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Abstract
In this paper, we study the finite time stability of delay differential equations via a
delayed matrix cosine and sine of polynomial degrees. Firstly, we give two alternative
formulas of the solutions for a delay linear differential equation. Secondly, we obtain a
norm estimation of the delayed matrix sine and cosine of polynomial degrees, which
are used to establish sufficient conditions to guarantee our finite time stability results.
Meanwhile, a numerical example is presented demonstrating the validity of our
theoretical results. Finally, we extend our study to the same issue of a delay differential
equation with nonlinearity by virtue of the Gronwall inequality approach.

Keywords: finite time stability; delay differential equations; delayed matrix sine and
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1 Introduction
Generally speaking, it is not an easy task to seek the fundamental matrix for linear dif-
ferential delay systems due to the memory accumulated by the long-tail effects that the
time-delay term introduces. In the theory of linear systems, it is necessary to find an ex-
plicit form of the desired fundamental matrix for the stability analysis. In fact, some easily
used criteria for the stability results involve the fundamental matrix. In the past decade,
there has been a rapid development on the representation of solutions, which lead to re-
sults on asymptotic stability, finite time stability and control problems for linear/nonlinear
continuous delay systems and discrete delay systems or fractional order delay systems. For
more results on matrix representation of the solution to a delay differential and discrete
systems and their stability analysis and control problems, one can refer to [–] and the
references therein.

The concept of finite time stability of delay differential equations arises from the fields
of multibody mechanics, automatic engines and physiological systems as introduced by
Dorato [], which characterizes the system state by not exceeding a certain bounded for
a given finite time interval and this seems more appropriate from practical considerations.
Concerning the finite time stability, Ulam’s stability and stable manifolds of linear systems,
impulsive systems and fractional systems, the methods of fundamental matrix, linear ma-
trix inequality, algebraic inequality and integral inequality are often used to deal with this
issue. For more recent contributions, one can see [–].
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After reviewing, the criteria for linear delay differential systems are established by char-
acterizing the eigenpolynomial distribution in the previous literature; it is not difficult to
see that the procedure of the proof is complicated and the threshold for the desired delay
systems is not easy to determine in practical problems. Thus it will be better to analyze the
stability of delay differentia systems by using the representation of the solutions directly.

In this paper, we study the finite time stability of the following second order linear dif-
ferential equations with a pure delay term:

⎧
⎨

⎩

ẍ(t) + �x(t – τ ) = , τ > , t ∈ J := [, T],

x(t) ≡ ϕ(t), ẋ(t) ≡ ϕ̇(t), –τ ≤ t ≤ ,
()

where x ∈ R
n, τ is the time delay, ϕ is an arbitrary twice continuously differentiable vector

function, T is a pre-fixed positive number and � is a n × n nonsingular matrix.
Recently, Khusainov et al. [] gave a new representation of the solution for () as follows:

x(t) = cosτ �tϕ(–τ ) + �– sinτ �tϕ̇(–τ ) + �–
∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds, ()

where cosτ �t is called the delayed matrix cosine of polynomial degree k (see [], Defi-
nition ) on the intervals (k – )τ ≤ t < kτ formulated by

cosτ �t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�, –∞ < t < –τ ,

I, –τ ≤ t < ,

I – � t

! ,  ≤ t < τ ,
...

...

I – � t

! + � (t–τ )

! + · · · + (–)k�k [t–(k–)τ ]k

(k)! , (k – )τ ≤ t < kτ ,

()

and sinτ �t is called a delayed matrix sine of polynomial degree k + (see [], Definition )
on the intervals (k – )τ ≤ t < kτ formulated by

sinτ �t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�, –∞ < t < –τ ,

�(t + τ ), –τ ≤ t < ,

�(t + τ ) – � t

! ,  ≤ t < τ ,
...

...

�(t + τ ) – � t

! + · · · + (–)k�k+ [t–(k–)τ ]k+

(k+)! , (k – )τ ≤ t < kτ ,

()

respectively, and � and I are the zero and identity matrices. Delayed matrix cosine and
sine of polynomial degrees play an important role in studying second order delay differ-
ential equations since they can act as the fundamental matrix to seeking some possible
representation of solutions to the problem by using a variation of constants formula. For
more properties of a delayed matrix cosine and sine of polynomial degrees, one can see
[], Lemmas -.
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Obviously, when τ = , cosτ �t and sinτ �t reduce to the matrix cosine function cos�t
and matrix sine function sin�t, respectively, which are given by the formal matrix series

cos�t =  – � t

!
+ · · · + (–)k�k tk

(k)!
+ · · ·

and

sin�t = �
t
!

