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Abstract
In this paper, the delayed finance model of enterprise operation is improved. The
stability is investigated, and a Hopf bifurcation is demonstrated. Applying the normal
form theory and the center manifold argument, some concrete expressions to judge
the properties of the bifurcating periodic solutions are given. Computer simulations
are performed to prove the correctness of theoretical analysis. Finally, a simple
conclusion is included.
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1 Introduction
In recent years, investigation on economic dynamical behaviors has become more promi-
nent in mainstream economics in the course of enterprise running. In order to under-
stand the highly complex dynamics of real financial and economic systems, researchers
have set up several nonlinear continuous economics models to describe economics phe-
nomena of enterprise operation, for example, Chian et al. [, ] proposed the forced van
der Pol model, the IS-LM model was analyzed in [–], Lorenz [] studied the Kaldorian
model and Goodwin’s accelerate model was discussed by Lorenz and Nusse []. In ,
Ma and Chen [, ] reported a dynamical model of financial system which is composed
of four sub-blocks: production, money, stock and labor force. By setting proper dimen-
sions and choosing appropriate coordinates, the authors set up the following simplified
three-dimensional financial model:

⎧
⎪⎨

⎪⎩

u̇(t) = u(t) + (u(t) – a)u(t),
u̇(t) =  – bu(t) – u

 (t),
u̇(t) = –u(t) – cu(t),

(.)

where the three state variables u(t), u(t) and u(t) are the interest rate, the investment
demand and the price index, respectively. a ≥  is the saving amount, b ≥  is the cost per
investment, and c ≥  is the elasticity of demand of commercial markets. Ma and Chen [,
] investigated all the possible dynamical phenomena (including balance, stable period,
fractal, Hopf bifurcation, the relationship between parameters and Hopf bifurcation and
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chaos etc.) of system (.) under different parameter combinations. In , by adding
delayed feedback to the second equation of system (.), Gao and Ma [] derived the
following delayed financial model:

⎧
⎪⎨

⎪⎩

u̇(t) = u(t) + (u(t) – a)u(t),
u̇(t) =  – bu(t) – u

 (t) + κ[u(t) – u(t – ς )],
u̇(t) = –u(t) – cu(t),

(.)

where κ is a real number and ς is time delay. They have shown that the Hopf bifurcation
of system (.) occurs when the time delay varies.

By adding delayed feedback to the three equations of system (.), Chen [] obtained
the modified version of system (.) which takes the form

⎧
⎪⎨

⎪⎩

u̇(t) = u(t) + (u(t) – a)u(t) + κ[u(t) – u(t – ς)],
u̇(t) =  – bu(t) – u

 (t) + κ[u(t) – u(t – ς)],
u̇(t) = –u(t) – cu(t) + κ[u(t) – u(t – κ)],

(.)

where κi (i = , , ) are the feedback strengths and ςi (i = , , ) are the time delays. By
choosing the time delays as varying parameters, Chen [] controlled the chaotic phe-
nomena of the unperturbed system with a = , b = . and c = .

Son and Park [] further considered the dynamical behaviors of system (.). By local
stability analysis, Son and Park [] theoretically proved the occurrences of a Hopf bifur-
cation. Moreover, through numerical bifurcation analysis, they obtained the supercritical
and subcritical Hopf bifurcation curves which support the theoretical predictions. Mean-
while, the folds limit cycle and Neimark-Sacker bifurcation curves were detected. Also the
double Hopf bifurcation and the generalized and Hopf bifurcation codimension- bifur-
cation points were found.

Recently, Chen [] generalized system (.) to the fractional order case of the form

⎧
⎪⎪⎨

⎪⎪⎩

dα u
dtα = u(t) + (u(t) – a)u(t),

dα u
dtα =  – bu(t) – u

 (t),
dα u
dtα = –u(t) – cu(t).

(.)

