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Abstract
The permanence for three-species cooperative difference systems of Lotka-Volterra is
considered. By constructing some suitable regions, we prove that a cooperative
system cannot be permanent. Furthermore, we find the orbits starting from our
regions approach the coordinate axes as n tends to infinity. This is somewhat similar
to the May-Leonard behavior in the case of competition models.
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1 Introduction
In theoretical ecology, the models governed by difference equations are used to character-
ize the interactions of species with non-overlapping generations. For example, Ricker []
introduced a discrete-time population model to forecast fish stock recruitment given by

x(k + ) = x(k) exp

(
r –

x(k)
K

)
, (.)

where x(k) represents the number of individuals of generation k, r is the intrinsic growth
rate and K is interpreted as the carrying capacity of the environment. It is well known
that the dynamics of model (.) may be extremely complex []. However, one of the most
important questions from a biological point of view is whether or not all species in a multi-
species community can be permanent.

The discrete-time model of Ricker type of n species is modeled by the following equa-
tion:

xi(k + ) = xi(k) exp

(
ri –

n∑
j=

aijxj(k)

)
, (.)

where xi(k) represents the densities of the i species at kth generation, aij measures the in-
tensity of intra-specific competition or the interspecific competition. These equations are
also called the discrete-time Lotka-Volterra systems. Permanence is an important concept
of mathematical biology concerning the survival of a population which has been studied
in many papers [–]. Here, we give its definition as follows.

Definition . System (.) is said to be permanent if there is a compact set E in the in-
terior of Rn

+ such that, for each positive initial position, the orbit of system (.) through
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this initial position eventually enters and remains in E. Equivalently, there exist constants
M, m > , such that, for each initial value (x(), x(), . . . , xn()) ∈ int Rn

+, the orbits of sys-
tem (.) starting from the initial value satisfy

 < m ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ M,  ≤ i ≤ n. (.)

For system (.) in the n-dimensional competitive and prey-predator cases, in [], Hof-
bauer et al. obtained conditions for permanence of the system (.). For system (.) in the
two-species prey-predator case, Hutson and Moran [] gave necessary and sufficient con-
ditions for its permanence. For the two-species competition system of equation (.), the
permanence was considered by Lu and Wang []. For higher-dimensional case of equation
(.), a three-species competitive system of the May-Leonard type was studied by Roeger
in []. Global stability result of system (.) was given by Wang and Lu in []. For system
(.) in the two-dimensional cooperative case, an example was given by Hofbauer et al. []
to show that system (.) may not be permanent. By applying the approach of Hofbauer
et al. in [], Lu and Wang [] proved that any two-species cooperative system of equa-
tion (.) cannot be permanent. For the high-dimensional cooperative case, the technique
developed in [, ] cannot easily be extended, Wei et al. [] gave an incomplete result of
non-permanence for system (.) in the n-species cooperative case.

The above results proposed by previous studies [, , ] were extended by Kon [] to
a general two-species Kolmogorov system. By virtue of the average Lyapunov functions
approach developed by Hofbauer et al. [], he gave some permanence conditions and ap-
plied them to prey-predator and competitive cases. However, in the cooperative case, he
suggested that the conditions of permanence may fail based on the results obtained in [].
By introducing the constants θij, system (.) in the two-species case can be extended as
follows:

xn+ = xn exp
(
r – axθ

n + ayθ
n

)
,

yn+ = yn exp
(
r + axθ

n – ayθ
n

)
.

(.)

Equation (.) is called the Gilpin and Ayala type model; it was proposed by Gilpin and
Ayala in []. For two- and high-dimensional competitive and prey-predator cases of (.),
the dynamical behavior was studied by Kon [] and Chen et al. in [, ]. For system
(.) in the cooperative case, the permanence result was left unsolved in [].