– � t

!
+ · · · + (–)k�k+ tk+

(k + )!
+ · · · .

By Gantmakher [], p.,

x(t) = x cos�t + �–ẋ sin�t, provided �– exists,

is a solution of a second order differential system ẍ(t) + �x(t) = , t ≥ , x() = x ∈
R

n, ẋ() = ẋ ∈R
n.

Motivated by [], we prefer to adopt the method of the delayed matrix cosine and sine of
polynomial degree to study the stability of the second order delay differential system ().
Compared with the method of the eigenpolynomial distribution, we do not need to solve
an equation of the fourth degree. We give stability criteria by establishing the desired in-
equalities via using the norm estimation of the delayed matrix cosine and sine of polyno-
mial degree.

The rest of this paper is organized as follows. In Section , we give two other possible
formulas of solutions for the current systems by adopting the methods of integration by
parts. Two very important lemmas, which present the estimation of the delayed matrix
sine and cosine of polynomial degrees, is given. In Section , we present three sufficient
conditions to guarantee the finite time stability results. In Section , an example is given
to demonstrate the applicability of our main results for the linear case. In the final sec-
tion, we extend the study of the finite time stability of the delay differential equation with
nonlinearity by using a Gronwall inequality under a linear growth condition.

2 Preliminaries
Denote by C(J ,Rn) the metric space of vector-value continuous functions from J → R

n

endowed with the norm ‖x‖ =
∑n

i= |xi(t)|, and consider its ‖x‖C = maxt∈J ‖x(t)‖. We in-
troduce a space C(J ,Rn) = {x ∈ C(J ,Rn) : ẋ ∈ C(J ,Rn)}. For A : Rn → R

n, we consider
its matrix norm ‖A‖ = max‖z‖= ‖Az‖ generated by ‖ · ‖. In addition, we note ‖ϕ‖C =
maxs∈[–τ ,] ‖ϕ(s)‖.

We need the following rules of differentiation for the delayed matrix cosine of polyno-
mial degree k on the interval [(k – )τ , kτ ) and sine of polynomial degree k +  on the
interval [(k – )τ , kτ ) defined in () and (), respectively.

Lemma . (see [], Lemmas  and ) The following rules of differentiation are true for the
matrix functions () and ():

d
dt

cosτ �t = –� sinτ �(t – τ ),
d
dt

sinτ �t = � cosτ �t.
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Remark . For simplification of the next computation, one can divide the term
∫ 

–τ
sinτ �(t – τ – s)ϕ̈(s) ds in () into the following form according to the subintervals

[(k – )τ , kτ ):

∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds

=
∫ t–kτ

–τ

sinτ �(t – τ – s)ϕ̈(s) ds +
∫ 

t–kτ

sinτ �(t – τ – s)ϕ̈(s) ds.

Obviously, sinτ �(t – τ – s) has different formulas in different subintervals [(k – )τ , kτ )
by ().

By Remark ., the solution () of system () can be expressed in the following form:

x(t) = cosτ �tϕ(–τ ) + �– sinτ �tϕ̇(–τ ) + �–
∫ t–kτ

–τ

sinτ �(t – τ – s)ϕ̈(s) ds

+ �–
∫ 

t–kτ

sinτ �(t – τ – s)ϕ̈(s) ds ()

for (k – )τ ≤ t ≤ kτ .
Observing the solution () involves ϕ̈, which seems a requirement that is a bit stronger

to the initial conditions.

