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Abstract
In this paper, we solve two-dimensional modified anomalous fractional sub-diffusion
equation using modified implicit finite difference approximation. The stability and
convergence of the proposed scheme are analyzed by the Fourier series method. We
show that the scheme is unconditionally stable and the approximate solution
converges to the exact solution. A numerical example is given to show the
application and feasibility of the proposed scheme.
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1 Introduction
There has been much interest over the last two decades in fractional calculus and its
applications. A comprehensive treatment of fractional calculus and applications can be
found in Miller and Ross [], Oldham and Spanier [], Podlubny [] and Samko et al. [].
Many researchers have used numerical methods to solve biological and fluid dynamics
type models and investigated the stability and convergence analysis, see [–]. Here, the
modified anomalous sub-diffusion equation has been proposed to describe the processes
that become less anomalous as time progresses by inclusion of a secondary fractional time
derivative acting on diffusion operator [–].

Many researchers have solved this problem with different methods. Li and Wang []
proposed an improved efficient difference method for modified anomalous sub-diffusion
equation with a nonlinear source term. They used weighted and shifted Grünwald-
Letnikov for Riemann-Liouville fractional derivative and compact difference for space
derivative and used second-order interpolation formula for nonlinear source term. De-
hghan et al. [] used a finite difference scheme for Riemann-Liouville fractional deriva-
tive and the Legendre spectral element method for space component. For a semi-discrete
scheme, they took integral on both sides and then for full discretization used the Leg-
endre spectral element method for one- and two-dimensional modified anomalous sub-
diffusion equation. Liu et al. [] demonstrated a new implicit numerical method for mod-
ified anomalous sub-diffusion equation with nonlinear source term in a bounded domain
and analyzed stability and convergence by a new energy method. Cao et al. [] studied
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the implicit midpoint method and constructed a new numerical scheme for modified frac-
tional sub-diffusion equation with nonlinear source term. Ding and Li [] used second-
order Riemann-Liouville fractional derivative and constructed two kinds of novel numer-
ical schemes and discussed stability, convergence and solvability by the Fourier method.
So many authors have used a high-order difference scheme with different methods for
modified anomalous sub-diffusion equation and applied Grünwald-Letnikov definition
for Riemann-Liouville fractional derivative and also discussed stability and convergence
[, , ].

In this paper, we modify the implicit difference method completely numerically for
modified anomalous fractional sub-diffusion equation by applying the discretized form
of Riemann-Liouville integral operator and the backward difference formula to remove
the partial derivative with respect to time. We also analyze the stability and convergence
of the modified scheme by the Fourier series method.

In this paper, we consider the following modified anomalous fractional sub-diffusion
equation []:

∂u(x, y, t)
∂t

=
(

A
∂–α

∂t–α
+ B

∂–β

∂t–β

)[
∂u(x, y, t)

∂x +
∂u(x, y, t)

∂y

]
+ f (x, y, t) ()

subject to the initial and boundary conditions

u(x, y, ) = ϕ(x, y), ()

u(, y, t) = ϕ(y, t), u(L, y, t) = ϕ(y, t),

u(x, , t) = ϕ(x, t), u(x, L, t) = ϕ(x, t), ()

 ≤ x, y ≤ L,  ≤ t ≤ T ,

where ϕ, ϕ, ϕ, ϕ and ϕ are known functions, A, B are constants and ∂–α

∂t–α and ∂–β

∂t–β are
the Riemann-Liouville fractional derivatives of fractional order –α and –β , respectively,
defined by [, ].

∂–α

∂t–α
u(x, y, t) =


�(α)

∂

∂t

∫ t



u(x, y,η)
(t – η)–α

dη =
∂

∂t
Iα

 u(x, y, t), ()

∂–β

∂t–β
u(x, y, t) =


�(β)

∂

∂t

∫ t



u(x, y,η)
(t – η)–β

dη =
∂

∂t
Iβ

 u(x, y, t). ()

Here

Iα
 u(x, y, t) =


�(α)

∫ t



u(x, y,η)
(t – η)–α

dη, ()

Iβ
 u(x, y, t) =


�(β)

∫ t



u(x, y,η)
(t – η)–β

dη, ()

is the Riemann-Liouville integral of fractional order  < α,β < .
The following two lemmas will be used in this paper [].
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Lemma  If u(t) ∈ C[, T], then

Iγ
 u(tk) =

τ γ

�(γ + )

k–∑
j=

b(γ )
j u(tk–j) + Rγ

k , ()

where |Rγ

k | ≤ Cbγ

k τ .

