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Abstract
In the present work, a box-type difference scheme with convergence order O(τ 2 + h2)
is proposed for the fractional sub-diffusion equation with spatially variable coefficient
under Neumann boundary conditions. Here h, τ are space and temporal step length,
respectively. The method is based on applying the L2 – 1σ formula to approximate
the time Caputo fractional derivative and introducing the auxiliary variable. By virtue
of the special properties of the L2 – 1σ formula and the mathematical induction
method, the unconditional stability and convergence for our scheme are proved by
the discrete energy method. Numerical examples are given to verify the theoretical
analysis and efficiency of the box-type scheme.
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1 Introduction
Recently, research interest focused on fractional differential equations has become more
and more manifest. This fact reflects the ability of fractional calculation to describe dif-
ferent phenomena in different disciplines such as semiconductor, mechanics, chemistry,
porous media, anomalous diffusion, etc. [–]. The time fractional sub-diffusion equation
(FSDE) is a kind of linear integro-differential equation which can be obtained from the
classical diffusion equation by employing fractional derivatives of order α to describe the
procedure of anomalous diffusion, where α ∈ (, ).

There is much considerable work devoted to the research for numerical methods of
FSDE. Langlands and Henry [] presented an implicit numerical scheme for the homoge-
neous problem and discussed the accuracy and stability of the scheme. Yuste and Acede []
developed an explicit scheme whence the stability was strictly proved. Subsequently, Yuste
[] analyzed the weighted average finite difference scheme by the von Neumann method.
Zhuang et al. [] integrated the linear and nonlinear sub-diffusion equations for time vari-
able t, then approximated the resultant equivalent equations with the idea of numerical
integrals. Subsequently, an implicit numerical method for this equation with a nonlinear
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source term in a bounded domain was described and demonstrated in []. Heydari []
proposed a Legendre wavelets Galerkin method to obtain an approximate solution for
FSDE. The numerical experiment results revealed that this method is more accurate and
efficient in comparison with some compact finite difference methods. Hooshmandasl et al.
[] presented an efficient Galerkin method based on the fractional-order Legendre func-
tions for solving the fractional sub-diffusion equation and time-fractional diffusion-wave
equation.

The main way to approximate the fractional derivative is applying the Grünwald-
Letnikov formula. Cui [] obtained an implicit scheme by employing the Grünwald-
Letnikov discretization combined with a compact finite technique in spatial direction.
Mohebbi [] et al. studied a modified anomalous sub-diffusion equation with a nonlinear
source term, and a difference scheme with convergence order O(τ + h) was constructed.
Some high-order approximation for fractional derivatives was proposed by assembling
the shifted Grünwald-Letnikov operator with different weights in [, ]. Based on this
idea, Wang and Vong [] proposed a second order accuracy formula to approximate the
time-fractional derivative and a compact difference scheme was established for solving
the modified anomalous fractional sub-diffusion equation.

Another main instrument to handle the time-fractional derivative is the L formula. Sun
and Wu [] first proposed a fully discrete difference scheme for FSDE by employing the
L approximation, where the truncation error was proved to be of  – α order in temporal
direction. Lin and Xu [] constructed an effective numerical method by employing the fi-
nite difference scheme in time and using the Legendre spectral methods in space. Chen et
al. [] gave an implicit numerical scheme for the problem and proved the unconditional
stability and L-norm convergence. Gao and Sun [] applied the L formula and devel-
oped a compact finite difference scheme to promote the spatial accuracy for FSDE. Zhao
and Sun [] proposed a box-type scheme for solving a class of fractional sub-diffusion
equations with Neumann boundary conditions. Ren et al. [] proposed a compact differ-
ence scheme for this problem where the convergence order O(τ –α + h) was obtained.

Considering the nonlocal character and history dependence of the fractional derivative,
we need to retain information from all the previous temporal layer when we solve FSDE
numerically. Thus, it is meaningful to improve the accuracy of L formula. Zhang et al. []
got a second order approximate formula for the Caputo derivative by considering the L
formula on special nonuniform mesh. A difference scheme with O(τ  + h) accuracy was
proposed, then the stability and convergence were proved. Inspired by the classic Crank-
Nicolson method and the construction of L formula, Zhao and Sun [] proposed a sec-
ond order approximation for the variable order fractional derivatives, whence the stability
of the scheme was not obtained. Gao and Sun [] proposed a formula to approximate
the Caputo fractional derivative with convergence order O(τ –α), which was called L – 
formula. The stability and convergence of the scheme were not obtained yet. Based on
the idea of [], Alikhanov [] constructed a new formula (called L – σ formula) to ap-
proximate the Caputo fractional derivative with O(τ –α) accuracy. The difference scheme
of fourth approximation order in space and second order accuracy in time for FSDE was
constructed. The stability and convergence for L norm were strictly proved by the energy
method.

The works we listed above are mainly focused on FSDE with constant coefficient. How-
ever, many practical applications involved variable diffusion coefficients [–]. Zhao
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and Xu [] considered the Caputo-fractional sub-diffusion equation with spatially vari-
able coefficient, i.e.,

C
Dα

t u(x, t) =
∂

∂x

(
ϕ(x)

∂u
∂x

)
+ f (x, t),

where C
Dα

t v(t) ≡ 
�(–α)

∫ t


v′(ξ )
(t–ξ )α dξ denotes the Caputo fractional derivative. �(·) means

gamma function. By virtue of the L formula, they constructed a box-type difference
scheme with O(τ –α + h) accuracy to handle the Neumann boundary conditions. Vong et
al. [] considered the same problem, and the global convergence order O(τ –α + h) was
obtained by subtle decomposition of the coefficient matrices.

