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Abstract
Solution to the solvability problem for a class of product-type systems of difference
equations is given by presenting explicit formulas for its solutions. In the main/most
complicated cases the problem is solved by using two different methods. This is the
last system, out of the three non-equivalent ones, for which an associated polynomial,
which essentially determines the structure of the solutions, is of the third order, so
that the paper finishes the study of this kind of two-dimensional systems.
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1 Introduction
Theory of difference equations is a mathematical area of great interest [–]. Concrete
systems is one of its subareas which is of some interest nowadays. Papers [–] by Pa-
paschinopoulos and Schinas are some of those which have influenced the interest. Later
many others have appeared [, –, , , , , –, –]. One of the oldest topics
is finding solutions to the equations and systems [, –]. Since the mid of s there has
been increasing interest in the topic [, , –, –]. An interesting fact is that many
nonlinear equations and systems are related to linear ones although they are of relatively
complex forms, which usually do not suggest it on the first site. A line of the investigation
related to a solvable nonlinear difference equation can be followed, for example, in [, ,
, ] (see also the references therein). A more complicated equation and related meth-
ods can be found in []. The corresponding and related systems of difference equations
were studied, for example, in [, ] and [] (see also the references therein). Another
system of interest can be found in []. The equations and systems in these papers are
solved by employing suitable changes of variables which transform them to some linear
equations and systems which are solvable.

Many equations and systems contain as special cases product-type ones [, ]. Some
methods for the study of the long-term behavior of their solutions have used directly or
indirectly the equations and systems which can be solved. In [] and [] we studied only
positive solutions to the equations and systems appearing therein, so the product-type
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ones, which are obtained from them by special choices of their parameters, were solvable.
Applying the logarithm is a standard method for solving such equations and systems; it
was, among others, also used in solving a system in []. In general, a more complex case is
studying non-positive solutions to difference equations and systems, which is also the case
for the product-type systems, since the previous method is useless because it produces
multi-valued solutions. In our papers [] and [], we have presented a two- and a three-
dimensional solvable product-type system in the complex plane, respectively. Many results
on the long-term behavior of solutions to the system in [] were presented therein, while
in [] we only gave a method for solving the corresponding system. Having published
these two papers has motivated us to look for other solvable product-type systems. In []
we have managed to solve another one. The fact that the systems in [] and [] have
been special cases of the following system

zn = za
n–k wb

n–k , wn = wc
n–k zd

n–k , n ∈N, ()

has motivated us to start investigating the solvability of other special cases of the system.
Some equations in [] are product-type ones, but they have additional multipliers, which
suggested us to study the solvability of the generalizations of system () containing some
multipliers. The first step in the study was made in []. Our further investigations sug-
gested that closed-form formulas for solutions to product-type systems can be presented
for all given values of parameters and multipliers, which for two specific systems of the
form in () was done in [] and [] for the first time (in [] and [] general formulas
were presented in the main cases, but without detailed analysis and without presenting
more concrete formulas for each possible case; this type of problems does not appear for
the system in [], where its solutions are presented in all the cases). Product-type sys-
tems can be also solved by using the method which we developed in [], but is somewhat
technically complicated with respect to the one developed in [, , ]. Another class
of product-type systems has been quite recently investigated in detail in [].

This paper is devoted to the study of an extension of system (), with the following delays
k = k =  and k = k = , that is, of the system:

zn = αza
n–wb

n–, wn = βwc
n–zd

n–, n ∈ N, ()

where a, b, c, d ∈ Z, α,β , z–, z–, w–, w– ∈C. It is also a natural continuation of our study
in [, –, –].

This is the last system, out of the three non-equivalent ones, for which an associated
polynomial, which essentially determines the structure of the solutions, is of the third
order, so that the paper finishes the study of this kind of systems with two dependent
variables. The case when some of initial values or parameters α and β are equal to zero is
excluded from the consideration since such solutions are either not well defined [] or
eventually equal to zero. If a finite sum is of the form

∑l–
j=l cj, for some l ∈ Z, we regard

that its value is zero.

2 Auxiliary results
The following two lemmas are useful in the investigation of product-type systems. Proofs
of the first one can be found, for example, in [] and [].
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Lemma  Let

Q(t) =
k∑

j=

cjtj = ck

k∏

j=

(t – tj)

such that ti �= tj, i �= j, and ck �= . Then

k∑

j=

ts
j

Q′(tj)
= 

for  ≤ s ≤ k – , and

k∑

j=

tk–
j

Q′(tj)
=


ck

.

The second lemma is well known ([, ], see also [] for a more general result).

Lemma  Let i ∈N and

s(i)
n (z) =  + iz + iz + · · · + nizn–, n ∈N,

where z ∈ C.
Then

s()
n (z) =

 – zn

 – z
, ()

s()
n (z) =

 – (n + )zn + nzn+

( – z) , ()

s()
n (z) =

 + z – (n + )zn + (n + n – )zn+ – nzn+

( – z) ()

for every z ∈C \ {} and n ∈ N.

