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Abstract
This paper is concerned with the dissipativity of Runge-Kutta methods for a class of
nonlinear functional-integro-differential equations (FIDEs). The dissipativity results of
Runge-Kutta methods for the FIDEs are given. It is shown under a suitable condition
that an algebraically stable Runge-Kutta method is dissipative when applied to the
FIDEs. Numerical examples are given to illustrate the correctness of our theoretical
results.
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1 Introduction
Among various properties of dynamical systems, dissipativity is one of important char-
acteristics. A dissipative dynamical system is characterized by possessing a bounded ab-
sorbing set that all trajectories enter in a finite time and thereafter remain inside []. In
the study of numerical methods for these systems, one natural wish is for the numerical
solution to preserve the dissipativity of the analytic solution.

Over the past few decades, the dissipativity of the analytic solution and numerical meth-
ods for some special class dynamical systems of VFDEs have been studied widely. One
can refer to the following works and corresponding authors: [–] for ordinary differ-
ential equations (ODEs), [–] for delay differential equations (DDEs), and [–] for
other kinds of Volterra functional differential equations, such as delay integro-differential
equations (DIDEs), neutral delay differential equations (NDDEs), neutral delay integro-
differential equations (NDIDEs) and so on.

In this paper, we investigate numerical dissipativity of a class of nonlinear functional-
integro-differential equations (FIDEs) (see (.) in the next section). In  and ,
Zhang and Qin studied the stability of Runge-Kutta methods [] and one-leg methods
[] for this kind of problems, respectively. Recently, we also studied the dissipativity of
systems (.) and of one-leg methods for FIDEs (.) []. In addition we do not find more
dissipativity results for this kind of nonlinear FIDEs. The aim of this paper is to investigate
the dissipativity of Runge-Kutta methods for (.).

This paper is organized as follows. In Section , the descriptions of the nonlinear FIDEs
and their Runge-Kutta methods are given. In Section , the results on the dissipativity of
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Runge-Kutta methods are deduced. In Section , some numerical experiments are given
to illustrate the theoretical results which we stated in previous sections.

2 The descriptions of problem class and numerical methods
Let Cd be a d-dimensional complex Euclidean space with the inner product 〈·, ·〉 and the
corresponding norm ‖ · ‖. For any nonnegative diagonal matrix B = diag(b, b, . . . , bs), we
define a pseudo inner product on C

ds := (Cd)s by

〈Y , Z〉B =
s∑

j=

bj〈Yj, Zj〉, Y = (Y, Y, . . . , Ys) ∈C
ds, Z = (Z, Z, . . . , Zs) ∈C

ds,

and the corresponding pseudo norm on C
ds by

‖Y‖B =
√〈Y , Y 〉B.

It is obvious that when B is positive definite, they are the inner product and the norm
on Cds, respectively.

Consider nonlinear functional integro-differential equations (FIDEs) of the form (cf. [,
])

⎧
⎨

⎩

d
dt [x(t) –

∫ t
t–τ

g(t, ξ , x(ξ )) dξ ] = f (t, x(t), x(t – τ )), t ∈ [t, +∞),

x(t) = ϕ(t), t – τ ≤ t ≤ t,
(.)

where τ >  is a given constant delay, the functions f : [t, +∞) ×Cd ×Cd → Cd , g : D×
C

d → C
d , and ϕ : [t – τ , t] → C

d are assumed to be continuous so that system (.) has
a unique solution x(t), and f and g satisfy also the conditions

Re
〈
f (t, u, v), u – w

〉≤ γ + α‖u‖ + β‖v‖ + η‖w‖,

t ≥ t, u, v, w ∈C
d (.)

and

∥∥g(t, ξ , u)
∥∥≤ λ‖u‖, (t, ξ ) ∈D, u ∈C

d, (.)

where γ , α, β , η, λ are given real constants and γ , –α, β , η are nonnegative, and λ >  with
λτ < ,

D :=
{

(t, ξ ) : t ∈ [t, +∞), ξ ∈ [t – τ , t]
}

.