Be that as it may, we find that there are few reports on finite difference methods of high
order accuracy in temporal direction for FSDE with spatially variable coefficient. In this
paper, our target is to construct a box-type difference scheme with O(τ  + h) accuracy
for that problem under Neumann boundary conditions. We apply the L – σ formula to
approximate the Caputo fractional derivative in temporal direction, then give the strict
analysis for stability and convergence of the scheme proposed.

The rest of this article is organized as follows. In Section , we introduce some necessary
notations and preliminary lemmas, then a box-type scheme with the truncation errors of
second order in both time and space directions is constructed by introducing the auxil-
iary variable. The unconditional stability and convergence in maximum norm are strictly
proved in Section  by the energy method. Two numerical experiment results are listed in
Section  to testify our theoretical analysis. A brief conclusion ends this paper finally in
Section .

2 Derivation of the box-type scheme
Consider the following fractional sub-diffusion equation with spatially variable coefficient
under Neumann boundary conditions:

C
Dα

t u(x, t) =
∂

∂x

(
ϕ(x)

∂u
∂x

)
+ f (x, t),  < x < L,  < t ≤ T , (.)

u(x, ) = φ(x),  < x < L, (.)

ux(, t) = λ(t), ux(L, t) = λ(t),  ≤ t ≤ T , (.)

where α ∈ (, ) is a constant. Furthermore, we suppose that there exist constants C and
C such that  < C ≤ ϕ(x) ≤ C.

For numerical approximation, we give the following mesh partition. Giving two positive
integers M and N , then h = L

M , τ = T
N are space and temporal step lengths, respectively.

Define xi = ih,  ≤ i ≤ M, tn = nτ ,  ≤ n ≤ N , �h = {xi |  ≤ i ≤ M}, �τ = {tn |  ≤ n ≤ N}.
In addition, denote σ =  – α

 and tn–+σ = (n –  +σ )τ . Denote Vh = {u | u = (u, u, . . . , uM)}
and Vh = {u | u = (u, u, . . . , uM), u = uM = } as the grid function spaces on �h.

For any grid function u ∈ Vh, we introduce the notations below.

δxuj+ 


=

h

(uj+ – uj),  ≤ j ≤ M – ,

δ
x uj =


h

(δxuj+ 


– δxuj– 


),  ≤ j ≤ M – .
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We now introduce some lemmas which will be used in the following analysis.
Alikhanov [] constructed a new second order difference approximation for the Caputo

fractional derivative (called L – σ formula). Defining

a = σ –α , al = (l + σ )–α – (l –  + σ )–α , l ≥ ,

bl =


 – α

[
(l + σ )–α – (l –  + σ )–α

]
–



[
(l + σ )–α + (l –  + σ )–α

]
, l ≥ ,

when n = , denote

C(n)
 = a,

when n ≥ , denote

C(n)
k =

⎧⎪⎪⎨
⎪⎪⎩

a + b, k = ,

ak + bk+ – bk ,  ≤ k ≤ n – ,

ak – bk , k = n – .

(.)

Given a grid function u = {un |  ≤ n ≤ N}, denote

α
tn–+σ

un =
τ–α

�( – α)

[
C(n)

 un –
n–∑
j=

(
C(n)

n–j– – C(n)
n–j

)
uj – C(n)

n–u

]
(.)

as the discrete fractional derivative operator, i.e., the L – σ formula. Alikhanov analyzed
the error of the L – σ formula to approximate the Caputo fractional derivative, and got
the following lemma.

Lemma . ([]) Suppose u(t) ∈ C[, tn], it holds that

∣∣C
Dα

t u(t)
∣∣
t=tn–+σ

– α
tn–+σ

un∣∣ = O
(
τ –α

)
.

Subsequently, the special properties of this difference operator were derived.

Lemma . ([]) Suppose α ∈ (, ), σ =  – α
 , C(n)

k ( ≤ k ≤ n – , n ≥ ) is defined by
(.), it holds that

C(n)
k >

 – α


(k + σ )–α , (.)

C(n)
 > C(n)

 > C(n)
 > · · · > C(n)

n– > C(n)
n–. (.)

Furthermore, there is an important relation for the second order operator, which will
play an irreplaceable role in the analysis of the stability and convergence for our scheme.

Lemma . ([]) Suppose u = {un |  ≤ n ≤ N} is a grid function defined on �τ , then it
holds that

(
σun + ( – σ )un–)α

tn–+σ
un ≥ 


α

tn–+σ

(
un).
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Now we give the derivation of the box-type scheme. Denoting v(x, t) = ϕ(x) ∂u
∂x , then

problem (.)-(.) is equivalent to

C
Dα

t u(x, t) =
∂

∂x
v(x, t) + f (x, t),  < x < L,  < t ≤ T , (.)

v(x, t) = ϕ(x)
∂u(x, t)

∂x
,  < x < L,  < t ≤ T , (.)

u(x, ) = φ(x),  ≤ x ≤ L, (.)

v(, t) = ϕ()λ(t), v(L, t) = ϕ(L)λ(t),  ≤ t ≤ T . (.)

Define the grid functions

Un
j = u(xj, tn), V n

j = v(xj, tn),  ≤ j ≤ M,  ≤ n ≤ N ,

and f n–+σ

j+ 


= f (xj+ 


, tn–+σ ). Suppose u(x, t) ∈ C(,)
x,t ([, L] × [, T]), now we consider equa-

tions (.) and (.) at the grid points (xj+ 


, tn–+σ ) and (xj+ 


, tn), respectively. We obtain

C
Dα

t u(xj+ 


, tn–+σ ) =
∂v
∂x

(xj+ 


, tn–+σ ) + f n–+σ

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

v(xj+ 


, tn) = ϕ(xj+ 


)
∂u
∂x

(xj+ 


, tn),  ≤ j ≤ M – ,  ≤ n ≤ N . (.)