Chen [] found that system (.) displayed many interesting dynamical behaviors such
as fixed points, periodic motions and chaos. Meanwhile, it was shown that chaos existed
in fractional-order financial systems with orders less than three and period doubling and
intermittency routes to chaos in the fractional-order financial system were found.

As is known to us, the time delays actually occur in the process of economic operation
of enterprise. In fact, the investment demand is affected by interest and the price and has
a certain time lag. Stimulated by this viewpoint and based on the former work [–], in
this paper, we will make a discussion on the following delayed finance system:

⎧
⎪⎨

⎪⎩

u̇(t) = u(t) + [u(t – ς ) – a]u(t),
u̇(t) =  – bu(t – ς ) – u

 (t),
u̇(t) = –u(t) – cu(t),

(.)
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where the three state variables u(t), u(t) and u(t) are the interest rate, the investment
demand and the price index, respectively. a ≥  is the saving amount, b ≥  is the cost per
investment, and c ≥  is the elasticity of demand of commercial markets, ς is time delay.

In this paper, we study the stability, the local Hopf bifurcation for system (.). Although
there are a great variety of works dealing with a Hopf bifurcation for delayed differential
equations [–], up to now, to the best of our knowledge, few authors have considered
the bifurcation behaviors of finance systems. The main contributions of this article in-
clude the three aspects: (i) some new sufficient conditions which guarantee the stability
and the existence of a Hopf bifurcation of delayed finance system are established; (ii) the
explicit formulas for determining the properties of the bifurcating periodic solutions are
obtained; (iii) to the best of our knowledge, it is the first time to focus on the time delay
effect on interest rate, the investment demand and the price index for a finance system,
and the obtained results have an important guiding role to the economic operation and
also complement numerous previous works.

The remainder of the paper is organized as follows. In Section , we investigate the
stability of the equilibrium and the existence of local Hopf bifurcations. In Section , the
direction and stability of the local Hopf bifurcation are established. In Section , numerical
simulations are carried out to illustrate the validity of the main predictions. Some main
conclusions are drawn in Section .

2 Stability of equilibrium and local Hopf bifurcations
One can check that if

(H) c – b – abc > 
holds, then Eq. (.) has three equilibria E(, 

b , ), E(u∗
 , u∗

, –u∗
) and E(–u∗

 , u∗
, u∗

),
where

u∗
 =

√
c – b – abc

c
, u∗

 =
 + ac

c
, u∗

 =

c

√
c – b – abc

c
.

In the following, we only focus on the existence of a local Hopf bifurcation at the equilib-
rium E(u∗

 , u∗
, –u∗

) of system (.).
Let ū(t) = u(t) – x∗, ū(t) = u(t) – u∗

, ū(t) = u(t) + u∗
 and still denote ū(t), ū(t) and

ū(t) by u(t), u(t) and u(t), respectively, then (.) takes the form

⎧
⎪⎨

⎪⎩

u̇(t) = (u∗
 – a)u(t) + u(t) + u∗

 u(t – ς ) + u(t)u(t – ς ),
u̇(t) = –u∗

 u(t) – bu(t – ς ) – u
 (t),

u̇(t) = –u(t) – cu(t).
(.)

The linearization of Eq. (.) at (, , ) is given by

⎧
⎪⎨

⎪⎩

u̇(t) = (u∗
 – a)u(t) + u(t) + u∗

 u(t – ς ),
u̇(t) = –u∗

 u(t) – bu(t – ς ),
u̇(t) = –u(t) – cu(t).

(.)

The characteristic equation corresponding to the linearized equation (.) is given by

det

⎛

⎜
⎝

λ – (u∗
 – a) –u∗

 e–λς –
u∗

 λ + be–λς 
  λ + c

⎞

⎟
⎠ = .
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That is,

λ + lλ
 + lλ + l +

(
mλ

 + mλ + m
)
e–λς = , (.)

where l = c(u∗
 ), l =  – c(u∗

 – a), l = c + a – u∗
, m = b + abc – bcu∗

, m = bc + ab –
bu∗

 + (u∗
 ), m = b.

