

where amin = min≤i≤n{ai}, amax = max≤i≤n{ai}.
We get

u ≤ nq– · aq
max · a–

minCq,S C–
Sn ,λTSn–qS . ()

Letting T → ∞, by () we obtain the contradiction  < u ≤ . To obtain an estimation
on the blow-up time,

u ≤ KTSn–qS ,

where K = nq– · aq
max · a–

minCq,S C–
Sn ,λ, and Sn – qS < .

Therefore, a bound on the blowing-up time is given by

Tmax ≤
(

K
u

) 
qS–Sn

.

This completed the proof. �
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