In order to investigate the numerical dissipativity of (.), we assume further that f sat-
isfies the condition: for any constant M > , there exists L >  which is only dependent on
M such that ‖f (t, u, v)‖ ≤ L holds for any t ≥ t, ‖u‖ ≤ M and ‖v‖ ≤ M.

Definition . (cf. []) Problem (.) in FIDEs is said to be dissipative in C
d if there exists

a bounded set B ⊂C
d such that for any given bounded set 
 ⊂C

d , there is a time t∗ = t∗(
)
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such that for any given continuous initial function ϕ : [t – τ , t] →C
d with ϕ(t) contained

in 
 for all t ∈ [t – τ , t], the corresponding solution x(t) of the problem is contained in
B for all t ≥ t∗. Here B is called an absorbing set in C

d .

In our recent paper [], we studied the dissipativity of (.) and gave the following re-
sults.

Theorem . Suppose that x(t) is a solution of problem (.) where f and g satisfy (.)
with α <  and (.), respectively, and there exists constant  < δ <  such that


 – λτ 

β + (η – α)λτ 

|α| ≤ δ. (.)

Then,
(i) for any t ≥ t, we have

∥∥x(t)
∥∥ ≤ 

 – λτ 
–γ

( – δ)α
+

 – λτ 

 – λτ eμ̄τ
φe–μ̄(t–t),

where φ = supt–τ≤ξ≤t ‖ϕ(ξ )‖, and μ̄ >  is defined as

μ̄ = inf
t≥t

{
μ(t) : μ(t) + α +

(
β + (η – α)λτ ) eμ(t)τ

 – λτ eμ(t)τ = 
}

;

here and later, the symbols γ , α, β , η, λ are given by (.) and (.);
(ii) for any given ε > , there exists t∗ = t∗(φ, ε) such that

∥∥x(t)
∥∥ ≤ 

 – λτ 
–γ

( – δ)α
+ ε, t ≥ t∗.

Hence system (.) is dissipative with an absorbing set

B = B
(

,

√


 – λτ 
–γ

( – δ)α
+ ε

)
.

Remark . In [] and [], the authors studied the stability of Runge-Kutta methods
and one-leg methods for FIDEs (.) on a limited closed interval [, T], but the mono-
tonicity condition

Re
〈
f (t, u, v) – f (t, u, v), u – u – (w – w)

〉

≤ α‖u – u‖ + β‖v – v‖ + η‖w – w‖,

t ≥ t, u, u, v, v, w, w ∈C
d (.)

is required. There exist some important differences between conditions (.) and (.). In
fact, as an example without delay and integral terms, Humphries and Stuart [] proved
that after translation of the origin, the Lorenz equations are dissipative, but do not satisfy
condition (.). In addition, the dissipativity is a long time characteristic of a system rather
than the stability on a limited closed interval.
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The aim of this paper is to investigate whether the Runge-Kutta methods for system (.)
preserve the dissipativity of the system itself.

It is well known that an s-stage Runge-Kutta method for ODEs can be expressed as

c A

bT
=

c a a · · · as

c a a · · · as
... · · · · · · · · · · · ·

cs as as · · · ass

b b · · · bs

, (.)

where A = (aij) ∈ R
s×s, b = (b, b, . . . , bs)T ∈ R

s and c = (c, c, . . . , cs)T ∈ R
s with  ≤ ci ≤ 

(i = , , . . . , s) and
∑s

j= bj = .
The following algebraic stability concept is the basis for studying the dissipativity of

Runge-Kutta methods.

Definition . (see [, ]) Runge-Kutta method (.) is said to be algebraically stable if

B = diag(b, b, . . . , bs) and M = BA + AT B – bbT

are nonnegative definite.