Remark . In order to obtain some alternative formulas, one can apply integration by
parts via Lemma . to derive that

∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds

= sinτ �(t – τ )ϕ̇() – sinτ �tϕ̇(–τ ) + �

∫ 

–τ

cosτ �(t – τ – s)ϕ̇(s) ds,

then the solution () can be expressed as

x(t) = cosτ �tϕ(–τ ) + �– sinτ �(t – τ )ϕ̇() +
∫ 

–τ

cosτ �(t – τ – s)ϕ̇(s) ds. ()

If we take integration by parts again for the integral part of (), then we have

∫ 

–τ

cosτ �(t – τ – s)ϕ̇(s) ds

= cosτ �(t – τ )ϕ() – cosτ �tϕ(–τ ) – �

∫ 

–τ

sinτ �(t – τ – s)ϕ(s) ds,

which implies that () can be expressed as

x(t) = cosτ �(t – τ )ϕ() + �– sinτ �(t – τ )ϕ̇() – �

∫ 

–τ

sinτ �(t – τ – s)ϕ(s) ds. ()
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Definition . (see [], Definitions .) The system () satisfying the initial conditions
x(t) ≡ ϕ(t) and ẋ(t) ≡ ϕ̇(t) for –τ ≤ t ≤  is finite time stable with respect to {, J , δ, ε, τ },
if and only if

γ < δ ()

implies

∥
∥x(t)

∥
∥ < ε, ∀t ∈ J ,

where γ = max{‖ϕ‖C ,‖ϕ̇‖C ,‖ϕ̈‖C} denotes the initial time of observation of the system. In
addition, δ, ε are real positive numbers.

Using the form of cosτ �t and sinτ �t one can prove the following two lemmas, which
will be widely used in the sequel.

Lemma . For any t ∈ [(k – )τ , kτ ), k = , , . . . , n, the following formula is true:

‖ cosτ �t‖ ≤ cosh
(‖�‖t

)
.

Proof Using the form of (), one can calculate that

‖ cosτ �t‖ ≤  + ‖�‖ t

!
+ ‖�‖ (t – τ )

!
+ · · · + ‖�‖k [t – (k – )τ ]k

(k)!

≤  + ‖�‖ t

!
+ ‖�‖ t

!
+ · · · + ‖�‖k tk

(k)!

≤
∞∑

k=

(‖�‖t)k

(k)!
= cosh

(‖�‖t
)
.

The proof is completed. �

Lemma . For any t ∈ [(k – )τ , kτ ), k = , , . . . , n, the following formula is true:

‖ sinτ �t‖ ≤ sinh
[‖�‖(t + τ )

]
.

Proof Using the form of (), we get

‖ sinτ �t‖ ≤ ‖�‖(t + τ ) + ‖�‖ t

!
+ · · · + ‖�‖k+ [t – (k – )τ ]k+

(k + )!

≤ ‖�‖(t + τ ) + ‖�‖ (t + τ )

!
+ · · · + ‖�‖k+ (t + τ )k+

(k + )!

≤
∞∑

k=

[‖�‖(t + τ )]k+

(k + )!
= sinh

[‖�‖(t + τ )
]
.

The proof is finished. �
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Remark . When t ∈ (–∞, –τ ), we can get ‖ cosτ �t‖ = ‖ sinτ �t‖ =  by the form ()
and ().

As is well known, the exponential form of hyperbolic functions cosh t and sinh t are de-
fined as follows:

cosh t =
et + e–t


, sinh t =

et – e–t


, t ∈R.

Then, for all t ∈ R, we have the fact that sinh t ≤ cosh t holds and the larger the value
of t, the closer cosh t and sinh t. When t → +∞, we get cosh t = sinh t. In addition, both
cosh t and sinh t are nonnegative, monotone increasing functions for t ≥ .

Obviously, the derivatives of cosh(·) and sinh(·) are

d
dt

cosh t = sinh t,
d
dt

sinh t = cosh t. ()

Next, we give an example to verify the results of Lemmas . and . and also show the
images of a delayed cosine function and delayed sine function.

Example . Set τ = ., � = , � ∈R
. By () and () we derive that cos. t and sin. t

are as follows:

cos. t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ [–., ),

 –  t

 , t ∈ [, .),

 –  t

 +  (t–.)

! , t ∈ [., .),

 –  t

 +  (t–.)

! –  (t–.)

! , t ∈ [., .],
...

()

and

sin. t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t + .), t ∈ [–., ),

(t + .) –  t

! , t ∈ [, .),

(t + .) –  t

! +  (t–.)

! , t ∈ [., .),

(t + .) –  t

! +  (t–.)

! –  (t–.)

! , t ∈ [., .],
...