Denoting

Un–+σ
j = σUn

j + ( – σ )Un–
j ,  ≤ n ≤ N ,

and using Taylor expansion, it is not hard to verify that

∂v
∂x

(xj+ 


, tn–+σ ) = σ
∂v
∂x

(xj+ 


, tn) + ( – σ )
∂v
∂x

(xj+ 


, tn–) + O
(
τ )

= σδxV n
j+ 


+ ( – σ )δxV n–

j+ 


+ O
(
τ  + h)

= σδxV n–+σ

j+ 


+ O
(
τ  + h), (.)

v(xj+ 


, tn) = V n
j+ 


+ O

(
h),

∂u
∂x

(xj+ 


, tn) = δxUn
j+ 


+ O

(
h). (.)

From Lemma . and (.)-(.), we have

α
tn–+σ

Un
j+ 


= δxV n–+σ

j+ 


+ f n–+σ

j+ 


+ (R)n
j+ 


, (.)

V n
j+ 


= ϕ(xj+ 


)δxUn

j+ 


+ (R)n
j+ 


, (.)

where

∣∣(R)n
j+ 



∣∣ +
∣∣(R)n

j+ 


∣∣ ≤ CR
(
τ  + h), (.)
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here CR is a constant independent of τ and h. The initial and boundary conditions (.)-
(.) yield

V n
 = ϕ()λ(tn), V n

M = ϕ(L)λ(tn),  ≤ n ≤ N , (.)

U
j = φ(xj),  ≤ j ≤ M. (.)

Omitting the small terms R, R in (.) and (.), combining with (.) and (.), we
get the following box-type difference scheme for (.)-(.):

α
tn–+σ

un
j+ 


= δxvn–+σ

j+ 


+ f n–+σ

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

vn
j+ 


= ϕ(xj+ 


)δxun

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

vn
 = ϕ()λ(tn), vn

M = ϕ(L)λ(tn),  ≤ n ≤ N , (.)

u
j = φ(xj),  ≤ j ≤ M. (.)

Eliminating the auxiliary variable {vn
j }, we can get a difference scheme containing only {un

j }
for problem (.)-(.). It is not hard to prove the following equivalent theorem.

Theorem . The difference scheme (.)-(.) is equivalent to

α
tn–+σ

un



=

h
[
ϕ(x 


)δxun–+σ




– ϕ()λn–+σ


]
+ f n–+σ




, (.)



(
α

tn–+σ
un

j– 


+ α
tn–+σ

un
j+ 



)
= δx(ϕδxu)n–+σ

j +


(
f n–+σ

j– 


+ f n–+σ

j+ 


)
,

 ≤ j ≤ M – , (.)

α
tn–+σ

un
M– 


=


h
[
ϕ(L)λn–+σ

 – ϕ(xM– 


)δxun–+σ

M– 


]
+ f n–+σ

M– 


, (.)

u
j = φ(xj),  ≤ j ≤ M, (.)

and

v
j+ 


= ϕ(xj+ 


)δxu

j+ 


,  ≤ j ≤ M – , (.)

vn–+σ
 = ϕ(x 


)δxun–+σ




–
h

(
α

tn–+σ
un

j– 


– f n–+σ



)
, (.)

vn–+σ
j = ϕ(xj– 


)δxun–+σ

j– 


+
h

(
α

tn–+σ
un

j– 


– f n–+σ

j– 


)
,  ≤ j ≤ M, (.)

where  ≤ n ≤ N in (.)-(.).

Remark . For the convenience of actual computation, we construct scheme (.)-
(.) for problem (.)-(.). It follows from Theorem . that the analysis of the solvabil-
ity, stability and convergence of the difference scheme (.)-(.) may be transferred to
that of the difference scheme (.)-(.).

It is clear that at each time level, the difference scheme (.)-(.) results in a linear
system in which the coefficient matrix is tridiagonal and strictly diagonally dominant, thus
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the difference scheme has a unique solution, and the Thomas algorithm suits. So we have
the following.

Theorem . The difference scheme (.)-(.) is uniquely solvable.

3 Analysis of the box-type scheme
We give some essential notations first. Introducing the discrete inner products and the
corresponding norms for any u, v ∈ Vh as follows

〈u, v〉 = h
M–∑
j=

ui+ 


vi+ 


, 〈u, v〉ϕ = h
M–∑
j=

ϕ(xi+ 


)ui+ 


vi+ 


,

‖u‖ =
√〈u, u〉, ‖u‖ϕ =

√〈u, u〉ϕ , ‖u‖∞ = max
≤j≤M

|uj|,

and

‖δxu‖ =
√〈δxu, δxu〉, ‖δxu‖ϕ =

√〈δxu, δxu〉ϕ ,

‖u‖ =

√√√√h

(



u
 +

M–∑
j=

u
j +




u
m

)
,

we now give the following lemmas which will be used in the analysis of the box-type
scheme.

Lemma . ([, ]) For any grid function u ∈ Vh, it holds that

‖u‖
 ≤ L


‖δxu‖, (.)

‖u‖ ≤ L


‖δxu‖. (.)

Proof One can refer to [, ] for (.). Considering the following equality

(
un

j+ 


) +
h


(
δxun

j+ 


) =



[(
un

j+ + un
j
) +

(
un

j+ – un
j
)]

=


[(

un
j
) +

(
un

j+
)],

summing up j from  to M – , we get

‖u‖ +
h


‖δxu‖ = ‖u‖

.

Applying (.), the second conclusion is obtained. �

One can easily testify the following.

Lemma . For any grid function v ∈ Vh, it holds that
√

C‖δxu‖ ≤ ‖δxu‖ϕ ≤ √
C‖δxu‖, (.)