In this paper, we consider the following three-dimensional discrete-time Lotka-Volterra
systems:

xn+ = xn exp(r – axn + ayn + azn),

yn+ = yn exp(r + axn – ayn + azn), (.)

zn+ = zn exp(r + axn + ayn – azn).

The main object in the present paper is to complete the proof of Wei et al. [] in the
three-dimensional case. Furthermore, we also consider the permanence of model (.) in
some special case. Our main results are stated as follows.
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Theorem . If aij >  (i, j = , ) and θ = θ > , θ = θ >  are satisfied, then system
(.) is not permanent.

Theorem . If system (.) is a cooperative one, i.e. aij >  (i, j = , , ), then it is not
permanent.

2 Preliminaries and some lemmas
To show the main results, firstly, we will give some lemmas which will be used in the sequel.

Let

A =

⎛
⎜⎝

–a a a

a –a a

a a –a

⎞
⎟⎠ ,

where aij > .
By virtue of the Perron-Frobenius theorem, Theorem .. and .. in [] and

Lemma  in [], it can be easily seen that we have the following.

Lemma . If matrix A with aij >  satisfies det(A) > , then A has a real eigenvalue λ > 
and a corresponding eigenvector p = (p, p, p) >  with

∑
i= pi = , that is,

p · A = λp,

furthermore,

–ap + ap + ap > ,

ap – ap + ap > , (.)

ap + ap – ap > .

Remark . Arrow [] and Szidarovszky [] extended the Perron-Frobenius theorem
to Metzler matrices. Here a matrix A is called a Metzler matrix if its off-diagonal entries
are non-negative. Thus, Lemma . can also be obtained from Theorem ′ in [] or The-
orem . in [].

Lemma . ([]) If u = (u, u · · ·un) ≥ , v = (v, v · · · vn) ≥  and
∑n

i= vi = , then

n∏
i=

uvi
i ≤

n∑
i=

uivi.

Lemma . By considering the relationships between a and a, a and a, a and a,
the interaction matrix A can be classified into the following five classes:

() a ≥ a, a ≤ a;
() a ≥ a, a ≥ a, a < a; a ≥ a, a > a, a ≥ a;
() a < a, a < a; a = a, a < a, a < a; a < a, a > a, a = a;
() a < a, a < a, a < a;
() a > a, a > a, a > a.
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Remark . Clearly, the above five cases are a complete classification of interaction ma-
trix A in terms of the relationship between a and a, a and a, a and a.

For convenience, we rewrite system (.) into the following form:

x′ = x exp(r – ax + ay + az),

y′ = y exp(r + ax – ay + az), (.)

z′ = z exp(r + ax + ay – az).

Lemma . If det(A) <  and a ≥ a, a ≤ a, then the map defined by equation (.)
satisfies

BN ∩ I(M,M) → BN ∩ IV(Mε̃ ,Mε̃), (.)

BN ∩ IV(M,M) → BN ∩ I(Mε̃ ,Mε̃), (.)

where ε̃ >  and

BN =
{

(x, y, z) ∈ R
+|xαyβzγ ≤ N

}
,

I(M,M) =
{

(x, y, z) ∈ R
+|x ≥ M, y ≥ M, z ≥ y exp(–ay), y ≤ a – δ

a
x
}

,

IV(M,M) =
{

(x, y, z) ∈ R
+|y ≥ M, z ≥ M, x ≥ y exp(–ay), y ≤ a – δ

a
z
}

.

Here N >  is arbitrarily fixed, a = 
 mini	=j{aij}, M >  is sufficiently large and  < δ < a is

a constant.

Proof Let α̂, β̂ , γ̂ be defined as

α̂ = (A + A + A)/
∣∣det(A)

∣∣,
β̂ = (A + A + A)/

∣∣det(A)
∣∣, (.)

γ̂ = (A + A + A)/
∣∣det(A)

∣∣,
where Aii and Aij (i 	= j) are the algebraic cofactors of –aii and aij (i 	= j), respectively.