3 Main results
Five cases will be considered separately. Before we formulate and prove our main results,
note that

z = αza
–wb

–, z = α+aβbzbd
–za

–wbc
–wab

–,

w = βwc
–zd

–, w = βwc
–zd

–.
()

Theorem  Assume that a, b, d ∈ Z, c = , bd = , α,β , z–, z–, w– ∈C \ {}. Then
(a) if a �= , the general solution to () is given by

zn = α
–an+

–a βb –an
–a zan+

– wban
– , n ∈N ()

and

wn = βαd –an–
–a zdan–

– , n ≥ ; ()
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(b) if a = , the general solution to () is given by

zn = αn+βbnz–wb
–, n ∈N ()

and

wn = αd(n–)βzd
–, n ≥ . ()

Proof Since c = , we have

zn = αza
n–wb

n–, wn = βzd
n–, n ∈N. ()

From the equations in () and the assumption bd = , we get

zn = αβbza
n–, n ∈N, ()

and consequently

zn =
(
αβb)

∑n–
j= aj

zan
 , n ∈N,

which along with () yields

zn = α
∑n

j= aj
β

b
∑n–

j= aj
zan+

– wban
– , n ∈N. ()

From () we easily get () and ().
Using () in the second equality in (), as well as the assumption bd = , we obtain

wn = α
d

∑n–
j= aj

β
+bd

∑n–
j= aj

zdan–
– wbdan–

–

= α
d

∑n–
j= aj

βzdan–
– , n ≥ . ()

From () we easily get () and () for n ≥ . For n = , equalities () and () are directly
verified. �

Theorem  Assume that a, c, d ∈ Z, c �= , b = , α,β , z–, z–, w–, w– ∈ C \ {}. Then
system () is solvable in closed form.

This theorem was essentially proved in [], Theorem , (see also [], Corollary , for
the closed form formulas for the solutions in all the cases), since when b =  system () is

zn = αza
n–, wn = βwc

n–zd
n–, n ∈ N,

which is nothing but the corresponding system in Theorem  in [] with indices shifted
backward for one. Hence, we omit the proof of the theorem.

Theorem  Assume that a, b, c ∈ Z, c �= , d = , α,β , z–, w–, w– ∈ C \ {}. Then system
() is solvable in closed form.
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This theorem was essentially proved in [], since when d =  system () is

zn = αza
n–wb

n–, wn = βwc
n–, n ∈N,

which is nothing but the corresponding system in Theorem . in [] whose indices are
shifted backward for one (see also [], Corollary ., for the closed form formulas for the
solutions in all the cases). Hence, the proof of the theorem will be also omitted.

Theorem  Assume that a, b, c, d ∈ Z \ {}, ac �= bd, α,β , z–, z–, w–, w– ∈ C \ {}. Then
system () is solvable in closed form.

Proof Since α,β , z–, z–, w–, w– ∈C \ {}, from () we get zn �=  �= wn for n ≥ –. Hence

wb
n– =

zn

αza
n–

, n ∈N

and

wb
n = βbwbc

n–zbd
n–, n ∈ N,

from which it follows that

zn+ = α–cβbza
nzc

n–zbd–ac
n– , n ∈N. ()

Let μ = α–cβb,

a = a, b = c, c = bd – ac, y = . ()

Then

zn+ = μy za
n zb

n–zc
n–, n ∈N. ()

Equality () implies

zn+ = μy
(
μza

n–zb
n–zc

n–
)a zb

n–zc
n–

= μy+a zaa+b
n– zba+c

n– zca
n–

= μy za
n–zb

n–zc
n–, ()

for n ≥ , where

a := aa + b, b := ba + c, c := ca, y = y + a. ()

Assume

zn+ = μyk zak
n+–kzbk

n–kzck
n–k–, ()
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for a k ≥  and all n ≥ k, and

ak = aak– + bk–, bk = bak– + ck–, ck = cak–, ()

yk = yk– + ak–. ()

If we replace n by n – k in () and employ it in (), we get

zn+ = μyk
(
μza

n–kzb
n–k–zc

n–k–
)ak zbk

n–kzck
n–k–

= μyk +ak zaak +bk
n–k zbak +ck

n–k– zcak
n–k–

= μyk+ zak+
n–k zbk+

n–k–zck+
n–k– ()

for n ≥ k + , where

ak+ := aak + bk , bk+ := bak + ck , ck+ := cak , yk+ := yk + ak . ()

Relations (), (), (), () along with the inductive argument confirm the conjectures
in ()-().