√
C‖u‖ ≤ ‖u‖ϕ ≤ √

C‖u‖. (.)
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We have a critical estimation for the maximum norm which will be used for stability and
convergence analysis.

Lemma . ([]) Let u ∈ Vh, then for any positive constant ε, it holds that

‖u‖
∞ ≤

(
ε +

h

L

)
‖δxu‖ +

(

ε

+

L

)
‖u‖. (.)

We now point out that the box-type difference scheme is unconditionally stable to the
initial value and the source term f .

Theorem . (Stability) Suppose {un
j |  ≤ j ≤ M,  ≤ n ≤ N} is the solution of the follow-

ing difference scheme:

α
tn–+σ

un
j+ 


= δxvn–+σ

j+ 


+ f n–+σ

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

vn
j+ 


= ϕ(xj+ 


)δxun

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

vn
 = , vn

M = ,  ≤ n ≤ N , (.)

u
j = φ(xj),  ≤ j ≤ M, (.)

then, for every  ≤ n ≤ N , we have

∥∥δxun∥∥ ≤ 
C

∥∥δxu∥∥
ϕ

+
Tα�( – α)

C
max

≤n≤N

∥∥f n–+σ
∥∥, (.)

∥∥un∥∥ ≤ 
∥∥u∥∥ + Tα�( – α)

∥∥δxu∥∥
ϕ

+ 
[
Tα�( – α)

]
max

≤n≤N

∥∥f n–+σ
∥∥. (.)

Proof Applying the fractional approximation operator α
tn–+σ

and dividing ϕ(xj+ 


) on the
both sides of (.), we obtain


ϕ(xj+ 


)
α

tn–+σ
vn

j+ 


= α
tn–+σ

δxun
j+ 


.

Multiplying the identity above by vn–+σ

j+ 


and summing up for j from  to M – , we have

〈
α

tn–+σ
vn, vn–+σ

〉

ϕ

=
〈
α

tn–+σ
δxun, vn–+σ

〉
. (.)

Multiplying equation (.) by δxvn–+σ

j+ 


and summing up for j from  to M – , we have

〈
α

tn–+σ
un, δxvn–+σ

〉
=

∥∥δxvn–+σ
∥∥ +

〈
f n–+σ , δxvn–+σ

〉
. (.)

Adding equalities (.) and (.) above, we obtain

∥∥δxvn–+σ
∥∥ +

〈
α

tn–+σ
vn, vn–+σ

〉

ϕ

=
〈
α

tn–+σ
δxun, vn–+σ

〉
+

〈
α

tn–+σ
un, δxvn–+σ

〉
–

〈
f n–+σ , δxvn–+σ

〉
. (.)
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Noticing that vn–+σ
 = vn–+σ

M = , we have

〈
α

tn–+σ
δxun, vn–+σ

〉
+

〈
α

tn–+σ
un, δxvn–+σ

〉

= h
M–∑
j=

vn–+σ

j+ 


· α
tn–+σ

δxun
j+ 


+ h

M–∑
j=

δxvn–+σ

j+ 


· α
tn–+σ

un
j+ 



=



M–∑
j=

[(
vn–+σ

j+ + vn–+σ
j

)(
α

tn–+σ
un

j+ – α
tn–+σ

un
j
)

+
(
vn–+σ

j+ – vn–+σ
j

)(
α

tn–+σ
un

j+ + α
tn–+σ

un
j
)]

=
M–∑
j=

(
vn–+σ

j+ · α
tn–+σ

un
j+ – vn–+σ

j · α
tn–+σ

un
j
)

= . (.)

Substituting (.) into (.), we have

∥∥δxvn–+σ
∥∥ +

〈
α

tn–+σ
vn, vn–+σ

〉

ϕ

= –
〈
f n–+σ , δxvn–+σ

〉
. (.)

From Lemma ., we know

〈
α

tn–+σ
vn, vn–+σ

〉

ϕ

=
M–∑
j=


ϕ(xj+ 


)
· (α

tn–+σ
vn

j+ 


) · vn–+σ

j+ 


=
M–∑
j=

α
tn–+σ

( vn
j+ 

√
ϕ(xj+ 


)

)
·

vn–+σ

j+ 
√

ϕ(xj+ 


)

=
M–∑
j=

α
tn–+σ

( vn
j+ 

√
ϕ(xj+ 


)

)
·
(

σ

vn
j+ 

√
ϕ(xj+ 


)

+ ( – σ )
vn–

j+ 
√

ϕ(xj+ 


)

)

≥ 


M–∑
j=

α
tn–+σ

( vn
j+ 

√
ϕ(xj+ 


)

)

=


α

tn–+σ

∥∥vn∥∥

ϕ

. (.)

Substituting (.) into (.), and using the Cauchy-Schwarz inequality, we obtain

∥∥δxvn–+σ
∥∥ +



α

tn–+σ

∥∥vn∥∥

ϕ

≤ –
〈
f n–+σ , δxvn–+σ

〉

≤ ∥∥δxvn–+σ
∥∥ +




∥∥f n–+σ
∥∥,

i.e.,

α
tn–+σ

∥∥vn∥∥

ϕ

≤ 

∥∥f n–+σ

∥∥.
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That is,

C(n)


∥∥vn∥∥

ϕ

≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥vk∥∥

ϕ

+ C(n)
n–

∥∥v∥∥

ϕ

+
μ


∥∥f n–+σ

∥∥, (.)

where μ = τα · �( – α).
From (.) of Lemma ., we know

C(n)
n– >

 – α



(
n –  –

α



)–α

>
 – α



(
n –

α



)–α

,  ≤ n ≤ N ,

so that

μ = Tα · �( – α)( – α) · N–α

< Tα · �( – α)( – α)
(

n –
α



)–α

< C(n)
n–Tα · �( – α). (.)