Lemma  The coefficients b(γ )
k (k = , , , . . .) satisfy the following properties:

(i) b(γ )
 = , b(γ )

k > , k = , , , . . . .
(ii) b(γ )

k– > b(γ )
k , k = , , . . . .

(iii) There exists a positive constant C >  such that τ ≤ Cb(γ )
k τ γ , k = , , . . . .

(iv)
∑k

j= b(γ )
j τ γ = (k + )γ ≤ Tγ .

2 Modified implicit difference approximation
In this section, we develop a modified implicit difference scheme for the modified anoma-
lous fractional sub-diffusion equation ()-(). For the discretization of the Riemann-
Liouville fractional derivative, we use the definition in ()-() and replace the second-order
space derivatives by central difference approximation. We take the space steps as xi = i
x,
in the x-direction with i = , , . . . , M–, 
x = L

M , and the time step is tk = kτ , k = , , . . . , N ,
where τ = T

N . Let uk
i be the numerical approximation to u(xi, tk). By applying () and () to

equation (), we obtain

∂u(x, y, t)
∂t

=
(

A
∂

∂t
Iα

 + B
∂

∂t
Iβ



)[
∂u(x, y, t)

∂x +
∂u(x, y, t)

∂y

]
+ f (x, y, t). ()

Firstly, for the discretization of equation (), we are using Lemma  for the Riemann-
Liouville integral operator, then central difference approximation for second-order space
derivatives and applying backward difference approximation for the partial derivative with
respect to time, we have

uk
i,j – uk–

i,j = r

k–∑
s=

b(α)
s δx(uk–s

i,j – uk–s–
i,j

)
+ r

k–∑
s=

b(α)
s δy(uk–s

i,j – uk–s–
i,j

)

+ r

k–∑
s=

b(β)
s δx(uk–s

i,j – uk–s–
i,j

)
+ r

k–∑
s=

b(β)
s δy(uk–s

i,j – uk–s–
i,j

)

+ τ f (xi, yj, tk) + Rα
i,j,k + Rβ

i,j,k . ()

Here,

r =
Aτα

�(α + )
x , r =
Aτα

�(α + )
y , r =
Bτβ

�(β + )
x ,

r =
Bτβ

�(β + )
y ,
∣∣Rα

i,k
∣∣ ≤ Cb(α)

k τα
(
τ + τ
x),

∣∣Rβ

i,k
∣∣ ≤ Cb(β)

k τβ
(
τ + τ
x),

()

and

δxuk
i,j = uk

i+,j – uk
i,j + uk

i–,j, δyuk
i,j = uk

i,j+ – uk
i,j + uk

i,j–. ()
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From the above, we present a modified implicit difference scheme for the modified anoma-
lous fractional sub-diffusion equation ()-() with the initial and boundary conditions as
follows:

uk
i,j – uk–

i,j = rδxuk
i,j – rb(α)

k–δxu
i,j + rδyuk

i,j – rb(α)
k–δyu

i,j

–
k–∑
s=

(
b(α)

s– – b(α)
s

)(
rδxuk–s

i,j + rδyuk–s
i,j

)

+ rδxuk
i,j – rb(β)

k–δxu
i,j + rδyuk

i,j – rb(β)
k–δyu

i,j

–
k–∑
s=

(
b(β)

s– – b(β)
s

)(
rδxuk–s

i,j + rδyuk–s
i,j

)
+ τ f k

i,j, ()

where i = , , . . . Mx – , j = , , . . . My –  and k = , , . . . N –  with

u
i,j = ϕ(xi, yj), ()

uk
,j = ϕ(yj, tk), uk

M,j = ϕ(yj, tk),

uk
i, = ϕ(xi, tk), uk

i,M = ϕ(xi, tk), ()

 ≤ x, y ≤ L,  ≤ t ≤ T .