Setting k = n in () and using (), () and (), we have

zn+ = μyn zan
 zbn

 zcn
–

=
(
α–cβb)yn(

α+aβbzbd
–za

–wbc
–wab

–
)an(

αza
–wb

–
)bn zcn

–

= α(–c)yn+(+a)an+bnβb(yn+an)zbdan
– zaan+abn+cn

– wbcan
– waban+bbn

–

= αyn+–cynβbyn+ zbdan
– zan+–can

– wbcan
– wban+

– ()

for n ∈N.
The relations in () show that

ak = aak– + bak– + cak–, for k ≥ . ()

Since c = bd – ac �= , () yields

ak– =
ak – aak– – bak–

c
. ()

This equality enables us to calculate aj for j ≤ . It is obtained that

a– = a– = , a = , ()

(see detailed corresponding calculations in [] and []) from which along with (), it
is obtained

y– = y– = y = , y =  ()
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and

yk =
k–∑

j=

aj, k ∈ N. ()

Linear equation () can be solved, from which along with () a closed form formula
for ak is obtained. Using () and Lemma , a closed form formula for yk is obtained.
Employing such obtained formulas for ak and yk in (), we obtain a closed form formula
for the solution to ().

From (), we also have

zd
n– =

wn

βwc
n–

, n ∈N, ()

zd
n = αdzad

n–wbd
n–, n ∈ N, ()

and consequently

wn+ = αdβ–awa
n+wc

nwbd–ac
n– , n ∈N. ()

As above, we get

wn+ = ηyk wak
n+–kwbk

n+–kwck
n–k , n ≥ k – , ()

where η = αdβ–a, ak , bk and ck are defined by () and (), and yk is defined by ()
and ().

Setting k = n +  in () and using (), we get

wn+ = ηyn+ wan+
 wbn+

 wcn+
–

=
(
αdβ–a)yn+(

βwc
–zd

–
)an+(

βwc
–zd

–
)bn+ wcn+

–

= αdyn+β (–a)yn++an++bn+ zdbn+
– zdan+

– wcbn+
– wcan++cn+

–

= αdyn+βyn+–ayn+ zd(an+–aan+)
– zdan+

– wc(an+–aan+)
– wan+–aan+

– ()

for n ∈N.
As we have already mentioned, closed form formulas for ak and yk can be found, from

which along with () it follows that () is solvable. It is not difficult to see that formulas
() and () present a solution to system (), from which the theorem follows. �

Remark  Theorem  can be also proved by using the method in []. We include the
proof also for the benefit of the reader and since in the theorem that follows we follow the
lines of the method.

First note that

w = βwc
zd

 = β
(
βwc

–zd
–

)c(
αza

–wb
–

)d = αdβ+czcd
–zad

– wc
–wbd

– ,

w = βwc
zd

 = αd(+a)β+c+bdzbd
– z(a+c)d

– wbcd
– wabd+c

– .
()
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The equalities in () show that w and w depend on all the parameters and initial values
(we neglect the cases when some of the powers are zero). This fact and () show that the
same holds for every wn, n ≥ , from which along with the first equation in () it follows
that the same holds for every zn, n ≥ . Hence

zn = αxnβyn zan
–zbn

–wcn
–wdn

– , ()

wn = αunβvn zαn
–zβn

– wγn
–wδn

–, ()

for n ≥ –, for some sequences xn, yn, an, bn, cn, dn, un, vn,αn,βn,γn, δn.
Clearly, it must be

x– = , y– = , a– = , b– = , c– = , d– = , ()

u– = , v– = , α– = , β– = , γ– = , δ– = , ()

x– = , y– = , a– = , b– = , c– = , d– = , ()

u– = , v– = , α– = , β– = , γ– = , δ– = , ()

x = , y = , a = , b = a, c = , d = b, ()

u = , v = , α = d, β = , γ = c, δ = , ()

x =  + a, y = b, a = bd, b = a, c = bc, d = ab, ()

u = , v = , α = , β = d, γ = , δ = c. ()

Applying () and () in (), we get

zn = α
(
αxn–βyn– zan–

– zbn–
– wcn–

– wdn–
–

)a(
αun–βvn– zαn–

– zβn–
– wγn–

– wδn–
–

)b

= αaxn–+bun–+βayn–+bvn– zaan–+bαn–
– zabn–+bβn–

–

× wacn–+bγn–
– wadn–+bδn–

– ()

for n ∈N, and

wn = β
(
αun–βvn– zαn–

– zβn–
– wγn–

– wδn–
–

)c(
αxn–βyn– zan–

– zbn–
– wcn–

– wdn–
–

)d

= αdxn–+cun–βdyn–+cvn–+zdan–+cαn–
– zdbn–+cβn–

–

× wdcn–+cγn–
– wddn–+cδn–

– ()

for n ∈N.
Motivated by ()-(), we define sequences xn, yn, an, bn, cn, dn, un, vn,αn,βn, γn, δn as

follows:

xn := axn– + bun– + , un := dxn– + cun–, ()

yn := ayn– + bvn–, vn := dyn– + cvn– + , ()

an := aan– + bαn–, αn := dan– + cαn–, ()

bn := abn– + bβn–, βn := dbn– + cβn–, ()
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cn := acn– + bγn–, γn := dcn– + cγn–, ()

dn := adn– + bδn–, δn := ddn– + cδn–, ()

for n ∈N.
Relations ()-(), ()-() define xn, yn, an, bn, cn, dn, un, vn,αn,βn,γn, δn uniquely,

while zn and wn in () are defined uniquely by initial values z–, z–, w–, w–. Since zn and
wn defined by () and () are solutions to () such that their values for n = ,  are the
same, it follows that they are closed form formulas for solutions to system (). Hence, we
need only to prove that systems ()-() are solvable.