For ς = , (.) becomes

λ + (l + m)λ + (l + m)λ + l + m = . (.)

In view of Routh-Hurwitz criteria, we know that all roots of (.) have a negative real part
if the following condition

(H) (l + m)(l + m) > l + m, l + m > 
is fulfilled.

For � > , i� is a root of (.) if and only if

–i�  – l�
 + il� + l +

(
–m�

 + im� + m
)
(cos�ς – i sin�ς ) = .

Then we have
{

(m – m�
) cos�ς + m� sin�ς = l�

 – l,
(m – m�

) sin�ς – m� cos�ς = –�  + l� ,
(.)

which is equivalent to

(
m – m�

) + (m� ) =
(
l�

 – l
) +

(
–�  + l�

),

namely,

�  +
(
l
 – l – m


)
�  +

(
l
 – ll – m

 + mm
)
�  + l

 – m
 = . (.)

Let z = � , then (.) becomes

z + pz + pz + p = , (.)

where p = l
 – l – m

, p = l
 – ll – m

 + mm, p = l
 – m

.
Denote

h(z) = z + pz + pz + p. (.)

Let K = ( q
 ) + ( r

 ), where r = p – 
 p

 , q = 
 p

 – 
 pp + p. There are three cases for the

solutions of Eq. (.).
(i) If K > , Eq. (.) has a real root and a pair of conjugate complex roots. The real

root is positive and is given by

ν = 

√

–
q


+
√

K + 

√

–
q


–
√

K –



p.
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(ii) If K = , Eq. (.) has three real roots, of which two are equal. In particular, if p > ,
there exists only one positive root, ν =  

√
– q

 – p
 ; if p < , there exists only one

positive root, ν =  
√

– q
 – p

 for 
√

– q
 > – p

 , and there exist three positive roots

for r
 < 

√
– q

 < – p
 , ν =  

√
– q

 – p
 , ν = ν = – 

√
– q

 – p
 .

(iii) If K < , there are three distinct real roots, ν = 
√

|p|
 cos ψ

 – p
 ,

ν = 
√

|p|
 cos( ψ

 + π
 ) – p

 , ν = 
√

|p|
 cos( ψ

 + π
 ) – p

 , where cosψ = – q


√

( |p|
 )

.

Furthermore, if p > , there exists only one positive root. Otherwise, if p < , there
may exist either one or three positive real roots. If there is only one positive real
root, it is equal to max(ν,ν,ν).

Obviously, the number of positive real roots of Eq. (.) depends on the sign of r. If
p ≥ , Eq. (.) has only one positive real root. Otherwise, there may exist three positive
roots. Without loss of generality, we assume that (.) has three positive roots, defined by
z, z, z, respectively. Then Eq. (.) has three positive roots

� =
√

z, � =
√

z, � =
√

z.

By (.), we have

cos�ς =
m�

(�  – l) – (l�
 – l)(m�

 – m)
(m – m� ) + (m� ) .

Thus, if we denote

ς
(j)
k =


�k

{

arccos

[
m�

(�  – l) – (l�
 – l)(m�

 – m)
(m – m� ) + (m� )

]

+ jπ
}

, (.)

where k = , , ; j = , , . . . , then ±i�k are a pair of purely imaginary roots of Eq. (.)
with ς

(j)
k . Define

ς = ς
()
k

= min
k∈{,,}

{
ς

()
k

}
. (.)

In view of [], we have the following result.

Lemma . If (H) and (H) hold, then all roots of (.) have a negative real part when
ς ∈ [,ς), and (.) admits a pair of purely imaginary roots ±�k when ς = ς

(j)
k (k = , , ;

j = , , , . . .).