3 Stability of the modified implicit scheme
In this section, we investigate the stability of the modified implicit numerical scheme using
the Fourier series method. Let Uk

i be the approximate solution for (), and we have

Uk
i,j – Uk–

i,j = rδxUk
i,j – rb(α)

k–δxU
i,j + rδyUk

i,j – rb(α)
k–δyU

i,j

–
k–∑
s=

(
b(α)

s– – b(α)
s

)(
rδxUk–s

i,j + rδyUk–s
i,j

)

+ rδxUk
i,j – rb(β)

k–δxU
i,j + rδyUk

i,j – rb(β)
k–δyU

i,j

–
k–∑
s=

(
b(β)

s– – b(β)
s

)(
rδxUk–s

i,j + rδyUk–s
i,j

)
+ τ f k

i,j, ()

where i = , , . . . , Mx – , j = , , . . . , My –  and k = , , . . . , N – .
Next, the error is defined as

ek
i,j = uk

i,j – Uk
i,j, ()

where ek
i,j satisfies () and

ek
i,j – ek–

i,j = r
(
ek

i+,j – ek
i,j + ek

i–,j
)

– rb(α)
k–

(
e

i+,j – e
i,j + e

i–,j
)

+ r
(
ek

i,j+ – ek
i,j + ek

i,j–
)

– rb(α)
k–

(
e

i,j+ – e
i,j + e

i,j–
)

–
k–∑
s=

(
b(α)

s– – b(α)
s

)(
r

(
ek–s

i+,j – ek–s
i,j + ek–s

i–,j
)
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+ r
(
ek–s

i,j+ – ek–s
i,j + ek–s

i,j–
))

+ r
(
ek

i+,j – ek
i,j + ek

i–,j
)

– rb(β)
k–

(
e

i+,j – e
i,j + e

i–,j
)

+ r
(
ek

i,j+ – ek
i,j + ek

i,j–
)

– rb(β)
k–

(
e

i,j+ – e
i,j + e

i,j–
)

–
k–∑
s=

(
b(β)

s– – b(β)
s

)(
r

(
ek–s

i+,j – ek–s
i,j + ek–s

i–,j
)

+ r
(
ek–s

i,j+ – ek–s
i,j + ek–s

i,j–
))

. ()

The error and initial conditions are given by

ek
 = ek

M = e
i,j = . ()

By defining the following grid functions for k = , , . . . , N

ek(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ek
i,j, when xi– 
x


< x ≤ xi+ 
x


, yj– 
y


< y ≤ yj+ 
y


,

, when  ≤ x ≤ 
x
 or L – 
x

 ≤ x ≤ L,

, when  ≤ y ≤ 
y
 or L – 
y

 ≤ y ≤ L,

()

ek(x, y) can be expanded in Fourier series such as

ek(x, y) =
∞∑

l,l=–∞
λk(l, l)e

√
–π (lx/L+ly/L), ()

where

λk(l, l) =

L

∫ L



∫ L


ek(x, y)e–

√
–π (lx/L+ly/L) dx dy. ()

From the definition of l norm and Parseval’s equality, we have

∥∥ek∥∥
∞ =

Mx–∑
i=

My–∑
j=


x
y
∣∣ek

i,j
∣∣ =

∞∑
l,l=–∞

∣∣λk(l, l)
∣∣. ()

Supposing that

ek
i,j = λke

√
–(σi
x+σj
y), ()

where σ = π l/L, σ = π l/L and substituting () in (), we obtain

λk =


( + μ + μ)

(
λk– +

(
μb(α)

k– + μb(β)
k–

)
λ + μ

k–∑
s=

(
b(α)

s– – b(α)
s

)
λk–s

+ μ

k–∑
s=

(
b(β)

s– – b(β)
s

)
λk–s

)
, ()
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where

μ = 
(

r sin
(

σ
x


)
+ r sin

(
σ
y



))
, ()

μ = 
(

r sin
(

σ
x


)
+ r sin

(
σ
y



))
. ()

Proposition  If λk (k = , , . . . , N ) satisfy (), then |λk| ≤ |λ|.