Let the step size h = τ
m with some positive integer m and tn = t + nh. An adaptation of

method (.) for solving problem (.) leads to (see [])

⎧
⎨

⎩
X(n)

i – Z(n)
i = xn – zn + h

∑s
j= aijf (tn + cjh, X(n)

j , X(n–m)
j ), i = , , . . . , s,

xn+ – zn+ = xn – zn + h
∑s

j= bjf (tn + cjh, X(n)
j , X(n–m)

j ),
(.)

where xn, X(n)
i denote approximations to x(tn), x(tn + cih) and zn and Z(n)

i approximations
to z(tn) and z(tn + cih), respectively. Here and later, we put that

z(t) =
∫ t

t–τ

g
(
t, ξ , x(ξ )

)
dξ . (.)

In addition,
⎧
⎨

⎩
xn = ϕ(tn), n ≤ ,

X(n)
i = ϕ(tn + cih), tn + cih ≤ t.

(.)

As to the computation of integral terms zn, Z(n)
i , we apply the compound quadrature

formulas

zn = h
m∑

i=

vig(tn, tn–i, xn–i), (.)

Z(n)
j = h

m∑

i=

vig
(
tn + cjh, tn–i + cjh, X(n–i)

j
)
, j = , , . . . , s, (.)
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where the quadrature formulas (.) and (.) can be derived from a uniform repeated
rule (cf. [, , ]). For the numerical dissipativity analysis, we assume (.) or (.) to
satisfy the following condition:

h

√√√√(m + )
m∑

i=

|vi| < v with mh = τ and a positive constant v. (.)

Definition . Method (.) with a quadrature formula is said to be dissipative if, when-
ever the method is applied with a step size h to a dynamical system of the form (.) subject
to (.)-(.), there exists a constant r such that, for any initial function ϕ(t), there exists
n(ϕ̄, h), ϕ̄ = supt–τ≤t≤t ‖ϕ(t)‖ such that

‖xn‖ ≤ r, n > n (.)

holds.

3 Dissipativity of Runge-Kutta methods
In this section we focus on the dissipativity analysis of algebraically stable Runge-Kutta
methods with respect to nonlinear FIDEs.

Theorem . Assume that Rung-Kutta method (.) is algebraically stable and bj >  for
j = , , . . . , s, and that problem (.) satisfies (.) and (.) with (.) and α +β +ηvλ < .
Then method (.) with (.)-(.) and (.) for FIDEs (.) is dissipative.

Proof For simplicity, we let

t(n)
i = tn + cih, Qi = hf

(
t(n)
i , X(n)

i , X(n–m)
i

)
, i = , , . . . , s.

It is well known (see, for example, []) that

‖xn+ – zn+‖ – ‖xn – zn‖ – 
s∑

i=

bi Re
〈
X(n)

i – Z(n)
i , Qi

〉
= –

s∑

i=

s∑

j=

mij〈Qi, Qj〉, (.)

where mij = biaij + bjaji – bibj.
By means of algebraic stability of the method, (.) leads to

‖xn+ – zn+‖ ≤ ‖xn – zn‖ + 
s∑

i=

bi Re
〈
X(n)

i – Z(n)
i , Qi

〉
. (.)

Using conditions (.) and (.) , then (.) gives

‖xn+ – zn+‖ ≤ ‖xn – zn‖ + h
s∑

i=

bi
[
γ + α

∥∥X(n)
i
∥∥ + β

∥∥X(n–m)
i

∥∥ + η
∥∥Z(n)

i
∥∥]. (.)