Along the orbits of (.), we have

x′α̂y′β̂z′γ̂ = xα̂yβ̂zγ̂ exp(
̂ – x – y – z),

where 
̂ = rα̂ + rβ̂ + rγ̂ .
Let (x, y, z) ∈ BN ∩ I(M,M). Then, for large enough M > , we obtain

x′α̂y′β̂z′γ̂ ≤ xα̂yβ̂zγ̂ exp(
̂ – M) ≤ xα̂yβ̂zγ̂ ≤ N . (.)

Moreover, since x → x exp(–ax) is monotonically decreasing for x ≥ M > 
a , we infer that

y ≥ M ≥ M exp(–aM) ≥ x exp(–ax),
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together with the definition of region I , it follows that

y′ = y exp(r + ax – ay + az)

≥ x exp(–ax) exp(r + ax – ay + az)

≥ x exp(r + ax – ay + az)

≥ x exp
(
r + ax – (a – δ)x + az

) ≥ x exp(r + δM) ≥ x exp

(
δ


M

)
(M large)

� ε̃x ≥ ε̃M ≥ M >

a

. (.)

From (.), we see that if (x, y, z) ∈ BN ∩ I(M,M), then z ≤ N

γ̂ M–( α̂+β̂

γ̂
). Thus, we conclude

that

z′ = z exp(r + ax + ay – az)

≥ y exp(–ay) exp(r + ax + ay – az)

≥ y exp(r + ax + ay – az)

≥ y exp

(
r + aM + aM – a

N

γ̂

M
α̂+β̂
γ̂

)

≥ y exp

(
aM +

a


M
)

≥ y exp

(
a


M
)

≥ y exp

(
δ


M

)
(M large)

� ε̃y ≥ ε̃M ≥ M. (.)

By the fact that y → y exp(–ay) is monotonically decreasing for y > 
a , it follows that

x′/y′ exp
(
–ay′) ≥ x exp(r – ax + ay + az)/

(
ε̃x exp(–aε̃x)

)

=

ε̃

exp
[
r + (aε̃ – a)x + ay + az

]

≥ 
ε̃

exp
[
r + (aε̃ – a)M + aM

]

> exp

[(
aε̃ – a + a –

δ



)
M

]
(M large)

> exp

[
aM


exp

(
δ


M

)]
>  (M large),

z′/y′ = z exp(r + ax + ay – az)/
[
y exp(r + ax – ay + az)

]
≥ y exp(–ay) exp(r + ax + ay – az)/

[
y exp(r + ax – ay + az)

]
= exp

[
(r – r) + (a – a)x + (a + a)y – (a + a)z

]

≥ exp

[
(r – r) + (a – a)M + (a + a)M – (a + a)

N

γ̂

M
α̂+β̂
γ̂

]

≥ exp

[
(a – a)M +

(
a


+ a

)
M

]
>

a

a – δ
(M large).

(.)

Clearly, (.)-(.) imply (x′, y′, z′) ∈ BN ∩ IV(Mε̃,Mε̃).
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Let (x, y, z) ∈ BN ∩ IV(M,M), then, for large enough M > ,

x′α̂y′β̂z′γ̂ ≤ xα̂yβ̂zγ̂ exp(
 – M) ≤ xα̂yβ̂zγ̂ ≤ N . (.)

Moreover,

x′ = x exp(r – ax + ay + az)

= y exp(–ay) exp(r – ax + ay + az)

≥ y exp(r – ax + ay + az)

≥ y exp

(
r – a

N

α̂

M
β̂+γ̂
α̂

+ aM + aM
)

≥ y exp

(
a


M + aM
)

≥ y exp

(
a


M
)

≥ y exp

(
δ


M

)
(M large)

= ε̃y ≥ ε̃M > M,

y′ = y exp(r + ax – ay + az)

≥ z exp(–az) exp(r + ax – ay + az) = z exp(r + ax – ay + az)

≥ z exp(r + δz) ≥ z exp

(
δ


M

)
(M large)

= ε̃z ≥ ε̃M ≥ M >

a

.