()

It follows from Figure  and Figure  that the inequalities in Lemma . and Lemma .
hold.

The images of delayed cosine cos. t and delayed sine sin. t are shown in Figure 
and Figure , respectively. Obviously, we can see that the delayed cosine and delayed sine
do have some similar properties of the classical cosine and sine functions such as a wave
line, monotonicity and periodicity.

However, the differences between delayed cosine and delayed sine and cosine and sine
are that the delayed cosine and delayed sine appear in the interval segment [–τ , ] and
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Figure 1 ‖ cos0.4 2t‖ and cosh(2t).

Figure 2 ‖ sin0.4 2t‖ and sinh[2(t + 0.4)].

Figure 3 The delayed cosine function cos0.4 2t.

with the increasing of variables t, the upper and lower bounds of delayed cosine and de-
layed sine are also increasing. When the delay τ = , by () and (), the delayed cosine and
delayed sine coincide with the cosine and sine functions.

3 Finite time stability results for linear case
In this section, we present some sufficient conditions for finite time stability results for
the desired system () by using three possible formulas of solutions, which do enrich the
design methods in the practical problem.

Now we are ready to present the first theorem by using the classical representation of
solution () derived by Khusainov et al. [].
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Figure 4 The delayed sine function sin0.4 2t.

Theorem . The system () is finite time stable with respect to {, J , δ, ε, τ }, if

cosh
(‖�‖T

)
<

ε – δ( + τ )‖�–‖ sinh[‖�‖(T + τ )]
δ

, ()

where δ and ε are defined in Definition ..

Proof By using equation () via some fundamental computations, one can get

∥
∥x(t)

∥
∥ =

∥
∥
∥
∥cosτ �tϕ(–τ ) + �– sinτ �tϕ̇(–τ ) + �–

∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds
∥
∥
∥
∥

≤ ‖ cosτ �t‖∥∥ϕ(–τ )
∥
∥ +

∥
∥�–∥∥‖ sinτ �t‖∥∥ϕ̇(–τ )

∥
∥

+
∥
∥
∥
∥�–

∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds
∥
∥
∥
∥

≤ ‖ cosτ �t‖∥∥ϕ(–τ )
∥
∥ +

∥
∥�–∥∥‖ sinτ �t‖∥∥ϕ̇(–τ )

∥
∥

+
∥
∥�–∥∥

∫ 

–τ

∥
∥sinτ �(t – τ – s)

∥
∥
∥
∥ϕ̈(s)

∥
∥ds. ()

From () and (), we have

∥
∥x(t)

∥
∥ ≤ δ‖ cosτ �t‖ + δ

∥
∥�–∥∥‖ sinτ �t‖ + δ

∥
∥�–∥∥

∫ 

–τ

∥
∥sinτ �(t – τ – s)

∥
∥ds.

Next, according to Lemmas . and ., we obtain

∥
∥x(t)

∥
∥ ≤ δ cosh

(‖�‖t
)

+ δ
∥
∥�–∥∥ sinh

[‖�‖(t + τ )
]

+ δτ
∥
∥�–∥∥sinh

[‖�‖(t + τ )
]
, ()

where we use the fact

∥
∥sinτ �(t – τ – s)

∥
∥ ≤ sinh

[‖�‖(t – s)
] ≤ sinh

[‖�‖(t + τ )
]
, –τ ≤ s ≤ , t ∈ J . ()

Since sinh t and cosh t are both monotonically increasing functions when t ≥ , ‖x(t)‖ < ε

for ∀t ∈ J can be obtained by combining () and ().
Thus, the system () is finite time stable by Definition .. �

Next, we use a new alternative representation of solution () to derive the following
result.
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Theorem . The system () is finite time stable with respect to {, J , δ, ε, τ }, if

cosh
(‖�‖T

)
<

ε – δ‖�–‖ sinh(‖�‖T) – δτλ

δ
, ()

where λ := max{cosh(‖�‖τ ), cosh(‖�‖T)}.