Proof By using mathematical induction, we take k =  in ()

λ =
( + b(α)

 μ + b(β)
 μ)λ

( + μ + μ)
,

and as μ,μ ≥  and b(α)
 = b(β)

 = , then

∣∣λ∣∣ ≤ ∣∣λ∣∣. ()

Now, assuming that

∣∣λm∣∣ ≤ ∣∣λ∣∣; m = , , . . . , k – 

and as  < α,β < , from () and Lemma , we obtain

∣∣λk∣∣ ≤ 
( + μ + μ)

[∣∣λk–∣∣ +
(
μb(α)

k– + μb(β)
k–

)∣∣λ∣∣ + μ

k–∑
s=

(
b(α)

s– – b(α)
s

)∣∣λk–s∣∣

+ μ

k–∑
s=

(
b(β)

s– – b(β)
s

)∣∣λk–s∣∣
]

≤
[

 + (μb(α)
k– + μb(β)

k–) + μ
∑k–

s= (b(α)
s– – b(α)

s ) + μ
∑k–

s= (b(β)
s– – b(β)

s )
( + μ + μ)

]∣∣λ∣∣

=
[

 + μb(α)
k– + μb(β)

k– + μ( – b(α)
k–) + μ( – b(β)

k–)
( + μ + μ)

]∣∣λ∣∣

=
[

 + μ + μ

 + μ + μ

]∣∣λ∣∣, ∣∣λk∣∣ ≤ ∣∣λ∣∣. ()

The proof of Proposition  by induction is completed. �

Proposition  and equation () concluded that the solution of equation () satisfies

∥∥λk∥∥
 ≤ ∥∥λ∥∥

, ()

this proved that the modified implicit difference scheme in () is unconditionally stable.

4 Convergence of the modified implicit scheme
In this section, we analyze the convergence of the modified implicit scheme by following
a similar approach as that in Section .
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Let the exact solution u(xi, yj, tk) be represented by Taylor series, then the truncation
error of the modified implicit scheme is obtained as

Rk
i,j = u(xi, yj, tk) – u(xi, yj, tk–)

– r

k–∑
s=

b(α)
s δx(u(xi, yj, tk–s) – u(xi, yj, tk–s–)

)

– r

k–∑
s=

b(α)
s δy(u(xi, yj, tk–s) – u(xi, yj, tk–s–)

)

– r

k–∑
s=

b(β)
s δx(u(xi, yj, tk–s) – u(xi, yj, tk–s–)

)

– r

k–∑
s=

b(β)
s δy(u(xi, yj, tk–s) – u(xi, yj, tk–s–)

)
– τ f (xi, yj, tk), ()

with i = , , . . . , Mx – , j = , , . . . , My – , k = , , . . . , N .
From (), we have

Rk
i,j =

uk
i,j – uk–

i,j

τ
–

∂u(xi, yj, tk)
∂t

+ D–α
t

(
∂u(xi, yj, tk)

∂x

)

– r

k–∑
s=

b(α)
s δx(uk–s

i,j – uk–s–
i,j

)
+ D–α

t

(
∂u(xi, yj, tk)

∂y

)

– r

k–∑
s=

b(α)
s δy(uk–s

i,j – uk–s–
i,j

)
+ D–α

t

(
∂u(xi, yj, tk)

∂x

)

– r

k–∑
s=

b(β)
s δx(uk–s

i,j – uk–s–
i,j

)
+ D–β

t

(
∂u(xi, yj, tk)

∂y

)

– r

k–∑
s=

b(β)
s δy(uk–s

i,j – uk–s–
i,j

)

= O
(
τ + τ (
x) + τ (
y)). ()

Since i, j and k are finite, thus there is a positive constant C for all i, j and k, which then
leads to

∣∣Rk
i,j
∣∣ ≤ C

(
τ + τ (
x) + τ (
y)), ()

with i = , , . . . , Mx – , j = , , . . . , My – , k = , , . . . , N . The error is defined as

Ek
i,j = u(xi, yj, tk) – uk

i,j. ()