(.)

Since y → y exp(–ay) is monotonically decreasing for y > 
a , we have

z′/y′ exp
(
–ay′) ≥ z exp(r + ax + ay – az)/

(
ε̃z exp(–aε̃z)

)

=

ε̃

exp
[
r + ax + ay + (aε̃ – a)z

]

≥ 
ε̃

exp
[
(aε̃ – a + a)M

]
(M large)

= exp

[(
a exp

(
δM


)
– a + a –

δ



)
M

]

≥ exp

[(
a


exp

(
δM


))
M

]
> , (.)

x′/y′ = x exp(r – ax + ay + az)/
[
y exp(r + ax – ay + az)

]
= y exp(–ay) exp(r – ax + ay + az)/

[
y exp(r + ax – ay + az)

]
≥ y exp(r – ax + ay + az)/

[
y exp(r + ax – ay + az)

]
= exp

[
(r – r) – (a + a)x + (a + a)y + (a – a)z

]

≥ exp

[
(r – r) – (a – a)

N

α̂

M
β̂+γ̂
α̂

+ (a + a)M + (a – a)M
]

≥ exp

[(
a


+ a + a – a

)
M

]
>

a

a – δ
(M large). (.)

According to (.)-(.), we have (x′, y′, z′) ∈ BN ∩ I(Mε̃,Mε̃). �
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Lemma . If det(A) <  and a < a, a < a, a < a, then the map defined by equa-
tion (.) satisfies

BN ∩ III′(M,M) → BN ∩ V′
(Mε̃,Mε̃), (.)

BN ∩ V′
(M,M) → BN ∩ I′(Mε̃,Mε̃), (.)

BN ∩ I′(M,M) → BN ∩ III′(Mε̃,Mε̃), (.)

where ε̃ >  and

I′(M,M) =
{

(x, y, z) ∈ R
+|x ≥ M, y ≥ M, z ≥ y exp(–ay), y ≤ 

b
x
}

,

III′(M,M) =
{

(x, y, z) ∈ R
+|y ≥ M, z ≥ M, x ≥ z exp(–az), z ≤ 

b
y
}

, (.)

V′
(M,M) =

{
(x, y, z) ∈ R

+|x ≥ M, z ≥ M, y ≥ x exp(–ax), x ≤ 
b

z
}

,

where a = 
 mini	=j{aij}, M >  is sufficiently large and

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

,

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

,

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

,

with constants  < δ < a,  < δ < a – a,  < δ < a – a and  < δ < a – a.

Proof Since the proofs of (.) and (.) are essentially the same as the proof of (.),
it suffices to prove that (.) is satisfied, that is, we need only verify that there exists a
constant ε̃ >  such that the following holds true for the map defined by (.):

BN ∩ III′(M,M) → BN ∩ V′
(Mε̃,Mε̃).

Let (x, y, z) ∈ BN ∩ III′(M,M), for large enough M > , we have

x′α̂y′β̂z′γ̂ ≤ xα̂yβ̂zγ̂ exp(
 – M) ≤ xα̂yβ̂zγ̂ ≤ N , (.)

where α̂, β̂ , γ̂ are defined as in (.).
Notice that y exp(–ay) is monotonically decreasing when y ≥ 

a , and we obtain for
(x, y, z) ∈ BN ∩ III′(M,M),

y ≥ M ≥ 
a

and y exp(–ay) ≤ M exp(–aM) ≤ M ≤ z.