Proof Similar to Theorem ., we estimate the norm ‖ · ‖ of the solution formula (),

∥
∥x(t)

∥
∥ ≤ ‖ cosτ �t‖∥∥ϕ(–τ )

∥
∥ +

∥
∥�–∥∥

∥
∥sinτ �(t – τ )

∥
∥
∥
∥ϕ̇()

∥
∥

+
∥
∥
∥
∥

∫ 

–τ

cosτ �(t – τ – s)ϕ̇(s) ds
∥
∥
∥
∥

≤ ‖ cosτ �t‖∥∥ϕ(–τ )
∥
∥ +

∥
∥�–∥∥

∥
∥sinτ �(t – τ )

∥
∥
∥
∥ϕ̇()

∥
∥

+
∫ 

–τ

∥
∥cosτ �(t – τ – s)

∥
∥
∥
∥ϕ̇(s)

∥
∥ds. ()

By (), the inequality () implies

∥
∥x(t)

∥
∥ ≤ δ‖ cosτ �t‖ + δ

∥
∥�–∥∥

∥
∥sinτ �(t – τ )

∥
∥ + δ

∫ 

–τ

∥
∥cosτ �(t – τ – s)

∥
∥ds.

Then, according to Lemmas . and ., one can get

∥
∥x(t)

∥
∥ ≤ δ cosh

(‖�‖t
)

+ δ
∥
∥�–∥∥ sinh

(‖�‖t
)

+ δτλ, ()

where we use the fact

∥
∥cosτ �(t – τ – s)

∥
∥ ≤ cosh

[‖�‖(t – τ – s)
] ≤ λ, –τ ≤ s ≤ , t ∈ J .

Linking () and (), we obtain ‖x(t)‖ < ε,∀t ∈ J . Thus, the system () is finite time
stable. �

Finally, we adopt another representation of solution () to derive another new result.

Theorem . The system () is finite time stable with respect to {, J , δ, ε, τ }, if

θ <
ε – δ(‖�–‖ + τ‖�‖) sinh(‖�‖T)

δ
, ()

where θ := max{cosh(‖�‖τ ), cosh(‖�‖T – τ )}.

Proof By Lemmas ., . and taking the norm on both sides of () via (), we have

∥
∥x(t)

∥
∥ ≤ ∥

∥cosτ �(t – τ )
∥
∥
∥
∥ϕ()

∥
∥ +

∥
∥�–∥∥

∥
∥sinτ �(t – τ )

∥
∥
∥
∥ϕ̇()

∥
∥

+ ‖�‖
∥
∥
∥
∥

∫ 

–τ

sinτ �(t – τ – s)ϕ(s) ds
∥
∥
∥
∥

≤ ∥
∥cosτ �(t – τ )

∥
∥
∥
∥ϕ()

∥
∥ +

∥
∥�–∥∥

∥
∥sinτ �(t – τ )

∥
∥
∥
∥ϕ̇()

∥
∥

+ ‖�‖∥∥ϕ(s)
∥
∥

∫ 

–τ

∥
∥sinτ �(t – τ – s)

∥
∥ds. ()
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Note that sinτ �t = � if t ∈ (–∞, –τ ). For –τ ≤ s ≤ , we get ‖ sinτ �(t –τ –s)‖ =  when
t –τ –s < –τ , by Lemma ., we get ‖ sinτ �(t –τ –s)‖ ≤ sinh[‖�‖(t –τ –s)] ≤ sinh(‖�‖t)
when t – τ – s ≥ –τ . In the end, we can obtain

∥
∥sinτ �(t – τ – s)

∥
∥ ≤ sinh

(‖�‖t
)
, –τ ≤ s ≤ , t ∈ J . ()

From (), (), (), Lemmas . and ., we can get

∥
∥x(t)

∥
∥ ≤ δ cosh

[‖�‖(t – τ )
]

+ δ
∥
∥�–∥∥ sinh

(‖�‖t
)

+ δτ‖�‖ sinh
(‖�‖t

)

≤ δθ + δ
(∥
∥�–∥∥ + τ‖�‖) sinh

(‖�‖t
)
. ()

Substituting () into (), we can finally obtain ‖x(t)‖ < ε,∀t ∈ J . Thus, the system () is
finite time stable. �

Remark . By the results in Theorems .-., we can analyze that when α < β and α < ρ ,
the result of Theorem . is the optimal. When β < α and β < ρ , the result of Theorem .
is the optimal. When ρ < α and ρ < β , the result of Theorem . is the optimal. And

α := δ cosh
(‖�‖T

)
+ δ

∥
∥�–∥∥ sinh

[‖�‖(T + τ )
]

+ δτ
∥
∥�–∥∥ sinh

[‖�‖(T + τ )
]
,

β := δ cosh
(‖�‖T

)
+ δ

∥
∥�–∥∥ sinh

(‖�‖T
)

+ δτλ,

ρ := δθ + δ
(∥
∥�–∥∥ + τ‖�‖) sinh

(‖�‖T
)
.