The condition d �=  implies

xn– =
un – cun–

d
, n ∈N, ()

which along with the first equality in () yields

un+ = aun+ + cun + (bd – ac)un– + d, n ∈ N, ()

and also

yn– =
vn – cvn– – 

d
, n ∈N, ()

which along with the first equality in () yields

vn+ = avn+ + cvn + (bd – ac)vn– +  – a, n ∈ N. ()

We also have

an– =
αn – cαn–

d
, ()

bn– =
βn – cβn–

d
, ()

cn– =
γn – cγn–

d
, ()

dn– =
δn – cδn–

d
, ()

for n ∈N, and consequently

αn+ = aαn+ + cαn + (bd – ac)αn–, ()

βn+ = aβn+ + cβn + (bd – ac)βn–, ()

γn+ = aγn+ + cγn + (bd – ac)γn–, ()

δn+ = aδn+ + cδn + (bd – ac)δn–, ()

for n ∈N.
It is important to point out that all the transformations that we have employed transform

systems ()-() into equivalent ones. Therefore, there is a bijection between the sets of
solutions to the original and transformed systems.
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Let

A(tn) = tn+ – atn+ – ctn + (ac – bd)tn–, n ≥ –, ()

where (tn)n≥– is a sequence. Then A is a linear operator, () can be written as A(un) = d,
n ∈N, () as A(vn) =  – a, n ∈ N, and ()-() as

A(αn) = A(βn) = A(γn) = A(δn) = , n ∈N.

Since the equation

A(tn) =  ()

is linear of third order, it can be solved, and specially closed form formulas for αn, βn,
γn, δn can be obtained for the corresponding initial conditions ()-(). Employing the
formulas for αn, βn, γn, δn in ()-(), formulas for an, bn, cn, dn are obtained.

When h ∈ R, the equation

A(tn) = h ()

can be also solved (especially for h = d and h =  – a), since a particular solution to the
equation can be found in the following form:

tn = g + gn + gn + gn

for some constants gj, j = ,  (see, e.g., [, ]). From this and using ()-(), formulas
for un and vn can be found, from which along with () and () formulas for xn and yn

are obtained. Using the obtained formulas for these twelve sequences in () and (), we
obtain closed form formulas for solutions to system ().

3.1 Forms of solutions to (2) for the case ac �= bd
The characteristic polynomial associated to () is

P(λ) = λ – aλ – cλ + ac – bd, ()

which is of the third order due to the assumption ac �= bd. By using the change of variables
λ = t + a

 , the equation P(λ) =  becomes

t + pt + q = ,

where p = –(a + c)/ and q = (ac – bd – a)/, which is solved by looking for
solutions in the form t = u + v and posing the condition uv = –p. Then u and v are
solutions of the equation z + qz – p

 = , from which it follows that

λj =
a


+ εj– 

√

–
q


–
√

q


+

p


+ εj– 

√

–
q


+
√

q


+

p


, j = , , ()

where ε = , ε �= .
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If the discriminant

	 := p + q ()

is such that 	 �= , then all three zeros are different (if 	 >  two zeros are complex con-
jugate, if 	 <  all three zeros are real), whereas if 	 = , at least two zeros are equal [].

Case 	 �= . Since in this case the zeros of P are different, the general solution to () is

un = αλ
n
 + αλ

n
 + αλ

n
, n ∈ N, ()

where αi, i = , , are constants (in fact, () holds for every n ∈ Z due to the assumption
ac �= bd; see the relation in ()).

Lemma  employed to P shows that

∑

j=

λl
j

P′
(λj)

= , for l = , , and
∑

j=

λ
j

P′
(λj)

= . ()

From (), () and () it follows that

an =
∑

j=

λn+
j

P′
(λj)

=
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

()

for n ≥ –.
Equalities () and () yield

yn =
n–∑

i=

∑

j=

λi+
j

P′
(λj)

, n ∈ N. ()

If P() �= , that is, (a – )(c – ) �= bd, then () yields

yn =
λ

 (λn
 – )

(λ – λ)(λ – λ)(λ – )
+

λ
(λn

 – )
(λ – λ)(λ – λ)(λ – )

+
λ

(λn
 – )

(λ – λ)(λ – λ)(λ – )
. ()

Using (), it is easily seen that () holds for n ≥ –.
If P() = , that is, (a – )(c – ) = bd, and P′() =  – a – c �= , then

P(λ) = λ – aλ – cλ + a + c –  = (λ – )
(
λ + ( – a)λ +  – a – c

)
, ()

so that λ = ,

λ, =
a –  ± √

a + a + c – 


�=  ()
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and

yn =
λ

(λn
 – )

(λ – λ)(λ – ) +
λ

(λn
 – )

(λ – λ)(λ – ) +
n

(λ – )(λ – )
. ()

Using () it is easily checked that () holds for n ≥ – (for a detailed explanation,
see []).