Furthermore, from (.), we deduce that if (x, y, z) ∈ BN ∩ III′(M,M), then

x ≤ N

α̂ M–( β̂+γ̂

α̂
).
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Therefore,

x′ ≥ z exp(–az) exp(r – ax + ay + az)

≥ z exp(r – ax + ay + az)

≥ y exp(–ay)exp(r – ax + ay + az)

≥ y exp(r – ax + ay + az)

≥ y exp

(
r – a

N

α̂

M
β̂+γ̂
α̂

+ aM + aM
)

(M large)

≥ y exp

(
aM +

a


M
)

≥ y exp

(
a


M
)

≥ y exp

(
δ


M

)
(M large)

� ε̃y ≥ ε̃M > M,

z′ ≥ y exp(–ay) exp(r + ax + ay – az)

≥ y exp(r + ax + ay – az)

≥ y exp(r + δy) ≥ y exp

(
δM


)
(M large)

� ε̃y ≥ ε̃M ≥ M.

(.)

From the above it follows that

y′/x′ exp
(
–ax′) ≥ y exp(r + ax – ay + az)/

(
ε̃y exp(–aε̃y)

)

=

ε̃

exp
[
r + (aε̃ – a)y + az

]

≥ 
ε̃

exp
[
(aε̃ – a + a)M

]
(M large)

≥ exp

(
–

δ


M

)
exp

[(
a exp

(
δ


M

)
– a + a

)
M

]
(M large)

= exp

[(
a exp

(
δ


M

)
– a + a –

δ



)
M

]
(M large)

≥ exp

[
aM


exp

(
δ


M

)]
>  (M large),

z′/x′ = z exp(r + ax + ay – az)/
[
x exp(r – ax + ay + az)

]
=

(
z exp

[
(r – r) + (a + a)x + (a – a)y – (a + a)z

])
/x

≥
(

z exp

[
(r – r) + (a + a)x + (a – a)y –

(
a + a

b

)
y
])/

x

=
(
z exp

[
(r – r) + δy

])
/x ≥ (

M exp
[
(r – r) + δy

])
/x

≥
(

M
α̂+β̂+γ̂

α̂ exp

(
δ


M

))/
N


α̂ ≥ b (M large).

(.)
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Thus, (.)-(.) show that

BN ∩ III′(M,M) → BN ∩ V′
(Mε̃,Mε̃)

for the map given by (.).
By using the same procedure as in the proof of (.), we see that the map defined by

(.) satisfies (.) and (.). �

3 Proof of main results
3.1 Proof of Theorem 1.1

Proof By introducing the transformation

un = xθ
n ,

vn = yθ
n ,

(.)

system (.) becomes

un+ = un exp(θr – θaun + θavn),

vn+ = vn exp(θr + θaun – θavn).
(.)

The proof proceeds in a similar manner to that employed in Theorem  in []. �

3.2 Proof of Theorem 1.2

Proof By considering the sign of det(A), we will divide our proof in three cases.
Case I. det(A) = . Define a continuous function V (x, y, z) by

V (x, y, z) = xA yA zA , (.)

where A, A and A are the algebraic cofactors of –a, a and a, respectively.
It is obvious that Aij >  since aij > . Along the orbits of (.), we have

V
(
x′, y′, z′) = V (x, y, z) exp(
), (.)

where 
 = Ar + Ar + Ar.
Case I.. If 
 = , then V (x, y, z) is invariant along the orbits of (.). In this case, for any

given compact set E in the interior of R
+, we can take sufficiently large C such that

{
(x, y, z)|V (x, y, z) = C

} ∩ E = ∅,

which implies the non-permanence of system (.).
Case I.. If 
 <  (> ), then exp(
) <  (> ). It follows from (.) that, for any given

compact set E in the interior of R
+, there is a positive orbit of (.) leaving ultimately E,

which will not return to E afterwards. Therefore, system (.) remains not permanent in
this case.
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Case II. Suppose det(A) > . From Lemma ., we see that there exist constant p, p, p >
, such that (.) holds.