Remark . We have studied the finite time stability of system () in Theorems .-..
Now we analyze the stability of solution () to system () when t → ∞. In fact,

∥
∥x(t)

∥
∥ ≤ ‖ cosτ �t‖∥∥ϕ(–τ )

∥
∥

+
∥
∥�–∥∥

∥
∥sinτ �tϕ̇(–τ )

∥
∥ +

∥
∥�–∥∥

∫ 

–τ

∥
∥sinτ �(t – τ – s)ϕ̈(s)

∥
∥ds,

which implies that it is impossible to guarantee that ‖x(t)‖ →  when t → ∞ since the first
term ‖ cosτ �t‖‖ϕ(–τ )‖ ≤ cosh(‖�‖t)‖ϕ(–τ )‖ = e‖�‖t+e–‖�‖t

 ‖ϕ(–τ )‖ → ∞ when t → ∞
even we put the strong condition on ‖�–‖ ≤ e–ν(t+τ ),ν > ‖�‖, to guarantee the second
and third terms tend to zero due to ‖ sinτ �t‖ ≤ sinh[‖�‖(t + τ )] ≤ e‖�‖(t+τ ).

In the next section, we give an example of the stability of system () to verify Theorems
.-..

4 A numerical example
Example . In this part, we consider the finite time stability of the following second
order differential equations:

⎧
⎨

⎩

ẍ(t) + �x(t – .) = , x ∈R
, t ∈ J := [, ],

ϕ(t) = (.t, .t)T, ϕ̇(t) = (.t, .)T, ϕ̈(t) = (., )T, –. ≤ t ≤ ,
()
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where τ = ., T = , n = ,

� =

(
 
 

)

, �– =

(
. 

–. .

)

.

By (), we get the solution of system () as follows:

x(t) = cos. �tϕ(–.) + �– sin. �tϕ̇(–.)

+ �–
∫ t–.

–.
sin. �(t – . – s)ϕ̈(s) ds

+ �–
∫ 

t–.
sin. �(t – . – s)ϕ̈(s) ds, ()

where  ≤ t ≤ . and

x(t) = cos. �tϕ(–.) + �– sin. �tϕ̇(–.)

+ �–
∫ t–

–.
sin. �(t – . – s)ϕ̈(s) ds

+ �–
∫ 

t–
sin. �(t – . – s)ϕ̈(s) ds, ()

where . ≤ t ≤ .
Next, we get

cos. �t =

(
cos. t 
cos. t cos. t

)

, sin. �t =

(
sin. t 
sin. t sin. t

)

,

by () and (), we obtain

cos. t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, t ∈ [–., ),

 – t

 , t ∈ [, .),

 – t

 + (t–.)

! , t ∈ [., ),
...

sin. t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(t + .), t ∈ [–., ),

(t + .) – t

! , t ∈ [, .),

(t + .) – t

! + (t–.)

! , t ∈ [., ),
...

and

cos. t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, t ∈ [–., ),

 –  t

 , t ∈ [, .),

 –  t

 +  (t–.)

! , t ∈ [., ),
...
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sin. t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(t + .), t ∈ [–., ),

(t + .) –  t

! , t ∈ [, .),

(t + .) –  t

! +  (t–.)

! , t ∈ [., ),
...

When  ≤ t ≤ ., by () we get

x(t) =

(
cos. t 
cos. t cos. t

)(
.
–.

)

+

(
. 

–. .

)(
sin. t 
sin. t sin. t

)(
–.
.

)

+

(
. 

–. .

)(∫ t–.
–. . sin. (t – . – s) ds
∫ t–.

–. . sin.(t – . – s) ds

)

+

(
. 

–. .

)(∫ 
t–. . sin. (t – . – s) ds
∫ 

t–. . sin.(t – . – s) ds

)

=

(
x(t)
x(t)

)

.