Substituting (.) into (.), we have

C(n)


∥∥vn∥∥

ϕ

≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥vk∥∥

ϕ

+ C(n)
n–

(∥∥v∥∥

ϕ

+ Tα · �( – α)
∥∥f n–+σ

∥∥). (.)

Denoting E = ‖v‖

ϕ

+ Tα�( – α) max≤n≤N ‖f n–+σ ‖, now we prove by induction that

∥∥vn∥∥

ϕ

≤ E,  ≤ n ≤ N . (.)

It holds obviously when n = . Assuming that the conclusion is valid for n = , , . . . , m – ,
i.e.,

∥∥vn∥∥

ϕ

≤ E,  ≤ n ≤ m – ,

then for  ≤ m ≤ N , from (.) we have

C(m)


∥∥vm∥∥

ϕ

≤
m–∑
k=

(
C(m)

m–k– – C(m)
m–k

)∥∥vk∥∥

ϕ

+ C(m)
m–E

≤
m–∑
k=

(
C(m)

m–k– – C(m)
m–k

)
E + C(m)

m–E = C(m)
 E.

So (.) holds.
From (.), we obtain

∥∥vn∥∥

ϕ

=
∥∥δxun∥∥

ϕ
,  ≤ n ≤ N . (.)

Substituting (.) and (.) into (.), we obtain (.).
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Now we estimate ‖un‖.
Multiplying (.) and (.) by hun

j+ 


and hvn–+σ

j+ 


, and summing up for j from  to M – ,
respectively, we have

〈
α

tn–+σ
un, un〉 =

〈
δxvn–+σ , un〉 +

〈
f n–+σ , un〉, (.)

〈
vn, vn–+σ

〉

ϕ

=
〈
δxun, vn–+σ

〉
. (.)

Adding the two identities above, we have

〈
α

tn–+σ
un, un〉 +

〈
vn, vn–+σ

〉

ϕ

=
〈
δxvn–+σ , un〉 +

〈
δxun, vn–+σ

〉
+

〈
f n–+σ , un〉. (.)

Noticing that vn–+σ
 = vn–+σ

M = , we have

〈
δxvn–+σ , un〉 +

〈
δxun, vn–+σ

〉

=
M–∑
j=

h
(
δxvn–+σ

j+ 


· un
j+ 


+ δxun

j+ 


· un–+σ

j+ 


)

=



M–∑
j=

[(
vn–+σ

j+ – vn–+σ
j

)(
un

j+ + un
j
)

+
(
un

j+ – un
j
)(

vn–+σ
j+ + vn–+σ

j
)]

=
M–∑
j=

(
vn–+σ

j+ un
j+ – vn–+σ

j un
j
)

= vn–+σ
M un

M – vn–+σ
 un

 = .

Substituting the result into (.) and using the Cauchy-Schwarz inequality, we arrive at

〈
α

tn–+σ
un, un〉 = –

〈
vn, vn–+σ

〉

ϕ

+
〈
f n–+σ , un〉 (.)

≤ 

∥∥vn∥∥


ϕ

+


∥∥vn–+σ

∥∥

ϕ

+
〈
f n–+σ , un〉. (.)

From (.) we have

∥∥vn–+σ
∥∥ 

ϕ
=

∥∥σvn + ( – σ )vn–∥∥ 
ϕ

≤ σ
∥∥vn∥∥ 

ϕ
+ ( – σ )

∥∥vn–∥∥ 
ϕ

≤ √
E. (.)

Substituting (.) and (.) into (.), we obtain

〈
α

tn–+σ
un, un〉 ≤ 〈

f n–+σ , un〉 + E,

that is,

τ–α

�( – α)

〈
C(n)

 un –
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)
uk – C(n)

n–u, un

〉
≤ 〈

f n–+σ , un〉 + E,

i.e.,

C(n)


∥∥un∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)〈
uk , un〉 + C(n)

n–
〈
u, un〉 + μ

〈
f n–+σ , un〉 + μE. (.)
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By the Cauchy-Schwarz inequality we know

〈
uk , un〉 ≤ ‖uk‖ + ‖un‖


,

〈
u, un〉 ≤ ‖un‖


+

∥∥u∥∥, (.)

μ
〈
f n–+σ , un〉 ≤ C(n)

n–


∥∥un∥∥ +
μ

C(n)
n–

∥∥f n–+σ
∥∥. (.)

Substituting (.) and (.) into (.), we arrive at

C(n)


∥∥un∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)‖uk‖ + ‖un‖


+

C(n)
n–


∥∥un∥∥

+ C(n)
n–

∥∥u∥∥ +
C(n)

n–


∥∥un∥∥ +
μ

C(n)
n–

∥∥f n–+σ
∥∥ + μE. (.)

According to (.), we know μ

C(n)
n–

≤ C(n)
n–[Tα�( –α)]. Substituting it into the inequality

above, we have

C(n)


∥∥un∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥uk∥∥ + C(n)
n–

∥∥u∥∥

+ C(n)
n–

[
Tα�( – α)

] · ∥∥f n–+σ
∥∥ + C(n)

n–Tα�( – α)E. (.)

Let

G = 
∥∥u∥∥ + 

[
Tα�( – α)

] · max
≤n≤N

∥∥f n–+σ
∥∥ + Tα�( – α)E (.)

= 
∥∥u∥∥ + Tα�( – α)

∥∥v∥∥

ϕ

+ 
[
Tα�( – α)

]
max

≤n≤N

∥∥f n–+σ
∥∥, (.)

then applying the similar induction process again, we can easily get

∥∥un∥∥ ≤ G.

That is (.), the proof is completed. �

We have got the estimation of ‖un‖ and ‖δxun‖, which leads to the estimation of ‖un‖∞
by virtue of Lemma .. That means the difference scheme (.)-(.) is stable to the
initial value and the right-hand term.