We let

X(n) =
(
X(n)

 , X(n)
 , . . . , X(n)

s
)
, Z(n) =

(
Z(n)

 , Z(n)
 , . . . , Z(n)

s
)
, n = , , . . . .
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Hence by induction, from (.) we can obtain that

‖xn – zn‖ ≤ ‖xn– – zn–‖ + hγ

+ hα
∥∥X(n–)∥∥

B + hβ
∥∥X(n–m–)∥∥

B + hη
∥∥Z(n–)∥∥

B

≤ ‖x – z‖ + hnγ + hα

n–∑

j=

∥∥X(j)∥∥
B

+ hβ

n–∑

j=

∥∥X(j–m)∥∥
B + hη

n–∑

j=

∥∥Z(j)∥∥
B, (.)

where the condition
∑s

j= bj =  has been used.
Now we estimate the quadrature terms ‖zn‖ and ‖Z(n)‖B. From (.) and condition (.)

we obtain that

‖zn‖ ≤ hλ

m∑

k=

|vk|‖xn–k‖. (.)

Making the square of the both sides and using (.) and the Cauchy-Schwarz inequality,
we get

‖zn‖ ≤ vλ

m + 

m∑

k=

‖xn–k‖. (.)

Similarly, from (.), (.) and (.) we can also obtain

∥∥Z(n)
i
∥∥≤ hλ

m∑

k=

|vk|
∥∥X(n–k)

i
∥∥ (.)

and

∥∥Z(n)
i
∥∥ ≤ vλ

m + 

m∑

k=

∥∥X(n–k)
i

∥∥, i = , , . . . , s,

which gives

∥∥Z(n)∥∥
B ≤ vλ

m + 

m∑

k=

∥∥X(n–k)∥∥
B. (.)

Hence it can be deduced that

n–∑

j=

∥∥Z(j)∥∥
B ≤ vλ

m + 

n–∑

j=

m∑

k=

∥∥X(j–k)∥∥
B

≤ vλ

( n–∑

j=

∥∥X(j)∥∥
B +

m


min
–m≤j≤–

∥∥X(j)∥∥
B

)
. (.)
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Therefore, substituting (.) into (.) shows

‖xn – zn‖ ≤ hnγ + h
(
α + β + ηvλ)

n–∑

j=

∥∥X(j)∥∥
B

+
[
( + τλ) + τ

(
β + ηvλ)] max

–τ≤ξ≤

∥∥ϕ(ξ )
∥∥. (.)

When γ = , it follows from (.) and α + β + ηνλ <  that

lim
n→∞

∥∥X(n)∥∥
B = ,

which shows that for any ε > , there exists n = n(ϕ̄, h) >  such that

∥∥X(n)
j
∥∥ < ε,

∥∥X(n–m)
j

∥∥ < ε, j = , . . . , s, n ≥ n (.)

and

∥∥Z(n)
j
∥∥ < νλε, j = , . . . , s, n ≥ n. (.)

On the other hand, from (.) we have

‖xn – zn‖ =

∥∥∥∥∥X(n)
i – Z(n)

i – h
s∑

j=

aijf
(
t(n)
j , X(n)

j , X(n–m)
j

)
∥∥∥∥∥

≤ ∥∥X(n)
i
∥∥ +

∥∥Z(n)
i
∥∥ + h

s∑

j=

|aij|
∥∥f
(
t(n)
j , X(n)

j , X(n–m)
j

)∥∥, i = , , . . . , s. (.)

Therefore, we can obtain that

‖xn – zn‖ ≤ hL
s∑

j=

|aij| + ( + νλ)ε, n ≥ n, (.)

where

L = sup
‖u‖≤ε
‖v‖≤ε

∥∥f (t, u, v)
∥∥, t ∈ [, +∞), u, v ∈ C

d.

When γ > , using techniques similar to those presented in [], we can conclude that
there exist r >  and a positive integer n(ϕ̄, h) such that

‖xn – zn‖ ≤ r for n ≥ n, (.)

where

r =
√


[
 + τ

(
β + ηνλ

)]
R + (m + )hγ ,

n =
[( + τλ) + τ (β + ηνλ)]ϕ̄

hγ
+ (m + )