Assume that λ(ς ) = α(ς ) + i� (ς ) is a root of (.) near ς = ς
(j)
k , and α(ς (j)

k ) = , and
� (ς (j)

k ) = �k . In view of (.), one has

[
dλ

dς

]–

=
(λ + lλ + l)eλς

λ(mλ + mλ + m)
+

mλ + m

λ(mλ + mλ + m)
–

ς

λ
. (.)

Noting that

[
λ
(
mλ

 + mλ + m
)]

ς=ς
(j)
k

= m�

k + i

(
m�


k – m�k

)
,

[mλ + m]
ς=ς

(j)
k

= m + im�k
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and

[(
λ + lλ + l

)
eλς

]

ς=ς
(j)
k

=
[(

l – � 
k
)

cos�kς
(j)
k – l�k sin�kς

(j)
k

]

+ i
[
l�k cos�kς

(j)
k –

(
l – � 

k
)

sin�kς
(j)
k

]
,

it follows from (.) that

[
d(Reλ(ς ))

dς

]–

ς=ς
(j)
k

= Re

{
(λ + lλ + l)eλς

λ(mλ + mλ + m)

}

ς=ς
(j)
k

+ Re

{
mλ + m

λ(mλ + mλ + m)

}

ς=ς
(j)
k

=




{
–m�


k
[(

l – � 
k
)

cos�kς
(j)
k – l�k sin�kς

(j)
k

]

+
(
m�k – m�


k
)[

l�k cos�kς
(j)
k +

(
l – � 

k
)

sin�kς
(j)
k

]

+ m
�


k + m�k

(
m�k – m�


k
)}

=




{(
l – � 

k
)
�k

[(
–m – m�


k
)

sin�kς
(j)
k – m�k cos�kς

(j)
k

]

+ l�

k
[(

m – m�

k
)

cos�kς
(j)
k + m�k sin�kς

(j)
k

]

+ m
�


k + m�k

(
m�k – m�


k
)}

=




[(
� 

k +
(
l

 – l + m

)
� 

k

+
(
l
 – ll + m

 + mm
)
� 

k
)]

=




(
� 

k + r�

k + r�


k
)

=




[
zk

(
z

k + rzk + r
)]

=
zk



h′(zk),

where 
 = (m�

k ) + (m�k – m�


k ) > . Thus we have

sign

{
d(Reλ(ς ))

dς

}

ς=ς
(j)
k

= sign

{
d(Reλ(ς ))

dς

}–

ς=ς
(j)
k

= sign

{
zk



h′(zk)

}

�= .

Since 
, zk > , we can conclude that the sign of [ d(Reλ(ς ))
dς

]
ς=ς

(j)
k

can be judged by that of
h′(zk). The analysis above leads to the following result.

Theorem . Assume that zk = ω
k and h′(zk) �= , where h(z) is defined by (.). Then

[
d(Reλ(ς ))

dτ

]

ς=ς
(j)
k

�= 

and the sign of [ d(Reλ(ς ))
dς

]
ς=ς

(j)
k

is consistent with that of h′(zk).

In the sequel, we give the following assumption:
(H) h′(zk) �= .

According to the above analysis and the results of Kuang [] and Hale [], we have the
following.



Lu and Li Advances in Difference Equations  (2017) 2017:173 Page 7 of 16

Theorem . Assume that (H) and (H) hold, then the equilibrium E(u∗
 , u∗

, –u∗
) of

system (.) is asymptotically stable for τ ∈ [, τ). Under conditions (H)-(H), system (.)
undergoes a Hopf bifurcation around the equilibrium E(u∗

 , u∗
, –u∗

) when ς = ς
(j)
k , k =

, , ; j = , , , . . . .

3 Direction and stability of the Hopf bifurcation
In this section, we consider the direction and stability of the Hopf bifurcation of (.) by
using normal form and center manifold theory [].