Next, the convergence of the finite difference scheme (.)-(.) can be drawn. Denote
en

j = Un
j – un

j ,  ≤ j ≤ M,  ≤ n ≤ N .

Theorem . (Convergence) Suppose u(x, t) ∈ C(,)
x,t ([, L] × [, T]), {Un

j | ≤ j ≤ M,  ≤
n ≤ N}, {un

j |  ≤ j ≤ M,  ≤ n ≤ N} are the solutions of problem (.)-(.) and the finite
difference scheme (.)-(.), respectively. Then there exists a constant C such that

∥∥en∥∥∞ ≤ C
(
τ  + h),  ≤ n ≤ N . (.)
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Proof Denote ξn
j = V n

j – vn
j ,  ≤ j ≤ M,  ≤ n ≤ N . Subtracting (.)-(.) from (.)-

(.), respectively, we obtain the corresponding error equations

α
tn–+σ

en
j+ 


= δxξ

n–+σ

j+ 


+ (R)n
j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

ξn
j+ 


= ϕ(xj+ 


)δxen

j+ 


+ (R)n
j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

ξn
 = ξn

M = ,  ≤ n ≤ N , (.)

e
j = ,  ≤ j ≤ M. (.)

Firstly, we estimate ‖δxen‖.
Implementing the fractional derivative operator α

tn–+σ
on the both sides of (.) leads

to

α
tn–+σ

vn
j+ 


= α

tn–+σ
ϕ(xj+ 


)δxun

j+ 


,  ≤ j ≤ M – ,  ≤ n ≤ N , (.)

which can be regarded as the discretion of the equation

C
Dα

t v = C
Dα

t ϕ
∂u
∂x

. (.)

(.) can be obtained by implementing the Caputo derivative on the both sides of (.).
Using Taylor expansion and Lemma ., we can easily obtain

α
tn–+σ

V n
j+ 


= α

tn–+σ

(
ϕ(xj+ 


)δxUn

j+ 


)
+ (R̂)n

j+ 


, (.)

and there exists a positive constant ĈR such that

∣∣(R̂)n
j+ 



∣∣ ≤ ĈR
(
τ  + h),  ≤ j ≤ M – ,  ≤ n ≤ N . (.)

Subtracting (.) from (.), we obtain

α
tn–+σ

ξn
j+ 


= α

tn–+σ

(
ϕ(xj+ 


)δxen

j+ 


)
+ (R̂)n

j+ 


,

 ≤ j ≤ M – ,  ≤ n ≤ N . (.)

Multiplying (.) and (.) by hδxξ
n+–σ

j+ 


and hξn–+σ

j+ 


, respectively, and summing up for
j from  to M – , respectively, we have

〈
α

tn–+σ
en, δxξ

n–+σ
〉

=
∥∥δxξ

n–+σ
∥∥ +

〈
Rn

 , δxξ
n–+σ

〉
, (.)

〈
α

tn–+σ
ξn, ξn–+σ

〉

ϕ

=
〈
α

tn–+σ
δxen, ξn–+σ

〉
+

〈
R̂n

, ξn–+σ
〉


ϕ

. (.)

Noticing that ξn
 = ξn

M = , we have

〈
α

tn–+σ
en, δxξ

n–+σ
〉
+

〈
α

tn–+σ
δxen, ξn–+σ

〉
= α

tn–+σ
en

M · ξn–+σ
M – α

tn–+σ
en

 · ξn–+σ
 = . (.)
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Adding (.) and (.), then applying (.), we obtain

∥∥δxξ
n–+σ

∥∥ +
〈
α

tn–+σ
ξn, ξn–+σ

〉

ϕ

=
〈
R̂n

, ξn–+σ
〉


ϕ

–
〈
Rn

 , δxξ
n–+σ

〉
. (.)

By the arguments similar to those given in (.) and using Lemma ., we have

〈
α

tn–+σ
ξn, ξn–+σ

〉

ϕ

≥ 

α

tn–+σ

∥∥ξn∥∥

ϕ

,

so that

∥∥δxξ
n–+σ

∥∥ +


α

tn–+σ

∥∥ξn∥∥

ϕ

≤ 〈
R̂n

, ξn–+σ
〉


ϕ

–
〈
Rn

 , δxξ
n–+σ

〉
. (.)

Using the Cauchy-Schwarz inequality and according to (.) of Lemma ., we arrive at

∥∥δxξ
n–+σ

∥∥ +


α

tn–+σ

∥∥ξn∥∥

ϕ

≤ L



∥∥∥∥ R̂n


ϕ

∥∥∥∥


+


∥∥δxξ

n–+σ
∥∥ +



∥∥Rn


∥∥ +



∥∥δxξ

n–+σ
∥∥,

i.e.,

C(n)


∥∥ξn∥∥

ϕ

≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥ξ k∥∥

ϕ

+ C(n)
n–

∥∥ξ∥∥

ϕ

(.)

+
(∥∥Rn


∥∥ +

L



∥∥∥∥ R̂n


ϕ

∥∥∥∥
)

μ. (.)

Taking n =  in (.) and applying (.), we know

ξ
j+ 


= (R)

j+ 


. (.)

Since  < C ≤ ϕ(x) ≤ C, we know  < 
C

≤ 
ϕ(x) ≤ 

C
. Similar to Lemma ., it is not hard

to verify

√
C

‖u‖ ≤ ‖u‖ 
ϕ

≤ √
C

‖u‖,

here u ∈ Vh. From this and (.), we arrive at

∥∥ξ∥∥

ϕ

≤ 
C

∥∥ξ∥∥ =


C

∥∥R

∥∥. (.)