Corollary  Assume that a, b, c, d ∈ Z \ {}, α,β , z–, z–, w–, w– ∈ C \ {}, ac �= bd and
	 �= . Then the following statements hold.

(a) If (a – )(c – ) �= bd, then the general solution to system () is given by () and (),
where (an)n≥– is given by (), (yn)n≥– is given by (), and λj, j = , , are given by
().

(b) If (a – )(c – ) = bd and a + c �= , then the general solution to system () is given by
() and (), where (an)n≥– is given by () with λ = , (yn)n≥– is given by (),
λ = , while λ, are given by ().

Remark  As we have already mentioned, P has a zero equal to  if and only if (a – )(c –
) = bd, so that () holds. The condition 	 �=  will be satisfied if and only if

(
ac – (a – )(c – ) – a) �= 

(
a + c

).

For example, if a = c ∈ Z \ {, } and bd = (a – ) �= , then 	 �= ,

P(λ) = λ – aλ – aλ + a –  = (λ – )
(
λ – (a – )λ +  – a

)
,

and conditions of Corollary (b) are satisfied. Note that λ =  and

λ, =
a –  ± √

a + a – 


.

Thus P can have three different zeros, one of which is equal to .

Case 	 = . In this case, P has at least two equal zeros. We may assume that λ = λ. If
p �= , then λ is not a triple zero of P, so the general solution to () is

an = ĝλ
n
 + (ĝ + ĝn)λn

, n ∈ N, ()

where ĝj, j = , , are constants. Since the solution satisfies (), we can find it by letting
λ → λ in (), and obtain

an =
λn+

 – (n + )λλ
n+
 + (n + )λn+


(λ – λ) , n ≥ –, ()

from which along with (), we get

yn =
n–∑

j=

λ
j+
 + (λ – λ + j(λ – λ))λj+


(λ – λ) , n ∈N. ()
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If we assume λ �=  �= λ = λ, then () and Lemma  imply

yn =
λ

 (λn
 – )

(λ – λ)(λ – )
+

(λ – λ)λ(λn
 – )

(λ – λ)(λ – )

+
λ

( – nλn–
 + (n – )λn

)
(λ – λ)(λ – ) , n ∈N. ()

Moreover, using () it is easily checked that () holds also for n ≥ –.
If we assume that λ �=  and λ = λ = , then from () it follows that

yn =
λ

 (λn
 – )

(λ – ) +
( – λ)n
(λ – ) +

(n – )n
( – λ)

. ()

Moreover, () holds also for n ≥ –. This case is obtained when (a – )(c – ) = bd and
a + c = , which implies

P(λ) = λ – aλ + (a – )λ +  – a = (λ – )(λ +  – a),

so that λ = a – .
If we assume that λ =  and λ = λ �= , then from () it follows that

yn =
n

(λ – ) +
(λ – )λ(λn

 – )
(λ – ) +

λ
( – nλn–

 + (n – )λn
)

(λ – ) . ()

Moreover, () holds also for n ≥ –.
If 	 = p = , then λ = λ = λ, so the general solution to () has the following form:

an =
(
β̂ + β̂n + β̂n)λn

 , n ∈ N, ()

where β̂, β̂ and β̂ are constants.
To find the solution to equation () satisfying () in this case, we can let λ → λ in

() and obtain

an =
(n + )(n + )


λn

 , ()

for n ≥ –, from which along with () we obtain

yn =
n–∑

j=

(j + )(j + )


λ
j
 ()

for every n ∈N. Moreover, () holds also for n ≥ –.
If we assume that λ = λ = λ �= , then from () and Lemma  it follows that

yn =
s()

n + λs()
n– + λs()

n–


=
 – (n + )(n + )λn

 + n(n + )λn+
 – n(n + )λn+


( – λ) ()

for every n ∈N. In fact, () holds also for n ≥ –.
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If we assume λ = λ = λ = , then from () and some calculation, we obtain

yn =
n–∑

j=

(j + )(j + )


=
n(n + )(n + )


()

for every n ∈N, which obviously holds for j = –, –,  (for more details, see [, ]).

Corollary  Assume that a, b, c, d ∈ Z \ {}, α,β , z–, z–, w–, w– ∈ C \ {}, ac �= bd and
	 = . Then the following statements are true.

(a) If (a – )(c – ) �= bd and a + c �= , then the general solution to system () is given by
() and (), where (an)n≥– is given by (), (yn)n≥– is given by (), while λj,
j = ,  are given by ().

(b) If (a – )(c – ) = bd, a + c =  and a �= , then the general solution to system () is
given by () and (), where (an)n≥– is given by () with λ = , (yn)n≥– is given by
(), and λ = a – .