Let ū(t) = u(τ t), ū(t) = u(τ t), ū(t) = u(ς t) and ς = ς
(j)
k + μ, where ς

(j)
k is defined by

(.) and μ ∈ R, drop the bar for the simplification of notations, then system (.) can be
written as a functional differential equation in C = C([–, ]), R)) as

u̇(t) = Lμ(ut) + F(μ, ut), (.)

where u(t) = (u(t), u(t), u(t))T ∈ C and ut(θ ) = u(t + θ ) = (u(t + θ ), u(t + θ ), u(t + θ ))T ∈
C, and Lμ : C → R, F : R × C → R are given by

Lμφ =
(
ς

(j)
k + μ

)

⎛

⎜
⎝

u∗
 – a  

–u∗
  

–  –c

⎞

⎟
⎠

⎛

⎜
⎝

φ()
φ()
φ()

⎞

⎟
⎠

+
(
ς

(j)
k + μ

)

⎛

⎜
⎝

 u∗
 

 –b 
  

⎞

⎟
⎠

⎛

⎜
⎝

φ(–)
φ(–)
φ(–)

⎞

⎟
⎠ (.)

and

f (μ,φ) =
(
ς

(j)
k + μ

)

⎛

⎜
⎝

φ()φ(–)
–φ

 ()


⎞

⎟
⎠ , (.)

respectively, where φ(θ ) = (φ(θ ),φ(θ ),φ(θ ))T ∈ C.
By the representation theorem, there is a matrix function with bounded variation com-

ponents η(θ ,μ), θ ∈ [–, ] such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ) for φ ∈ C. (.)

In fact, we can choose

η(θ ,μ) =
(
ς

(j)
k + μ

)

⎛

⎜
⎝

u∗
 – a  

–u∗
  

–  –c

⎞

⎟
⎠ δ(θ )

–
(
ς

(j)
k + μ

)

⎛

⎜
⎝

 u∗
 

 –b 
  

⎞

⎟
⎠ δ(θ + ), (.)
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where δ is the Dirac delta function. For φ ∈ C([–, ], R), define

A(μ)φ =

{ dφ(θ )
dθ

, – ≤ θ < ,
∫ 

– dη(s,μ)φ(s), θ = 
(.)

and

Rφ =

{
, – ≤ θ < ,
f (μ,φ), θ = .

(.)

Then (.) is equivalent to

u̇t = A(μ)ut + R(μ)ut , (.)

where ut(θ ) = u(t + θ ), θ ∈ [–, ]. For ψ ∈ C([, ], (R)∗), define

A∗ψ(s) =

{
– dψ(s)

ds , s ∈ (, ],
∫ 

– dηT (t, )ψ(–t), s = .

For φ ∈ C([–, ], R) and ψ ∈ C([, ], (R)∗), define the bilinear form

〈ψ ,φ〉 = ψ()φ() –
∫ 

–

∫ θ

ξ=
ψT (ξ – θ ) dη(θ )φ(ξ ) dξ ,

where η(θ ) = η(θ , ), the A = A() and A∗ are adjoint operators. By a simple computation,
we can obtain

q(θ ) = (,α,β)T eiωkς
(j)
k θ , q∗(s) = D

(
,α∗,β∗)ei�kς

(j)
k s,

where

α =
i�k – u∗

 + a + 
u∗

 e–i�kςk (i�k + c)
, β = –


i�k + c

, α∗ =
u∗


b

, β∗ =


c – i�kςk
,

D =


 + ᾱα∗ + β̄β∗ + ᾱς
(j)
k (bβ∗ – u∗

 )ei�kς
(j)
k

.