Substituting (.), (.) and (.) into (.), we arrive at

C(n)


∥∥ξn∥∥

ϕ

≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥ξ k∥∥

ϕ

+ C(n)
n– · 

C
· LC

R
(
τ  + h)

+
(

LC
R
(
τ  + h) +

L


· 

C


· LĈ
R
(
τ  + h)

)
μ. (.)
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Noticing (.), we obtain

C(n)


∥∥ξn∥∥

ϕ

≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥ξ k∥∥

ϕ

+ C(n)
n–

[
LC

R
C

(.)

+ 
(

LC
R +

LĈ
R

C


)
Tα�( – α)

](
τ  + h). (.)

Let

C =
LC

R
C

+ 
(

LC
R +

LĈ
R

C


)
Tα�( – α),

and carry out the induction process which is similar to that in Theorem . again, we can
prove that

∥∥ξn∥∥

ϕ

≤ C
(
τ  + h). (.)

Noticing (.), we know

∥∥δxen∥∥ =
∥∥∥∥ξn – Rn


ϕ

∥∥∥∥


≤ 
C



(

∥∥ξn∥∥ + 

∥∥Rn

∥∥).

According to Lemma ., (.) and (.), we obtain

∥∥δxen∥∥ ≤ C
(
τ  + h), (.)

where C = 
C


(C · C + LC

R).
We now estimate ‖en‖ by the following analysis.
Multiplying (.) and (.) by hen

j+ 


and hξn–+σ

j+ 


, respectively, and summing up for j
from  to M – , respectively, we obtain

〈
α

tn–+σ
en, en〉 =

〈
δxξ

n–+σ , en〉 +
〈
Rn

 , en〉, (.)〈
ξn, ξn–+σ

〉

ϕ

=
〈
δxen, ξn–+σ

〉
+

〈
Rn

, ξn–+σ
〉


ϕ

. (.)

Noticing that ξn–+σ
 = ξn–+σ

M = , we have

〈
δxξ

n–+σ , en〉 +
〈
δxen, ξn–+σ

〉
= en

Mξn–+σ
M – en

ξ
n–+σ
 = . (.)

Adding (.) and (.), then applying (.), we obtain

〈
α

tn–+σ
en, en〉 +

〈
ξn, ξn–+σ

〉

ϕ

=
〈
Rn

 , en〉 +
〈
Rn

, ξn–+σ
〉


ϕ

. (.)

Transposing 〈ξn, ξn–+σ 〉 
ϕ

into the right-hand side of the identity above, then using the
Cauchy-Schwarz inequality, we get

〈
α

tn–+σ
en, en〉 ≤ 〈

Rn
 , en〉 +



∥∥ξn–+σ

∥∥

ϕ

+


∥∥Rn


∥∥


ϕ

+


∥∥ξn∥∥


ϕ

+


∥∥ξn–+σ

∥∥

ϕ

. (.)
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From (.) and (.) we know

∥∥ξn–+σ
∥∥


ϕ

≤ C
(
τ  + h). (.)

Substituting (.), (.) and (.) into (.), we obtain

〈
α

tn–+σ
en, en〉 ≤ 〈

Rn
 , en〉 +


C

LC
R
(
τ  + h) +




C
(
τ  + h), (.)

i.e.,

C(n)


∥∥en∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)〈
ek , en〉 + C(n)

n–
〈
e, en〉 (.)

+ μ
〈
Rn

 , en〉 + μ

(


C
LC

R
(
τ  + h) +




C
(
τ  + h)

)
. (.)

Using the Cauchy-Schwarz inequality and (.) again, we obtain

C(n)


∥∥en∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)‖ek‖ + ‖en‖


+

C(n)
n–


∥∥en∥∥ + C(n)
n–

∥∥e∥∥

+
C(n)

n–


∥∥en∥∥ +
μ

C(n)
n–

· LC
R
(
τ  + h)

+ μ

(


C
LC

R
(
τ  + h) +




C
(
τ  + h)

)
. (.)

From (.) and (.), we have

C(n)


∥∥en∥∥ ≤
n–∑
k=

(
C(n)

n–k– – C(n)
n–k

)∥∥ek∥∥

+ C(n)
n–

[
Tα�( – α)

] · LC
R
(
τ  + h)

+ C(n)
n–Tα�( – α)

[


C
LC

R
(
τ  + h) +




C
(
τ  + h)

]
.

Let

C = 
[
Tα�( – α)

] · LC
R +


C

Tα�( – α)LC
R + CTα�( – α),

and apply the mathematic induction method again, then we can prove that

∥∥en∥∥ ≤ C
(
τ  + h). (.)

Now, according to Lemma ., (.) and (.), the proof is completed ultimately. �

4 Numerical examples
In this section, we carry out numerical experiments to testify the efficiency and conver-
gence orders of our new developed box-type scheme (.)-(.) for problem (.)-(.).
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Table 1 The numerical convergence orders in temporal direction with h = 1
3,000

τ α = 0.2 α = 0.5 α = 0.8

E∞(h, τ ) Order(τ ) E∞(h, τ ) Order(τ ) E∞(h, τ ) Order(τ )

1/4 1.0303e–001 * 1.9759e–001 * 2.0353e–001 *
1/8 2.7328e–002 1.9146 5.2296e–002 1.9177 5.2924e–002 1.9432
1/16 7.0561e–003 1.9534 1.3532e–002 1.9503 1.3588e–002 1.9616
1/32 1.7959e–003 1.9742 3.4573e–003 1.9687 3.4673e–003 1.9704

All our tests were done in MATLAB. The maximum norm errors between the exact and
the numerical solutions are denoted by

E∞(h, τ ) = max
≤n≤N

∥∥un – Un∥∥∞.