(c) If (a – )(c – ) = bd, a + c �= , then the general solution to system () is given by ()
and (), where (an)n≥– is given by () with λ = , (yn)n≥– is given by (), λ = ,
while λ, are given by ().

(d) If (a – )(c – ) �= bd and a + c = , then the general solution to system () is given by
() and (), where (an)n≥– is given by (), (yn)n≥– is given by (), while λj = a/,
j = , .

(e) If (a – )(c – ) = bd and a + c =  and a = , then the general solution to system ()
is given by () and (), where (an)n≥– is given by () with λ = , while (yn)n≥– is
given by ().

Remark  Recall that equation () will have a zero equal to one if (a – )(c – ) = bd. If
λ = m ∈ Z \ {} is a double zero of P, then it must be

P(λ) = λ – aλ – cλ + cm + am – m, ()

P′
(m) = m – am – c = . ()

From () we have that c = m – am. Using this in (), we get

P(λ) = λ – aλ +
(
am – m)λ + m – am = (λ – m)(λ – a + m). ()

From this, and since ac �= bd, it follows that a �= m. Since P′′
(m) �= , we also have that

it must be a �= m. Hence, for every m ∈ Z \ {} and a ∈ Z such that m �= a �= m, the
polynomials in () are of type (), and they have exactly two equal zeros λ = λ = m �=
λ = a – m, and if additionally m �=  and a �= m +  hold, we see that the conditions
of Corollary (a) are satisfied. For m =  and a �= , it is obtained that P can have  as a
double zero, which means that such polynomials satisfy the conditions of Corollary (b).
For a = m + , we get a polynomial which has a double zero different from , which is its
third zero. This means that such polynomials satisfy the conditions of Corollary (c).

The polynomial has three equal zeros only if q = , which along with 	 =  implies p = .
Hence, we have c = –a/ and ac = bd, which implies that c = a/, so that

P(λ) = λ – aλ +
a


λ –

a


=

(

λ –
a


)

.
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Since c must be an integer, it follows that a = â for some â ∈ Z, so that c = –â and
c = â. Hence, for each â ∈ Z \ {}, these relations give polynomials of the form in ()
which have three equal zeros. This means that such polynomials satisfy the conditions of
Corollary (d). When a = , polynomial P has  as a triple zero, which means that there
is a polynomial satisfying the conditions of Corollary (e).

Before we formulate our next result, we want to say that the solution to the difference
equation

zn+ + azn+ + bzn = , n ∈N, ()

with initial values z, z ∈C, where a ∈C and b ∈C \ {}, is given by

zn =
λz – z

λ – λ
λn

 +
z – λz

λ – λ
λn

 ()

if λ �= λ, and

zn =
(
zn + λz( – n)

)
λn–

 ()

if λ = λ, where λ and λ are the zeros of the characteristic polynomial P(λ) = λ +aλ+b.
This simple result is well known and can be essentially found in any book on difference
equations and many papers [, , ].

Theorem  Assume that a, b, c, d ∈ Z, ac = bd, cd �= , α,β ∈C\{} and z–, z–, w–, w– ∈
C \ {}. Then the following statements hold.

(a) If a �= –c and a + c �= , then the general solution to system () is given by the
following formulas:

zn = α


–a–c

(
a

(λ–)λn+
 –(λ–)λn+


λ–λ

+–c
)

× β
ac

d(a+c–)

( (λ–)λn+
 –(λ–)λn+


λ–λ

–
)

z
ac

λn
 –λn


λ–λ

–

× z
a

λn+
 –λn+


λ–λ

– w
ac

d
λn

 –λn


λ–λ
– w

ac
d

λn+
 –λn+


λ–λ

– ()

and

wn = α
d

–a–c

( (λ–)λn
 –(λ–)λn


λ–λ

+
)

β


a+c–

(
c

(λ–)λn
 –(λ–)λn


λ–λ

+a–
)

× z
cd

λn–
 –λn–


λ–λ

– z
d

λn
 –λn


λ–λ

– w
c λn–

 –λn–


λ–λ
– w

c
λn

 –λn


λ–λ
– , ()

where

λ, =
a +

√
a + c


. ()
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(b) If a = –c and a + c �= , then the general solution to system () is given by the
following formulas:

zn = α


a+c– ((–(n+)λ
 +(n+)λ

 +c(n–)λ–cn)λn–
 +c–)

× β
c

d(a+c–) ((–(n+)λ
 +(n+)λ

 +c(n–)λ–cn)λn–
 –a)z(c(n–)–(n+)λ

 )λn


–

× z((n+)λ
 –cn)λn–


– w

c
d (c(n–)–(n+)λ

 )λn


– w
c
d ((n+)λ

 –cn)λn–


– ()

and

wn = α
d

a+c– ((λ+n(–λ))λn–
 –)β


a+c– (c(λ+(–λ)n)λn–

 +a–)zd(–n)λn


–

× zdnλn–


– wc(–n)λn


– wcnλn–


– , ()

where

λ = a/. ()