From (), we have

u(xi, yj, tk) = u(xi, yj, tk–) + r
(
u(xi+, yj, tk) – u(xi, yj, tk) + u(xi–, yj, tk)

)
– rb(α)

k–
(
u(xi+, yj, t) – u(xi, yj, t) + u(xi–, yj, t)

)
+ r

(
u(xi, yj+, tk)
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– u(xi, yj, tk) + u(xi, yj–, tk)
)

– rb(α)
k–

(
u(xi, yj+, t) – u(xi, yj, t)

+ u(xi, yj–, t)
)

–
k–∑
s=

(
b(α)

s– – b(α)
s

)(
r

(
u(xi+, yj, tk–s) – u(xi, yj, tk–s)

+ u(xi–, yj, tk–s)
)

+ r
(
u(xi, yj+, tk–s) – u(xi, yj, tk–s) + u(xi, yj–, tk–s)

))
+ r

(
u(xi+, yj, tk) – u(xi, yj, tk) + u(xi–, yj, tk)

)
– rb(β)

k–
(
u(xi+, yj, t) – u(xi, yj, t) + u(xi–, yj, t)

)
+ r

(
u(xi, yj+, tk) – u(xi, yj, tk) + u(xi, yj–, tk)

)
– rb(β)

k–
(
u(xi, yj+, t) – u(xi, yj, t) + u(xi, yj–, t)

)

–
k–∑
s=

(
b(β)

s– – b(β)
s

)(
r

(
u(xi+, yj, tk–s) – u(xi, yj, tk–s) + u(xi–, yj, tk–s)

)

+ r
(
u(xi, yj+, tk–s) – u(xi, yj, tk–s) + u(xi, yj–, tk–s)

))
+ τ f (xi, yj, tk). ()

To obtain the error equation, subtract () from () to obtain

Ek
i,j – Ek–

i,j = r
(
Ek

i+,j – Ek
i,j + Ek

i–,j
)

– rb(α)
k–

(
E

i+,j – E
i,j + E

i–,j
)

+ r
(
Ek

i,j+ – Ek
i,j + Ek

i,j–
)

– rb(α)
k–

(
E

i,j+ – E
i,j + E

i,j–
)

–
k–∑
s=

(
b(α)

s– – b(α)
s

)(
r

(
Ek–s

i+,j – Ek–s
i,j + Ek–s

i–,j
)

+ r
(
Ek–s

i,j+ – Ek–s
i,j + Ek–s

i,j–
))

+ r
(
Ek

i+,j – Ek
i,j + Ek

i–,j
)

– rb(β)
k–

(
E

i+,j – E
i,j + E

i–,j
)

+ r
(
Ek

i,j+ – Ek
i,j + Ek

i,j–
)

– rb(β)
k–

(
E

i,j+ – E
i,j + E

i,j–
)

–
k–∑
s=

(
b(β)

s– – b(β)
s

)(
r

(
Ek–s

i+,j – Ek–s
i,j + Ek–s

i–,j
)

+ r
(
Ek–s

i,j+ – Ek–s
i,j + Ek–s

i,j–
))

+ τRk
i,j, ()

with error boundary conditions

Ek
 = Ek

M = , k = , , . . . , N , ()

and the initial condition

E
i,j = , i = , , . . . Mx, j = , , . . . , My. ()

Next, we define the following grid functions for k = , , . . . , N :

Ek(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ek
i,j, when xi– 
x


< x ≤ xi+ 
x


, yj– 
y


< y ≤ yj+ 
y


,

, when  ≤ x ≤ 
x
 or L – 
x

 ≤ x ≤ L,

, when  ≤ y ≤ 
y
 or L – 
y

 ≤ y ≤ L,

()
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and

Rk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rk
i,j, when xi– 
x


< x ≤ xi+ 
x


, yj– 
y


< y ≤ yj+ 
y


,

, when  ≤ x ≤ 
x
 or L – 
x

 ≤ x ≤ L,

, when  ≤ y ≤ 
y
 or L – 
y

 ≤ y ≤ L,

()

i = , , . . . , Mx – , j = , , . . . , My – , k = , , . . . , N .
Here, Ek(x, y) and Rk(x, y) can be expanded in Fourier series such as

