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Abstract
Using the theorem and properties of the fixed point index in a Banach space and
applying a new method to dispose of the impulsive term, we prove that there exists a
solvable interval of positive parameter λ in which the second order impulsive singular
equation has two infinite families of positive solutions. Moreover, we also establish
the new expression of Green’s function for the above equation. Noticing that λ > 0
and ck �= 0 (k = 1, 2, . . . ,n), our main results improve many previous results. This is
probably the first time that the existence of two infinite families of positive solutions
for second order impulsive singular parametric equations has been studied.
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1 Introduction
In this paper, we consider the existence of two infinite families of positive solutions for the
second impulsive singular parametric differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λx′′(t) + ω(t)f (t, x(t)) = , t ∈ J , t �= tk ,

x(t+
k ) – x(tk) = ckx(tk), k = , , . . . , n,

ax() – bx′() =
∫ 

 h(s)x(t) dt,

ax() + bx′() =
∫ 

 h(s)x(t) dt,

(.)

where λ >  is a positive parameter, J = [, ], tk ∈ R, k = , , . . . , n, n ∈ N satisfy  < t <
t < · · · < tk < · · · < tn < , a, b > , {ck} is a real sequence with ck > –, k = , , . . . , n, x(t+

k )
(k = , , . . . , n) represents the right-hand limit of x(t) at tk , ω ∈ Lp[, ] for some p ≥  and
and has infinitely many singularities in [, 

 ).
In addition, ω, f , h and ck satisfy the following conditions:

(H) ω(t) ∈ Lp[, ] for some p ∈ [, +∞), and there exists ξ >  such that ω(t) ≥ ξ a.e.
on J ;

(H) There exists a sequence {t′
i}∞i= such that t′

 < 
 , t′

i ↓ t∗ ≥  and limt→t′i ω(t) = +∞ for
all i = , , . . . ;
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(H) f (t, u) : J × [, +∞) → [, +∞) is continuous, {ck} is a real sequence with ck > –,
k = , , . . . , n, c(t) := �<tk <t( + ck);

(H) h ∈ C[, ] is nonnegative with μ ∈ [, ), where

μ =
∫ 


A(t)h(t)c(t) dt,

and

A(t) =
(a + b – at)c() + a + b

a(a + b)c()
. (.)

Remark . Throughout this paper, we always assume that a product c(t) := �<tk <t( + ck)
equals unity if the number of factors is equal to zero, and let

cM = max
t∈J

c(t), cm = min
t∈J

c(t), c–(t) =


c(t)
= �<tk <t( + ck)–, t ∈ J .

Remark . Combining (H), Remark . and the definition of c(t), we know that c(t) is a
step function bounded on J , and

c(t) > , ∀t ∈ J , c(t) = , ∀t ∈ [, t].

Remark . To make it clear for the reader what c(t) is, we give a special example of c(t),
e.g., letting k = , t = 

 , t = 
 , t = 

 , c = – 
 , c = – 

 , c = – 
 , we can get the graph of

c(t). For details, see Figure .

Such problems were first studied by Zhang and Feng []. By using the transformation
technique to deal with impulsive term of second impulsive differential equations, the au-
thors obtained the existence results of positive solutions by using fixed point theorems
in a cone. But they only gave the sufficient conditions for the existence of finite positive
solutions. In fact, there is almost no paper that considers the existence of infinitely many

Figure 1 Graph of function c(t) for k = 3.
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positive solutions for second order singular impulsive parametric equations; for details,
see [–].

For the case λ = , a = , b = , h(t) ≡  on t ∈ J and ck =  (k = , , . . . , n), problem
(.) reduces to the problem studied by Kaufmann and Kosmatov in []. By using Kras-
nosel’skĭı’s fixed point theorem and Hölder’s inequality, the authors showed the existence
of countably many positive solutions. The other related results can be found in [–].
However, there are almost no papers considering a second order impulsive parametric
equation with infinitely many singularities. To identify a few, we refer the reader to [–]
and the references therein.

The main reasons are that λ �=  and ck �=  (k = , , . . . , n) in problem (.). If λ �= , then
it is very difficult to be concerned with determining values of λ, for which there exist in-
finitely many positive solutions. On the other hand, if ck �=  (k = , , . . . , n), then there
exist singular points and impulsive points in the same problem, which leads to many dif-
ficulties in defining the interval [τi,  – τi], where t′

i+ ≤ τi ≤ t′
i . The goal of this paper is to

seek new methods to solve these difficulties and to give some new sufficient conditions to
guarantee that problem (.) has two infinite families of positive solutions.

2 Preliminaries
In this section, we collect some definitions and lemmas for the convenience of later use
and reference.

Definition . A function x(t) is said to be a solution of problem (.) on J if:
(i) x(t) is absolutely continuous on each interval (, t] and (tk , tk+], k = , , . . . , n;

(ii) for any k = , , . . . , n, x(t+
k ), x(t–

k ) exist and x(t–
k ) = x(tk);

(iii) x(t) satisfies (.).

We shall reduce problem (.) to a system without impulse. To this goal, firstly by means
of the transformation

x(t) = c(t)y(t), (.)

we convert problem (.) into

⎧
⎪⎪⎨

⎪⎪⎩

–λy′′(t) = c–(t)ω(t)f (t, c(t)y(t)), t ∈ J ,

ay() – by′() =
∫ 

 h(s)c(s)y(s) ds,

ac()y() + bc()y′() =
∫ 

 h(s)c(s)y(s) ds.