Liao and Wen Advances in Difference Equations  (2017) 2017:142 Page 8 of 14

with
⎧
⎪⎪⎨

⎪⎪⎩

R = (m+)hγ

σ
+ h|C|,

σ = –(α + β + ηνλ),

ϕ̄ = supt–τ≤t≤t ‖ϕ(t)‖,

C = sup
‖u‖

B≤(m+)hγ /σ
‖v‖

B≤(m+)hγ /σ
‖w‖

B≤νλ(m+)hγ /σ

s∑

i=

bi

[ s∑

j=

(bj – aij) Re
〈
ui – wi, hf (tj, uj, vj)

〉

+ h

∥∥∥∥∥

s∑

j=

(bj – aij)f (tj, uj, vj)

∥∥∥∥∥

]
,

u = (u, u, . . . , us) ∈C
ds, v = (v, v, . . . , vs) ∈C

ds, w = (w, w, . . . , ws) ∈C
ds.

A combination of (.) and (.) shows that there exist a constant R and n(ϕ̄, h) such
that

‖xn – zn‖ ≤ R, n ≥ n. (.)

The next thing to do in the proof is estimating ‖xn‖. Because of the fact that

‖xn‖ ≤ ‖xn – zn‖ + ‖zn‖,

therefore, for n ≥ n, from (.), (.) and (.) we have

‖xn‖ ≤ R + hλ

m∑

k=

|vk|‖xn–k‖

≤ R + vλ max
≤k≤m

‖xn–k‖

≤ R + vλ max
≤k≤m

‖xn–k‖ + vλ‖xn‖. (.)

Since we have assumed λv < , then  – λv > , and (.) leads to

‖xn‖ ≤ R

 – vλ
+

vλ
 – vλ

max
≤k≤m

‖xn–k‖, n ≥ n. (.)

Let

θ =
vλ

 – vλ
, μ =

R

 – vλ
, ϕ = max

n–m≤k≤n–
‖xk‖.

Thus  < θ <  and (.) can be written as follows:

‖xn‖ ≤ μ + θ max
≤k≤m

‖xn–k‖, n ≥ n. (.)

When n = n, we have

‖xn‖ ≤ μ + θϕ. (.)
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In the following, we consider two cases. First, when μ + θϕ ≥ ϕ, we can obtain by
induction that

‖xn+j‖ ≤ μ

j∑

k=

θ k + θ j+ϕ, j = , , , . . . . (.)

In fact, (.) implies (.) satisfied for j = . It is easy to see that

μ

j∑

k=

θ k + θ j+ϕ = μ

j–∑

k=

θ k + θ j(μ + θϕ)

≥ μ

j–∑

k=

θ k + θ jϕ, j ≥ . (.)

If (.) holds for j < l, where l is a positive integer, then it follows from (.) and (.)
that

‖xn+l‖ ≤ μ + θ

(
μ

l–∑

k=

θ k + θ lϕ

)

= μ

l∑

k=

θ k + θ l+ϕ,

which shows that (.) holds for any j ≥ .
Second, when μ + θϕ < ϕ, then for l = , , . . . , it can be given by induction that

‖xn+ml+j‖ ≤ μ

l∑

k=

θ k + θ l+ϕ for any j ∈ {, , . . . , m – }. (.)

In order to prove this conclusion, we first consider the case of l = .
As a matter of fact, when l = , (.) implies that (.) holds for j = . If here (.)

holds for j < q < m – , then from (.) we have

‖xn+q‖ ≤ μ + θ max{μ + θϕ,ϕ} ≤ μ + θϕ,

which shows (.) holds for l = .
Suppose that (.) holds for l < p, where p is a positive integer. When j = , (.) reads

‖xn+pm‖ ≤ μ + θ max
≤k≤m

‖xn+pm–k‖

≤ μ + θ

(
μ

p–∑

k=

θ k + θpϕ

)

= μ

p∑

k=

θ k + θp+ϕ.
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If it holds for j < q < m –  that

‖xn+mp+j‖ ≤ μ

p∑

k=

θ k + θp+ϕ,

then

‖xn+mp+q‖ ≤ μ + θ max

{
μ

p–∑

k=

θ k + θpϕ,μ
p∑

k=

θ k + θp+ϕ

}

≤ μ

p∑

k=

θ k + θp+ϕ,

where we have used that

μ

p–∑

k=

θ k + θpϕ > μ

p∑

k=

θ k + θp+ϕ.