Construct the following continuous function V (x, y, z):

V (x, y, z) = xαyβzγ , (.)

where α = p, β = p, γ = p.
Calculating along the orbits of (.), we obtain

V
(
x′, y′, z′) = V (x, y, z) exp(
̃ + μx + μy + μz), (.)

where 
̃ = rα + rβ + rγ and

μ = –ap + ap + ap > ,

μ = ap – ap + ap > , (.)

μ = ap + ap – ap > .

Since x > , y > , z > , let us denote by μ the number defined by μ = min{μ,μ,μ}.
Then together with Lemma ., it is shown that

μx + μy + μz ≥ μ(x + y + z) ≥ μk̃
(
xαyβzγ

)μ̃,

where μ̃ = (α + β + γ )– and  < k̃ < min{(αμ̃)–, (βμ̃)–, (γ μ̃)–}.
Therefore, we have

V
(
x′, y′, z′) ≥ V (x, y, z) exp

[
̄ + μk̃
(
V (x, y, z)

)μ̃]
.

Since k̃μ > , μ̃ > , one can take M >  large enough to satisfy ε = 	̄ + μk̃Mμ̃ >  and con-
sidering the regions UM = {(x, y, z) ∈ R

+|V (x, y, z) ≥ M}, (.) maps UM into UMε . There-
fore, all the orbits starting in UM are unbounded and system (.) is not permanent.

Case III. det(A) < . According to Lemma ., our proof in this case can be divided into
five cases.

Case III.. a ≥ a, a ≤ a.
From Lemma ., we claim that (.) maps

BN ∩ I(M,M) → BN ∩ IV(Mε̃ ,Mε̃).

Similarly,

BN ∩ IV(M,M) → BN ∩ I(Mε̃ ,Mε̃),

where ε̃ > . By iteration, this shows that all orbits starting in BN ∩ I(M,M) are unbounded
and system (.) is not permanent.
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Case III.. a ≥ a, a ≥ a, a < a; a ≥ a, a > a, a ≥ a.
In this case we define the regions II(M,M) and V(M,M) as follows:

II(M,M) =
{

(x, y, z) ∈ R
+

∣∣∣x ≥ M, y ≥ M, z ≥ x exp(–ax), x ≤ a – δ

a
y
}

,

V(M,M) =
{

(x, y, z) ∈ R
+

∣∣∣x ≥ M, z ≥ M, y ≥ x exp(–ax), x ≤ a – δ

a
z
}

.

It is easy to check that Case III. satisfies a ≥ a, a ≥ a. Observe that Case III. and
a ≥ a, a ≥ a are in a symmetric form. The proof of this case follows in a similar
manner to Case III., so we see that the map defined by equation (.) satisfies

BN ∩ II(M,M) → BN ∩ V(Mε̃,Mε̃)

and

BN ∩ V(M,M) → BN ∩ II(Mε̃,Mε̃)

with ε̃ > . By iteration, this shows that all orbits starting in BN ∩ II(M,M) are unbounded,
which implies that system (.) is not permanent.

Case III.. a < a, a < a; a = a, a < a, a < a; a < a, a > a, a = a.
In this case let us define regions III(M,M) and IV(M,M) as follows:

III(M,M) =
{

(x, y, z) ∈ R
+

∣∣∣y ≥ M, z ≥ M, x ≥ z exp(–az), z ≤ a – δ

a
y
}

,

IV(M,M) =
{

(x, y, z) ∈ R
+

∣∣∣y ≥ M, z ≥ M, x ≥ y exp(–ay), y ≤ a – δ

a
z
}

.

It is obvious that Case III. satisfies a ≥ a, a ≥ a. By virtue of the symmetry, the
theorem can be proved by the same method as employed in the proof of Case III. and
hence we know that (.) satisfies

BN ∩ III(M,M) → BN ∩ VI(Mε̃,Mε̃)

and

BN ∩ VI(M,M) → BN ∩ III(Mε̃,Mε̃)

with ε̃ > . By iteration, this shows that all orbits starting in BN ∩ II(M,M) are unbounded.
This leads to non-permanence of system (.).