(c) If a �= –c and a + c = , then the general solution to system () is given by the
following formulas:

zn = α
a(a–)n+–n(a–)–(a–)+n+

(a–)

× β
–a(a–)n++na(–a)(–a)+a(a–)

d(–a) za(a–) (a–)n–
–a

–

× za (a–)n+–
a–

– w
a(a–)((a–)n–)

d(a–)
– w

a(a–)((a–)n+–)
d(–a)

– ()

and

wn = α
d((a–)n+n(–a)+n–)

(a–) β
–(a–)n++(–a)–+a+n(–a)(–a)

(–a) zd(a–) (a–)n––
–a

–

× zd (a–)n–
a–

– w
(a–)((a–)n––)

a–
– w

(a–)((a–)n–)
–a

– . ()

(d) If a = –c and a + c = , then the general solution to system () is given by the
following formulas:

zn = αn+n+βb n(n+)
 z–n

– zn+
– w–bn

– wb(n+)
– ()

and

wn = α
d(n–)n

 β
+n–n

 zd(–n)
– zdn

–wn–
– w–n

– . ()

Proof First note that in this case equalities ()-() also hold. Since ac = bd and c �= , we
have

un+ = aun+ + cun + d, ()



Stević Advances in Difference Equations  (2017) 2017:151 Page 17 of 24

vn+ = avn+ + cvn +  – a, ()

αn+ = aαn+ + cαn, ()

βn+ = aβn+ + cβn, ()

γn+ = aγn+ + cγn, ()

δn+ = aδn+ + cδn ()

for n ∈N, while operator A defined in () becomes

A(tn) = tn+ – atn+ – ctn.

Now, equation () is of the second order, so solvable in closed form. Consequently, ()-
() are solvable, so that closed form formulas for αn, βn, γn, δn can be found by employing
the corresponding conditions in ()-(). Such obtained formulas along with ()-()
yield formulas for an, bn, cn, dn. Further, () is also solvable, since a particular solution to
the equation has the form

tn = d̂ + d̂n + d̂n

for some constants d̂j, j = , . Specially, it is solved for f = d and f =  – a, which gives
formulas for the sequences un and vn, and consequently closed form formulas for xn and
yn. Using such obtained formulas in () and (), we get formulas for solutions to system
() in this case.

(a) Case a + c �= , a + c �= . In this case, a particular solution to equation () is

up
n =

d
 – a – c

, ()

so that

un = cλ
n
 + cλ

n
 +

d
 – a – c

, n ∈ N,

where

λ, =
a ± √

a + c


, ()

from which along with u = u =  it follows that

c =
d(λ – )

(a + c – )(λ – λ)
and c =

d( – λ)
(a + c – )(λ – λ)

,

and consequently

un =
d

 – a – c

(
(λ – )λn

 – (λ – )λn


λ – λ
+ 

)

. ()
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Using () in (), we get

xn =


 – a – c

(
(λ – )(λ

 – c)λn
 – (λ – )(λ

 – c)λn


λ – λ
+  – c

)

. ()

Particular solution to equation () in this case is

vp
n =

 – a
 – a – c

, ()

so that

vn = dλ
n
 + dλ

n
 +

 – a
 – a – c

, n ∈N,

where λ, are given by (), from which along with v = v =  it follows that

d =
c(λ – )

(a + c – )(λ – λ)
and d =

c( – λ)
(a + c – )(λ – λ)

,

and consequently

vn =


a + c – 

(

c
(λ – )λn

 – (λ – )λn


λ – λ
+ a – 

)

. ()

Using () in (), we get

yn =
c

d(a + c – )

(
(λ – )(λ

 – c)λn
 – (λ – )(λ

 – c)λn


λ – λ
– a

)

. ()

By using the corresponding conditions in ()-() in formula (), we get

αn = dλλ
λn–

 – λn–


λ – λ
, ()

βn = d
λn

 – λn


λ – λ
, ()

γn = cλλ
λn–

 – λn–


λ – λ
, ()

δn = c
λn

 – λn


λ – λ
. ()

By using ()-() in ()-(), we get

an = λλ
(λ

 – c)λn–
 – (λ

 – c)λn–


λ – λ
, ()

bn =
(λ

 – c)λn
 – (λ

 – c)λn


λ – λ
, ()

cn =
cλλ

d
(λ

 – c)λn–
 – (λ

 – c)λn–


λ – λ
, ()

dn =
c
d

(λ
 – c)λn

 – (λ
 – c)λn


λ – λ

. ()
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Using (), (), ()-() in () and (), as well as the fact that λ, are roots of the
polynomial λ – aλ – c, and after some standard calculations, formulas () and () are
obtained.