Ek(x, y) =
∞∑

l,l=–∞
ξ k(l, l)e

√
–π (lx/L+ly/L), k = , , . . . N , ()

Rk(x, y) =
∞∑

l,l=–∞
�k(l, l)e

√
–π (lx/L+ly/L), k = , , . . . N , ()

where

ξ k(l, l) =

L

∫ L



∫ L


Ek(x, y)e–

√
–π (lx/L+ly/L) dx dy, ()

�k(l, l) =

L

∫ L



∫ L


Rk(x, y)e–

√
–π (lx/L+ly/L) dx dy. ()

From the definition of l norm and Parseval’s equality, we have

∥∥Ek∥∥
l =

Mx–∑
i=

My–∑
j=


x
y
∣∣ek

i,j
∣∣ =

∞∑
l,l=–∞

∣∣ρk(l, l)
∣∣, ()

and

∥∥Rk∥∥
l =

Mx–∑
i=

My–∑
j=


x
y
∣∣ek

i,j
∣∣ =

∞∑
l,l=–∞

∣∣�k(l, l)
∣∣. ()

Based on the above, suppose that

Ek
i,j = ξ ke

√
–(σi
x+σj
y), ()

Rk
i,j = �ke

√
–(σi
x+σj
y), ()

respectively, substituting () and () into () gives

ξ k =


( + μ + μ)

(
ξ k– +

(
μb(α)

k– + μb(β)
k–

)
ξ + μ

k–∑
s=

(
b(α)

s– – b(α)
s

)
ξ k–s

+ μ

k–∑
s=

(
b(β)

s– – b(β)
s

)
ξ k–s + τ�k

)
, ()

where μ and μ are mentioned in Section .
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Proposition  Let ξ k (k = , , . . . , N ) be the solution of (), then there is a positive con-
stant C so that

∣∣ξ k∣∣ ≤ Ckτ
∣∣�∣∣.

Proof From E =  and (), we have

ξ = ξ(l, l) = . ()

From () and (), then there is a positive constant C such that

∣∣�k∣∣ ≤ C
∣∣�(l, l)

∣∣. ()

Using mathematical induction for k = , then from () and (), we obtain

ξ  =


( + μ + μ)
(
τ�).

Since μ,μ ≥ , from (), we get

∣∣ξ ∣∣ ≤ τ
∣∣�∣∣ ≤ Cτ

∣∣�∣∣. ()

Now suppose that

∣∣ξm∣∣ ≤ Cmτ
∣∣�∣∣, m = , , . . . , k – . ()

As  < α,β < , from (), () and Lemma , we have

∣∣ξ k∣∣ ≤ |ξ k–| + μ
∑k–

s= (b(α)
s– – b(α)

s )|ξ k–s| + μ
∑k–

s= (b(β)
s– – b(β)

s )|ξ k–s| + τ |�k|
( + μ + μ)

≤
[

(k – ) + (k – )μ
∑k–

s= (b(α)
s– – b(α)

s ) + (k – )μ
∑k–

s= (b(β)
s– – b(β)

s ) + 
( + μ + μ)

]
Cτ

∣∣�∣∣

=
[

(k – )( + μ( – b(α)
k–) + μ( – b(β)

k–)) + 
( + μ + μ)

]
Cτ

∣∣�∣∣.

As μ,μ ≥  and ( – bk–) ≥ , for all values, so

≤ kCτ
∣∣�∣∣. ()

The proof of Proposition  by induction is completed. �

Theorem  The modified implicit difference scheme is l convergent and the order of con-
vergence is O(τ + τ (
x) + τ (
y)).