Furthermore, the temporal and spatial convergence orders are defined respectively by

Order(τ ) = log

(
E∞(h, τ )
E∞(h, τ )

)
, Order(h) = log

(
E∞(h, τ )
E∞(h, τ )

)
,

where τ and h are sufficiently small.
Firstly, we consider the following problem with zero initial value.

Example  Let L = T = , and take ϕ(x) = ex. We consider the following problem:

C
Dα

t u(x, t) =
∂

∂x

(
ex ∂u

∂x

)
+ ex �( + α)


t – ext+α ,

 < x < ,  < t ≤ , (.)

u(x, ) = ,  < x < , (.)

ux(, t) = t+α , ux(L, t) = et+α ,  ≤ t ≤ . (.)

The exact solution is u(x, t) = ext+α .

We solve the problem with the proposed box-type scheme (.)-(.). Firstly, the nu-
merical accuracy of this scheme in temporal direction is tested by taking a sufficiently
small spatial step h = /, and taking α = ., ., ., respectively. We present the
computational errors and temporal convergence orders in the maximum norm in Table .
We can see that our scheme generates the temporal convergence order of nearly O(τ ).
Secondly, the numerical accuracy of the scheme in spacial direction is verified by the ex-
ample. We fix a sufficiently small temporal step size τ = /, and take different values
of α again. Table  shows the errors and the spatial convergence orders for different spatial
mesh sizes. The results are also in good agreement with our theoretical analysis.

In Figures  and , we plot the error (|u(xi, tn) – un
i |) surface figures with different mesh

sizes by taking α = ., ., respectively. We find that the maximum error becomes rela-
tively smaller as the mesh size becomes smaller in these figures, which provides the vali-
dation of our results once again.

Secondly, we consider an example with nonzero initial value.
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Table 2 The numerical convergence orders in spatial direction with τ = 1
10,000

h α = 0.2 α = 0.5 α = 0.8

E∞(h, τ ) Order(h) E∞(h, τ ) Order(h) E∞(h, τ ) Order(h)

1/8 1.6761e–002 * 1.1880e–002 * 8.3067e–003 *
1/16 4.1978e–003 1.9974 2.9752e–003 1.9975 2.0799e–003 1.9978
1/32 1.0499e–003 1.9994 7.4416e–004 1.9993 5.2021e–004 1.9993
1/64 2.6253e–004 1.9997 1.8609e–004 1.9996 1.3010e–004 1.9995

Figure 1 The error surface figures with h = τ = 1
10 (left) and h = τ = 1

40 (right) when α = 0.2.

Figure 2 The error surface figures with h = τ = 1
10 (left) and h = τ = 1

40 (right) when α = 0.8.

Example  Let L = T = , and take ϕ(x) = x + . We consider the following problem:

C
Dα

t u(x, t) =
∂

∂x

((
x + 

)∂u
∂x

)
+ cos(πx)

�( + α)


t + π
(
t+α + 

)

· [x sin(πx) + π cos(πx)
(
x + 

)]
,  ≤ x ≤ ,  < t ≤ , (.)

u(x, ) = cos(πx),  ≤ x ≤ , (.)

ux(, t) = , ux(L, t) = ,  ≤ t ≤ . (.)

The exact solution is u(x, t) = cos(πx)(t+α + ).

We solve the problem with the box-type scheme (.)-(.). Firstly, the numerical ac-
curacy of this scheme in temporal direction is tested by taking a sufficiently small spatial
step h = /, and taking α = ., ., ., respectively. We list the computational er-
rors and temporal convergence orders in the maximum norm in Table . We find that our
scheme generates the temporal convergence order of nearly O(τ ). Secondly, the numer-
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Table 3 The numerical convergence orders in temporal direction with h = 1
3,000

τ α = 0.1 α = 0.5 α = 0.9

E∞(h, τ ) Order(τ ) E∞(h, τ ) Order(τ ) E∞(h, τ ) Order(τ )

1/4 8.2922e–003 * 4.4237e–002 * 7.7457e–002 *
1/8 2.1607e–003 1.9403 1.1423e–002 1.9533 1.9665e–002 1.9778
1/16 5.5117e–004 1.9709 2.8960e–003 1.9798 4.9383e–003 1.9935
1/32 1.3948e–004 1.9824 7.2848e–004 1.9911 1.2356e–003 1.9988

Table 4 The numerical convergence orders in spatial direction with τ = 1
10,000

h α = 0.1 α = 0.5 α = 0.9

E∞(h, τ ) Order(h) E∞(h, τ ) Order(h) E∞(h, τ ) Order(h)

1/8 7.8990e–002 * 6.9592e–002 * 5.8868e–002 *
1/16 1.9618e–002 2.0095 1.7280e–002 2.0098 1.4612e–002 2.0103
1/32 4.8964e–003 2.0024 4.3128e–003 2.0024 3.6464e–003 2.0026
1/64 1.2236e–003 2.0006 1.0778e–003 2.0005 9.1120e–004 2.0006

ical accuracy of the scheme in spacial direction is verified by the example. We fix a suffi-
ciently small temporal step size τ = /, and take different values of α again. Table 
shows the errors and the spatial convergence orders for different spatial mesh sizes. The
convergence orders of the numerical results are also in accordance with our theoretical
analysis.

5 Conclusion
In this manuscript, we construct a box-type difference scheme with convergence order
O(τ  + h) for the fractional sub-diffusion equation with spatially variable coefficient un-
der Neumann boundary conditions. The scheme is established by introducing the auxil-
iary variable and applying the L – σ formula to approximate the time Caputo fractional
derivative. With the help of the special properties of the L – σ formula and the mathe-
matical induction method, we give the detailed deduction of unconditional stability and
convergence for our scheme by the discrete energy method. Numerical examples are car-
ried out to verify the theoretical analysis. It is meaningful to construct a O(τ  + h) accu-
racy difference scheme for this problem, which will be our work in the future.
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