Furthermore, 〈q∗(s), q(θ )〉 =  and 〈q∗(s), q̄(θ )〉 = . Next, we use the same notations as
those in Hassard et al. [], and we first compute the coordinates to describe the center
manifold C at μ = . Let ut be the solution of Eq. (.) when μ = . Define

z(t) = 〈q∗, ut〉, W (t, θ ) = ut(θ ) –  Re
{

z(t)q(θ )
}

(.)

on the center manifold C, and we have

W (t, θ ) = W
(
z(t), z̄(t), θ

)
, (.)

where

W
(
z(t), z̄(t), θ

)
= W (z, z̄) = W

z


+ Wzz̄ + W

z̄


+ · · · , (.)
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and z and z̄ are local coordinates for center manifold C in the direction of q∗ and q̄∗.
Noting that W is also real if ut is real, we consider only real solutions. For solutions ut ∈ C

of (.),

ż(t) = i�kτ
(j)
k z + q̄∗(θ )f

(
, W (z, z̄, θ ) +  Re

{
zq(θ )

}) def= i�kς
(j)
k z + q̄∗()f.

That is,

ż(t) = i�kς
(j)
k z + g(z, z̄),

where

g(z, z̄) = g
z


+ gzz̄ + g

z̄


+ g

zz̄


+ · · · .

Then we can obtain the expression of g, g, g and g. See Appendix. Then we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c() = i
�kς

(j)
k

(gg – |g| – |g|
 ) + g

 ,

μ = – Re{c()}
Re{λ′(ς (j)

k )} ,

β =  Re (c()),

T = – Im {c()}+μ Im{λ′(ς (j)
k )}

�kς
(j)
k

.

(.)

Theorem . If μ >  (μ < ), then the periodic solution is supercritical (subcritical); if
β <  (β > ), then the bifurcating periodic solutions are orbitally asymptotically stable
with asymptotical phase (unstable); if T >  (T < ), then the periods of the bifurcating
periodic solutions increase (decrease).

4 Numerical examples
Let us consider the following system:

⎧
⎪⎨

⎪⎩

u̇(t) = u(t) + [u(t – ς ) – .]u(t),
u̇(t) =  – .u(t – ς ) – u

 (t),
u̇(t) = –u(t) – u(t),

(.)

which has an equilibrium E(., ., –.) and satisfies the conditions indi-
cated in Theorem .. The equilibrium E(., ., –.) is asymptotically sta-
ble for ς = . Using the software Matlab, we derive � ≈ ., ς ≈ ., λ′(ς) ≈
. – .i. Thus by algorithm (.) derived in Section , we have c() ≈ –. –
.i, μ ≈ ., β ≈ –., T ≈ .. Furthermore, it follows that μ > 
and β < . Thus the equilibrium E(., ., –.) is stable when ς < ς.
Figure  shows that the equilibrium E(., ., –.) is asymptotically stable
when ς = . < ς ≈ .. When ς passes through the critical value ς, the equilibrium
E(., ., –.) loses its stability and a Hopf bifurcation occurs. In view of
μ >  and β < , we know that the direction of the Hopf bifurcation is ς > ς, and these
bifurcating periodic solutions from E(., ., –.) at ς are stable. Figure 
suggests that a Hopf bifurcation occurs from the equilibrium E(., ., –.)
when ς = . > ς ≈ ..
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Figure 1 Dynamics of (4.1) with ς = 0.09 < ς0 ≈ 0.1 and the initial value (0.5, 0.5, 0.1).

5 Conclusions
Recently, there has been an increasing activity and interest in the study of Hopf bifurca-
tions of the delayed differential equations. Most of them focused on the study of predator-
prey models and neural network systems [, , , –]. However, to the best of our
knowledge, there are few results on the properties of Hopf bifurcations for a finance model
of enterprise operation. In this paper, we have investigated the qualitative behaviors of a
delayed finance model of enterprise operation. The study shows that if under some condi-
tions, finance model (.) is asymptotically stable, when the delay ς increases and crosses
a threshold value ςk , the equilibrium loses its stability and the delayed finance system en-
ters into a Hopf bifurcation. Thus the time delay has important effect on the stability of a
finance model of enterprise operation. We also give the concrete expressions to judge the
properties of the bifurcating periodic solutions. Simulation results show that theoretical
analysis of this paper is correct. The obtained results are useful in applications of finance
control in enterprise operation. In the real process of economic operation of enterprise,
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Figure 1 Continued.

we can choose some suitable parameters and the delay of investment demand to keep the
investment demand, the interest and the price a balance.