Proof From () and (), we obtain

∥∥Rk∥∥ ≤ √
M
x
yC

(
τ + τ (
x) + τ (
y)) = LC

(
τ + τ (
x) + τ (
y)). ()
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In view of Proposition , (), () and ()

∥∥Ek∥∥
l ≤ kCτ

∥∥R∥∥ ≤ CCkτL
(
τ + τ (
x) + τ (
y)), ()

as kτ ≤ R, thus

∥∥Ek∥∥
l ≤ CCRL

(
τ + τ (
x) + τ (
y)), ()

where C = CCRL.
This completes the proof of the theorem. �

5 Numerical experiments
In this section, we solve a numerical example to test the theoretical analysis. The maxi-
mum errors between the numerical solution and the exact solution are compared with the
mentioned references, i.e., the maximum error is defined as follows:

E∞ = max
≤i≤Mx–,≤j≤My–,≤k≤N

∣∣u(xi, yj, tk) – uk
i,j
∣∣. ()

Example  Consider the following two-dimensional modified anomalous fractional sub-
diffusion equation []:

∂u(x, y, t)
∂t

=
(

∂–α

∂t–α
+

∂–β

∂t–β

)[
∂u(x, y, t)

∂x +
∂u(x, y, t)

∂y

]
+ f (x, y, t),  ≤ t ≤ T , ()

where

f (x, y, t) = sin(x + y)
(

( + α + β)tα+β +
�( + α + β)
�( + α + β)

tα+β

+
�( + α + β)
�( + α + β)

tα+β

)
,

subject to the initial and boundary conditions

u(x, y, ) = ,  ≤ x, y ≤ , ()

u(, y, t) = t+α+β sin(y), u(L, y, t) = t+α+β sin(L + y),

u(x, , t) = t+α+β sin(x), u(x, L, t) = t+α+β sin(L + x), ()

 ≤ x, y ≤ L,  ≤ t ≤ T .

The exact solution is given by

u(x, t) = t+α+β sin(x + y). ()

The developed modified implicit scheme is applied to problem ()-(). Table  shows
the errors E∞ at T = . for the space step size 
x = 
y = 

 and for various values of τ .
Note that the time step τ is defined by τ = T

N .
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Table 1 Comparison of numerical methods at T = 1.0, �x = �y = 1
10 , α = 0.25, β = 0.45

τ CFDM in [21] INM in [20] Our method

1/10 1.5729e–2 6.8179e–3 5.1782e–3
1/20 7.8976e–3 3.6388e–3 2.4390e–3
1/40 3.9560e–3 1.8825e–3 1.1772e–3
1/80 1.9794e–3 9.3779e–4 5.9755e–4
1/160 9.8995e–4 4.3872e–4 3.3033e–4

Table 2 Comparison of numerical methods at T = 1.0, �x = �y = 1
10 , α = 0.75, β = 0.85

τ CFDM in [21] INM in [20] Our method

1/10 3.0442e–2 1.2912e–2 6.2798e–3
1/20 1.5748e–2 6.8096e–3 1.5832e–3
1/40 8.0073e–3 3.4686e–3 8.2968e–4
1/80 4.0371e–3 1.7180e–3 5.9755e–4
1/160 2.0269e–3 8.2079e–4 4.5855e–4

Figure 1 Comparison of the numerical scheme (59) and the exact solution (44) at α = 0.75, β = 0.75,
T = 1, y = 0.1 and N = 80.

In Tables  and , the numerical results seem to confirm our theoretical analysis for
various values of time step size τ , α and β .

Figures  and  show the numerical solution of equation () and compare it with the
exact solution at α = ., , β = ., ., y = . and T = ., respectively. It can be
seen that the numerical solution is in excellent agreement with the exact solution. These
results proved our theoretical analysis.

6 Conclusion
A modified implicit difference scheme for two-dimensional modified anomalous frac-
tional sub-diffusion equation has been described in this paper. The modified scheme
has the advantage of low complexity, low computation and it is easy to implement. We
have used the Fourier series method and found that the scheme with convergence order
(τ + τ (
x) + τ (
y)) is unconditionally stable and convergent. The result of an appli-
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Figure 2 Comparison of the numerical scheme (59) and the exact solution (44) at α = 0.25, β = 0.45,
T = 1, y = 0.1 and N = 160.

cation to a particular example has been discussed graphically and numerically. A com-
parison of the numerical methods with the proposed scheme for the example has shown
that the scheme is feasible and accurate. This technique can also be extended to explicit
and Crank-Nicolson method and can be applied to other types of fractional differential
equations.
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