Through a basic calculation one can obtain

x(t) = . cos. t – . sin. t + .
∫ t–.

–.
. sin. (t – . – s) ds

+ .
∫ 

t–.
. sin. (t – . – s) ds

and

x(t) = . cos. t – . cos. t + . sin. t – . sin. t

– .
∫ t–.

–.
. sin. (t – . – s) ds + .

∫ t–.

–.
. sin.(t – . – s) ds

– .
∫ 

t–.
. sin. (t – . – s) ds + .

∫ 

t–.
. sin.(t – . – s) ds.

When . ≤ t ≤ , by () in the same way we get

x(t) =

(
cos. t 
cos. t cos. t

)(
.
–.

)

+

(
. 

–. .

)(
sin. t 
sin. t sin. t

)(
–.
.

)

+

(
. 

–. .

)(∫ t–
–. . sin. (t – . – s) ds
∫ t–

–. . sin.(t – . – s) ds

)

+

(
. 

–. .

)(∫ 
t– . sin. (t – . – s) ds
∫ 

t– . sin.(t – . – s) ds

)

=

(
x(t)
x(t)

)

,
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then one can obtain

x(t) = . cos. t – . sin. t + .
∫ t–

–.
. sin. (t – . – s) ds

+ .
∫ 

t–
. sin. (t – . – s) ds

and

x(t) = . cos. t – . cos. t + . sin. t – . sin. t

– .
∫ t–

–.
. sin. (t – . – s) ds + .

∫ t–

–.
. sin.(t – . – s) ds

– .
∫ 

t–
. sin. (t – . – s) ds + .

∫ 

t–
. sin.(t – . – s) ds.

By calculating we obtain γ = max{‖ϕ‖C ,‖ϕ̇‖C ,‖ϕ̈‖C} = ., ‖�‖ = , ‖�–‖ = ., then
we set δ = . > . = γ .

Figure  shows the state response x(t) of () and Figure  shows the norm ‖x(t)‖ of
(). By Theorems .-., we can calculate that ‖x(t)‖ ≤ ., ‖x(t)‖ ≤ . and
‖x(t)‖ ≤ ., we just only take ε = ., ., ., respectively. The data is shown in
Table .

We can see ‖x(t)‖ < ε for ∀t ∈ J through Figure  and Table , the system () is finite
time stable with respect to {, J , δ, ε, τ } under Theorems .-.. We can also obtain α =
.,β = .,ρ = .. The result of Theorem . is the optimal in this example.

5 Extension to delay system with nonlinear term
In this section, we consider the following delay differential equations with nonlinear term:

⎧
⎨

⎩

ẍ(t) + �x(t – τ ) = f (x(t)), τ > , t ∈ J ,

x(t) ≡ ϕ(t), ẋ(t) ≡ ϕ̇(t), –τ ≤ t ≤ ,
()

where f ∈ C(Rn,Rn).

Figure 5 The state response x(t) of (23).
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Figure 6 The norm ‖x(t)‖ of (23).

Table 1 Finite time stable results of (23) by Theorems 3.1-3.3

Theorem T ‖�‖ ‖�–1‖ δ ‖x(t)‖ ε τ Finite time stability

3.1 1 3 0.75 0.31 ≤18.8158 18.82 0.5 Yes
3.2 1 3 0.75 0.31 ≤7.0106 7.02 (optimal) 0.5 Yes
3.3 1 3 0.75 0.31 ≤7.7167 7.72 0.5 Yes

Definition . (see [], Definitions ) The system () satisfying initial conditions x(t) ≡
ϕ(t) and ẋ(t) ≡ ϕ̇(t) for –τ ≤ t ≤  are finite time stable with respect to {, J , δ, ε, τ }, if and
only if

γ  < δ ()

implies

∥
∥x(t)

∥
∥ < ε, ∀t ∈ J ,

where γ = max{‖ϕ‖C ,‖ϕ̇‖C ,‖ϕ̈‖C} denotes the initial time of observation of the system. In
addition, δ, ε are real positive numbers.

The following Gronwall inequality will be used to derive the finite time stability for our
problem.