Appendix
We give the computational process of g, g, g and g.

g(z, z̄) = q̄∗()f(z, z̄) = q̄∗()f (, ut) = τ
(j)
k D̄

(
, ᾱ∗, β̄∗)

⎛

⎜
⎝

ut()ut(–)
–u

t()


⎞

⎟
⎠

= D̄ς
(j)
k

(
αei�kς

(j)
k – ᾱ∗)z + D̄ς

(j)
k

[
 Re

{
αei�kς

(j)
k

}
– ᾱ∗]zz̄

+ D̄ς
(j)
k

(
ᾱei�kς

(j)
k – ᾱ∗)z̄ + D̄τ

(j)
k

[

W ()
 (–) +




W ()
 (–) + αW ()

 ()e–i�kς
(j)
k

+



W ()
 ()ᾱei�kς

(j)
k – ᾱ∗(W ()

 () + W ()
 ()

)
]

zz̄ + h.o.t.

Then

g = D̄ς
(j)
k

(
αei�kς

(j)
k – ᾱ∗),

g = D̄ς
(j)
k

[
Re

{
αei�kς

(j)
k

}
– ᾱ∗],

g = D̄ς
(j)
k

(
ᾱei�kς

(j)
k – ᾱ∗),
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Figure 2 Dynamics of (4.1) with ς = 0.11 > ς0 ≈ 0.1 and the initial value (0.5, 0.5, 0.1).

g = D̄ς
(j)
k

[

W ()
 (–) +




W ()
 (–) + αW ()

 ()e–i�kς
(j)
k

+



W ()
 ()ᾱei�kς

(j)
k – ᾱ∗(W ()

 () + W ()
 ()

)
]

.

We need to seek W (i)
(), W (i)

 (), W (i)
(–), W (i)

 (–) (i = , ) in g. By (.) and (.), we
have

W ′ =

{
AW –  Re {q̄∗()f̄ q(θ )}, – ≤ θ < ,
AW –  Re {q̄∗()f̄ q(θ )} + f̄ , θ = 

def= AW + H(z, z̄, θ ), (A.)

where

H(z, z̄, θ ) = H(θ )
z


+ H(θ )zz̄ + H(θ )

z̄


+ · · · . (A.)
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Figure 2 Continued.

Comparing the coefficients, we obtain

(
A – iς (j)

k �k
)
W = –H(θ ), (A.)

AW(θ ) = –H(θ ). (A.)

We know that for θ ∈ [–, ),

H(z, z̄, θ ) = –q̄∗()fq(θ ) – q∗()f̄q̄(θ ) = –g(z, z̄)q(θ ) – ḡ(z, z̄)q̄(θ ). (A.)

By (A.) and (A.), one has

H(θ ) = –gq(θ ) – ḡq̄(θ ), (A.)

H(θ ) = –gq(θ ) – ḡq̄(θ ). (A.)

From (A.), (A.) and the definition of A, we get

Ẇ(θ ) = i�kς
(j)
k W(θ ) + gq(θ ) + ḡq̄(θ ). (A.)

Noting that q(θ ) = q()ei�kς
(j)
k θ , we have

W(θ ) =
ig

�kς
(j)
k

q()ei�kς
(j)
k θ +

iḡ

�kς
(j)
k

q̄()e–i�kς
(j)
k θ + Gei�kς

(j)
k θ , (A.)
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where G = (G()
 , G()

 , G()
 )T ∈ R is a constant vector. In view of (A.), (A.) and the defi-

nition of A, we get

Ẇ(θ ) = gq(θ ) + ḡq̄(θ ), (A.)