(b) Case a + c = , a + c �= . In this case, we have λ = λ �=  and a particular solution
to equation () is given by (), so that

un = (c + cn)λn
 +

d
 – a – c

, n ∈ N,

where λ is given by (), from which along with u = u =  it follows that

c =
d

a + c – 
and c =

d( – λ)
(a + c – )λ

,

and consequently

un =
d

a + c – 
((

λ + n( – λ)
)
λn–

 – 
)
. ()

Using () in (), we get

xn =


a + c – 
((

–(n + )λ
 + (n + )λ

 + c(n – )λ – cn
)
λn–

 + c – 
)
. ()

Particular solution to equation () in this case is given by (), so that

vn = (d + dn)λn
 +

 – a
 – a – c

, n ∈N,

where λ is given by (), from which along with v = v =  it follows that

d =
c

a + c – 
and d =

c( – λ)
(a + c – )λ

,

and consequently

vn =


a + c – 
(
c
(
λ + ( – λ)n

)
λn–

 + a – 
)
. ()

Using () in (), we get

yn =
c

d(a + c – )
((

–(n + )λ
 + (n + )λ

 + c(n – )λ – cn
)
λn–

 – a
)
. ()

By using the corresponding conditions in ()-() in formula (), we get

αn = d( – n)λn
 , ()

βn = dnλn–
 , ()

γn = c( – n)λn
 , ()

δn = cnλn–
 . ()
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By using ()-() in ()-(), we get

an =
(
c(n – ) – (n + )λ


)
λn

 , ()

bn =
(
(n + )λ

 – cn
)
λn–

 , ()

cn =
c
d

(
c(n – ) – (n + )λ


)
λn

 , ()

dn =
c
d

(
(n + )λ

 – cn
)
λn–

 . ()

Using the equalities in ()-(), in () and (), formulas () and () are ob-
tained.

(c) Case a + c �= , a + c = . In this case, we have that λ �=  = λ and that a particular
solution to equation () is given by

up
n =

dn
 – a

, ()

so that

un = cλ
n
 + c +

dn
 – a

, n ∈N,

where λ = –c = a – , from which along with u = u =  it follows that

c = –c =
d

(a – )(λ – )
=

d
(a – ) ,

and consequently

un =
d

a – 

(
λn

 – 
λ – 

– n
)

=
d(λn

 – nλ + n – )
(a – )

=
d((a – )n + n( – a) + n – )

(a – ) . ()

Using () in (), we get

xn =
a(a – )n+ – n(a – ) – (a – ) + n + 

(a – ) . ()

Particular solution to equation () in this case is given by

vp
n =

n( – a)
 – a

, ()

so that

vn = dλ
n
 + d +

n( – a)
 – a

, n ∈N,

from which along with v = v =  it follows that

d =
 – a

( – a) and d =  –
 – a

( – a) ,
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and consequently

vn =
–(a – )n+ + ( – a) –  + a + n( – a)( – a)

( – a) . ()

Using () in (), we get

yn =
–a(a – )n+ + na( – a)( – a) + a(a – )

d( – a) . ()

By using the corresponding conditions in ()-() in formula (), we get

αn = dλ
λn–

 – 
 – λ

= d(a – )
(a – )n– – 

 – a
, ()

βn = d
λn

 – 
λ – 

= d
(a – )n – 

a – 
, ()

γn = cλ
λn–

 – 
 – λ

= (a – ) (a – )n– – 
a – 

, ()

δn = c
λn

 – 
λ – 

= (a – )
(a – )n – 

 – a
. ()

By using ()-() in ()-(), we get

an = a(a – )
(a – )n – 

 – a
, ()

bn = a
(a – )n+ – 

a – 
, ()

cn =
a(a – )((a – )n – )

d(a – )
, ()

dn =
a(a – )((a – )n+ – )

d( – a)
. ()

Using (), (), ()-() in () and (), formulas () and () are obtained.
(d) Case a + c = , a + c = . In this case, we have that a =  and c = –. We also have

that λ = λ = , and that a particular solution to equation () is given by

up
n =

dn


, ()

so that

un = c + cn +
dn


, n ∈N,

from which along with u = u =  it follows that c =  and c = – d
 , and consequently

un =
d(n – )n


. ()
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Using () in (), we get

xn = n + n + . ()

Particular solution to equation () in this case is given by

vp
n = –

n


, ()

so that

vn = d + dn –
n


, n ∈N,

from which along with v = v =  it follows that d =  and d = /, and consequently

vn =
 + n – n


. ()

Using () in (), we get

yn = –
n(n + )

d
=

bn(n + )


. ()

By using the corresponding conditions in ()-() in formula (), we get

αn = d( – n), ()

βn = dn, ()

γn = n – , ()

δn = –n. ()

By using ()-() in ()-(), we get

an = –n, ()

bn = n + , ()

cn =
n
d

= –bn, ()

dn = –
(n + )

d
= b(n + ). ()

Using (), (), ()-() in () and (), formulas () and () are obtained.
By some calculation it can be proved that formulas ()-() really satisfy system (),

which was checked by the author. �
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