This shows that (.) holds for any integer l ≥ .
Noting that  < θ < , a combination of (.) and (.) leads to the fact that, for any

given ε > , there exists n > n such that

‖xn‖ ≤ R

 – λv
+ ε, n ≥ n.

This completes the proof of Theorem .. �

Remark . It is well known that the s stage Gauss, Radau IA, Radau IIA and Lobatto
IIIC Runge-Kutta methods are all algebraically stable [], then from Theorem . they
can preserve the dissipativity of the system when applied to FIDEs (.).

4 Numerical experiments
As an example, we consider the following two-dimensional system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dt (x(t) –

∫ t
t– π




π

eξ–t(x(ξ ) + x(ξ )) dξ )

= –x(t) + 
 (x̄(t – π

 ) +
√

x̄(t – π
 )) + f(t),

d
dt (x(t) –

∫ t
t– π




π

eξ–t(x(ξ ) – x(ξ )) dξ )

= –x(t) + 
 (

√
x̄(t – π

 ) – x̄(t – π
 )) + f(t),

t ≥ , (.)

where

f(t) = cos(at) – a sin(at),

f(t) = sin(bt) + b cos(bt),

x̄

(
t –

π



)
=

x(t – π
 )

 + x
 (t – π

 )
,

x̄

(
t –

π



)
=

x(t – π
 )

 + x
(t – π

 )
.
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For this system, we choose

α = –



, β =



, η =




, λ =

π

,

δ =



, γ = 
√

( – a) + ( + b), τ =
π


,

which ensures all the conditions of Theorem . hold. System (.) is dissipative and pos-
sesses an absorbing set B = B(, 

√
( – a) + ( + b) + ε) for any given ε > .

In order to solve system (.), we use the third order Radau IIA method where

c A

bT
=





 – 


 











. (.)

Method (.) is algebraically stable and order . We let τ = mh with a given positive
integer m and apply the composite Simpson’s rule to approach the integral terms

zn =
∫ tn

tn–τ

g
(
tn, ξ , x(ξ )

)
dξ and Z(n)

i =
∫ tn+cih

tn+cih–τ

g
(
tn + cih, ξ , x(ξ )

)
dξ .

Here we can let v = 
 in (.) and have α + β + ηvλ < . According to Theorem ., the

numerical solution is dissipative.
Now we let the step size h = .π/ and consider different initial functions for t ∈

[ π
 , ] as follows:

(I) y(t) = sin(t)et , y(t) = t;
(II) y(t) = cos(t), y(t) =  sin(t);

(III) y(t) =  sin(t), y(t) = cos(t),
respectively. The numerical results are shown in Figures , , , ,  and .

These numerical examples prove that problem (.) is dissipative. Therefore, the numer-
ical examples illustrate the correctness of our theoretical results.

Figure 1 The numerical solution of (4.1) with initial function (I) and a = 2, b = 2 in the interval [0, 10π ].
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Figure 2 The numerical solution of (4.1) with initial function (I) and a = 2, b = 2 in the interval
[ 7π

6 , 10π ].

Figure 3 The numerical solution of (4.1) with initial function (II) and a = 3, b = 2 in the interval
[1, 10π ].

Figure 4 The numerical solution of (4.1) with initial function (II) and a = 3, b = 2 in the interval
[ 5π

6 , 10π ].
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Figure 5 The numerical solution of (4.1) with initial function (III) and a = 3, b = 4 in the interval
[1, 10π ].

Figure 6 The numerical solution of (4.1) with initial function (III) and a = 3, b = 4 in the interval
[ 4π

3 , 10π ].
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