W(θ ) = –
ig

�kς
(j)
k

q()ei�kς
(j)
k θ +

iḡ

�kς
(j)
k

q̄()e–i�kς
(j)
k θ + H, (A.)

where H = (H ()
 , H ()

 , H ()
 )T ∈ R is a constant vector. Now we shall compute H, H in

(A.), (A.), respectively. It follows from the definition of A and (A.), (A.) that

∫ 

–
dη(θ )W(θ ) = i�kς

(j)
k W() – H() (A.)

and

∫ 

–
dη(θ )W(θ ) = –H(), (A.)

where η(θ ) = η(, θ ). From (A), we have

H() = –gq() – ḡq̄() + ς
(j)
k

⎛

⎜
⎝

αei�kς
(j)
k

–


⎞

⎟
⎠ , (A.)

H() = –gq() – ḡ()q̄() + ς
(j)
k

⎛

⎜
⎝

Re{αei�kς
(j)
k }

–


⎞

⎟
⎠ . (A.)

Considering that

(

i�kς
(j)
k I –

∫ 

–
ei�kς

(j)
k θ dη(θ )

)

q() = ,

(

–i�kς
(j)
k I –

∫ 

–
e–i�kς

(j)
k θ dη(θ )

)

q̄() = 

and substituting (A.) and (A.) into (A.), we have

(

i�kς
(j)
k I –

∫ 

–
ei�kς

(j)
k θ dη(θ )

)

E = ς
(j)
k

⎛

⎜
⎝

αei�kς
(j)
k

–


⎞

⎟
⎠ .

That is,

⎛

⎜
⎜
⎝

i�k – u∗
 + a –u∗

 e–i�kς
(j)
k –

u∗
 i�k + be–i�kς

(j)
k 

  i�k + c

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

G()


G()


G()


⎞

⎟
⎟
⎠ = 

⎛

⎜
⎝

αei�kς
(j)
k

–


⎞

⎟
⎠ .
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It follows that

G()
 =

�

�
, G()

 =
�

�
, G()

 =
�

�
,

where

� =
(
i�k – u∗

 + a
)(

i�k + be–i�kς
(j)
k

)
(i�k + c)

+ i�k + be–i�kς
(j)
k + 

(
u∗


)(i�k + c)e–i�kς

(j)
k ,

� = 
(
i�k + be–i�kς

(j)
k

)
(i�k + c)αe–i�kς

(j)
k – (i�k + c)u∗

 e–i�kς
(j)
k ,

� = –
(
i�k – u∗

 + a
)
(i�k + c) – u∗

α(i�k + c)e–i�kς
(j)
k – ,

� = u∗
 e–i�kς

(j)
k – 

(
i�k + be–i�kς

(j)
k

)
αei�kς

(j)
k .

Similarly, by (A.), (A.) and (A.), we have

(∫ 

–
dη(θ )

)

E = ς
(j)
k

⎛

⎜
⎝

Re{αei�kς
(j)
k }

–


⎞

⎟
⎠ .

That is,

⎛

⎜
⎝

u – ∗ – a u∗
 

–u∗
 –b 

–  –c

⎞

⎟
⎠

⎛

⎜
⎜
⎝

H ()


H ()


H ()


⎞

⎟
⎟
⎠ = 

⎛

⎜
⎝

– Re{αei�kς
(j)
k }




⎞

⎟
⎠ .

It follows that

H ()
 =

bc Re{αei�kς
(j)
k } + cu∗


bcu∗

 – abc – c(u∗
 ) ,

H ()
 =

cu∗
 Re{αei�kς

(j)
k } – cu∗

 + ac
bcu∗

 – abc – c(u∗
 ) ,

H ()
 =

b Re{αei�kς
(j)
k } – cu∗


bcu∗

 – abc – c(u∗
 ) .
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