Case III.. a < a, a < a, a < a.
From Lemma ., we infer that

BN ∩ III′(M,M) → BN ∩ V′
(Mε̃,Mε̃),

BN ∩ V′
(M,M) → BN ∩ I′(Mε̃,Mε̃),

BN ∩ I′(M,M) → BN ∩ III′(Mε̃,Mε̃),
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where ε̃ > . By iteration, all orbits starting in BN ∩ III′(M,M) are unbounded. Hence, system
(.) is not permanent.

Case III.. a > a, a > a, a > a.
Define the regions as follows:

II′(M,M) =
{

(x, y, z) ∈ R
+|x ≥ M, y ≥ M, z ≥ x exp(–ax), x ≤ 

b
y
}

,

IV′
(M,M) =

{
(x, y, z) ∈ R

+|y ≥ M, z ≥ M, x ≥ y exp(–ay), y ≤ 
b

z
}

, (.)

VI′(M,M) =
{

(x, y, z) ∈ R
+|x ≥ M, z ≥ M, y ≥ z exp(–az), z ≤ 

b
x
}

,

where a = 
 min{aij}(i	=j), M >  is sufficiently large and

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

,

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

, (.)

b = max
{

a/(a – δ), (a + a)/(a – a – δ)
}

,

with  < δ < a,  < δ < a – a,  < δ < a – a,  < δ < a – a. Similarly to the proof
of Case III., we obtain

BN ∩ IV′
(M,M) → BN ∩ II′(Mε̃,Mε̃),

BN ∩ II′(M,M) → BN ∩ VI′(Mε̃,Mε̃), (.)

BN ∩ VI′(M,M) → BN ∩ IV′
(Mε̃,Mε̃),

where ε̃ > . By iteration, all orbits starting in BN ∩ IV′
(M,M) are unbounded and Theo-

rem . holds true in this case.
This completes the proof of the theorem. �

Remark . The method we used here is to find some regions so that the orbits of
(.) starting from them approach the axes as n tends to infinity. For example, in Case
III., we constructed the regions BN , I′, III′, V′ satisfying the requirement that the or-
bits starting in region BN ∩ III′ jump to the region BN ∩ V′ and then jump to the re-
gion BN ∩ I′ and finally jump to the region BN ∩ III′ again. This is somewhat similar
to a phenomenon proposed by May and Leonard [] in the three competition mod-
els.

4 Concluding remarks
We have seen that systems (.) and (.) in the cooperative case cannot be permanent by
modifying the techniques used in Lu and Wang [] and Hofbauer et al. []. Our approach
is to find a suitable set of initial positions satisfying the requirement that the positive orbits
of (.) starting from this set approach the x-axis, y-axis and z-axis as n tends to infinity.
This is somewhat similar to that in [, ] where the orbits of a three-dimensional discrete
competition models approach the boundary cycle. The orbits of (.) starting from the
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given regions satisfy

lim inf
n→+∞ xn =  and lim sup

n→+∞
xn = +∞,

lim inf
n→+∞ yn =  and lim sup

n→+∞
yn = +∞, (.)

lim inf
n→+∞ zn =  and lim sup

n→+∞
zn = +∞.

Hence, sufficiently small statistical fluctuations can lead to the extinction of any species.
This means that the three species reveal the great risk of extinction in practice although
they are cooperative and each one can be permanent in the absence of the other two.

For the matrix A, we have shown that system (.) is not permanent in any case with all
the elements aij (i, j = , , ) positive. In fact, by using the technique similar to the proof of
Theorem ., we can also obtain the non-permanence of system (.). This is the following
theorem without limitation for aii (i = , , ).

Theorem . If for the matrix A, for all i, j such that aij >  (i 	= j) (i, j = , , ), then system
(.) is not permanent.
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