Lemma . (see [], p.) Let u(t), k(t, s) and its partial derivative kt(t, s) be nonnegative
continuous functions for t < s < t, and suppose

u(t) ≤ a +
∫ t

t

k(t, s)u(s) ds, t ≥ t,

where a ≥  is a constant. Then

u(t) ≤ a exp

(∫ t

t

k(t, s) ds
)

, t ≥ t.

Now we are ready to state our main result in the section.
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Theorem . Suppose that f ∈ C(Rn,Rn) and there exists P >  such that ‖f (x)‖ ≤ P‖x‖
for all x ∈R

n. The system () is finite time stable with respect to {, J , δ, ε, τ } provided that

eP‖�–‖‖�‖–[cosh(‖�‖t)–] <
√

ε

a
, ∀t ∈ J , ()

where

a =
√

δ cosh
(‖�‖T

)
+

√
δ(τ + )

∥
∥�–∥∥ sinh

[‖�‖(T + τ )
]
. ()

Proof By [], Theorem , equation (), the solution of () has the form

x(t) = cosτ �tϕ(–τ ) + �– sinτ �tϕ̇(–τ ) + �–
∫ 

–τ

sinτ �(t – τ – s)ϕ̈(s) ds

+ �–
∫ t


sinτ �(t – τ – s)f

(
x(s)

)
ds, ()

where the matrix � is nonsingular. Taking the norm for (), we obtain

∥
∥x(t)

∥
∥ ≤ ‖ cosτ �t‖∥∥ϕ(–τ )

∥
∥ +

∥
∥�–∥∥‖ sinτ �t‖∥∥ϕ̇(–τ )

∥
∥

+
∥
∥�–∥∥

∫ 

–τ

∥
∥sinτ �(t – τ – s)

∥
∥
∥
∥ϕ̈(s)

∥
∥ds

+
∥
∥�–∥∥

∫ t



∥
∥sinτ �(t – τ – s)

∥
∥
∥
∥f

(
x(s)

)∥
∥ds. ()

From () and (), we have

∥
∥x(t)

∥
∥ ≤ √

δ‖ cosτ �t‖ +
√

δ
∥
∥�–∥∥‖ sinτ �t‖ +

√
δ
∥
∥�–∥∥

∫ 

–τ

∥
∥cosτ �(t – τ – s)

∥
∥ds

+
∥
∥�–∥∥

∫ t



∥
∥sinτ �(t – τ – s)

∥
∥
∥
∥f

(
x(s)

)∥
∥ds.

Next, according to Lemmas ., . and (), we obtain

∥
∥x(t)

∥
∥ ≤ √

δ cosh
(‖�‖t

)
+

√
δ
∥
∥�–∥∥ sinh

[‖�‖(t + τ )
]

+
√

δτ
∥
∥�–∥∥sinh

[‖�‖(t + τ )
]

+
∫ t



∥
∥�–∥∥

∥
∥f

(
x(s)

)∥
∥ sinh

[‖�‖(t – s)
]

ds. ()

Note that ‖f (x)‖ ≤ P‖x‖ for all x ∈R
n, then the inequality () becomes that

∥
∥x(t)

∥
∥ ≤ a +

∫ t


k(t, s)

∥
∥x(s)

∥
∥ds, ()

where a is defined in () and k(t, s) = P‖�–‖ sinh[‖�‖(t – s)].
Calculating the partial derivative kt(t, s) via (), we obtain

kt(t, s) = P
∥
∥�–∥∥‖�‖ cosh

[‖�‖(t – s)
]
,  ≤ s ≤ t.
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Note that ‖x(t)‖, k(t, s) and its partial derivative kt(t, s) are all nonnegative continuous
functions and a is a constant. Thus, the conditions in Lemma . are satisfied, then by
Lemma . we get

∥
∥x(t)

∥
∥ ≤ ae

∫ t
 k(t,s) ds, t ∈ J . ()

Next,

∫ t


k(t, s) ds =

∫ t


P
∥
∥�–∥∥ sinh

[‖�‖(t – s)
]

ds = P
∥
∥�–∥∥‖�‖–[cosh

(‖�‖t
)

– 
]
. ()

Submitting () into () and by () we obtain

∥
∥x(t)

∥
∥ ≤ aeP‖�–‖‖�‖–[cosh(‖�‖t)–] <

√
ε,

which implies that ‖x(t)‖ < ε, t ∈ J . The proof is finished. �
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