(.)

It follows from (.), (.) and (.) that we can obtain the following lemma.

Lemma . Assume that (H)-(H) hold. Then
(i) if y(t) is a solution of problem (.) on J , then x(t) = c(t)y(t) is a solution of problem

(.) on J ;
(ii) if x(t) is a solution of problem (.) on J , then y(t) = c–(t)x(t) is a solution of problem

(.) on J , where c–(t) is defined in Remark ..
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Lemma . If (H)-(H) hold, then problem (.) has a solution y, and y can be expressed
in the form

y(t) = λ–
∫ 


H(t, s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds, (.)

where

H(t, s) = G(t, s) +
A(t)
 – μ

∫ 


G(s, τ )c(τ )h(τ ) dτ , (.)

G(t, s) =

d

⎧
⎨

⎩

(b + as)(b + a( – t)),  ≤ s ≤ t ≤ ,

(b + at)(b + a( – s)),  ≤ t ≤ s ≤ ,
(.)

A(t) =
(a + b – at)c() + a + b

dc()
, d = a(a + b).

Proof First suppose that y is a solution of problem (.). It is easy to see by integration of
problem (.) that

y′(t) = y′() – λ–
∫ t


c–(s)ω(s)f

(
s, c(s)y(s)

)
ds, (.)

y(t) = y() + y′()t – λ–
∫ t


(t – s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds. (.)

Letting t =  in (.), (.), we find

y′() = y′() – λ–
∫ 


c–(s)ω(s)f

(
s, c(s)y(s)

)
ds,

y() = y() + y′() – λ–
∫ 


( – s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds.

(.)

Combining the boundary condition ay() – by′() =
∫ 

 h(s)c(s)y(s) ds, ac()y() + bc() ×
y′() =

∫ 
 h(s)c(s)y(s) ds and (.), we obtain

y′() =
aλ–

a + b

∫ 


( – s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+
bλ–

a + b

∫ 


c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+
 – c()

(a + b)c()

∫ 


h(s)c(s)y(s) ds, (.)

y() =
bλ–

a + b

∫ 


( – s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+
bλ–

a(a + b)

∫ 


c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+
b + (a + b)c()
a(a + b)c()

∫ 


h(s)c(s)y(s) ds. (.)
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Substituting (.), (.) into (.) and letting

A(t) =
(a + b – at)c() + a + b

a(a + b)c()
, μ =

∫ 


A(t)h(t)c(t) dt,

we have

y(t) = λ–
∫ 


G(t, s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds + A(t)

∫ 


h(s)c(s)y(s) ds,

∫ 


h(s)c(s)y(s) ds

=
λ–

 – μ

∫ 


h(s)c(s)

(∫ 


G(τ , s)c–(τ )ω(τ )f

(
τ , c(τ )y(τ )

)
dτ

)

ds.

(.)

Therefore, we have

y(t) = λ–
∫ 


G(t, s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+
λ–A(t)
 – μ

∫ 


h(s)c(s)

(∫ 


G(τ , s)c–(τ )ω(τ )f

(
τ , c(τ )y(τ )

)
dτ

)

ds

= λ–
∫ 


G(t, s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds

+ λ–
∫ 



(
A(t)
 – μ

∫ 


G(τ , s)c(τ )h(τ ) dτ

)

c–(s)ω(s)f
(
s, c(s)y(s)

)
ds. (.)

Let

H(t, s) = G(t, s) +
A(t)
 – μ

∫ 


G(τ , s)c(τ )h(τ ) dτ , (.)

then

y(t) = λ–
∫ 


H(t, s)c–(s)ω(s)f

(
s, c(s)y(s)

)
ds. (.)

The proof of the lemma is complete. �

Lemma . Let θ ∈ (, 
 ) and θi be defined in (.). Noticing that a, b > , it follows from

(.) and (.) that

 < α ≤ G(t, s) ≤ G(s, s) ≤ β, H(t, s) ≤ DG(s, s) ≤ Dβ = β , ∀t, s ∈ J , (.)

G(t, s) ≥ δG(s, s), H(t, s) ≥ δG(s, s), ∀t ∈ [θ ,  – θ ], s ∈ J , (.)

G(t, s) ≥ α∗
i , H(t, s) ≥ αi, ∀t ∈ [θi,  – θi], s ∈ J , (.)

where

β =
a + b

a
, α =

b

d
, α∗

i =
b(b + aθi)

d
,

αi = α∗
i Di, β = Dβ, δ =

b + aθ

b + a
,

(.)
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and

Di =
 – μ + Ai

∫ –θi
θi

c(τ )h(τ ) dτ

 – μ
, D =

 – μ + AM
∫ 

 c(τ )h(τ ) dτ

 – μ
,

AM = max
t∈J

A(t), Ai =
(a + b – aθi)c() + a + b

dc()
.

Proof It is obvious that (.) and (.) hold by the definition of G(t, s) and H(t, s).
Next, we show that (.) holds for t ∈ [θi,  – θi], s ∈ J . In fact, if s ≤ t, it follows from

(.) that

G(t, s) ≥ 
d

(b + as)(b + aθi) =
b(b + aθi)

d
.

Similarly, we can prove that G(t, s) ≥ b(b+aθi)
d , ∀ ≤ t ≤ s ≤ .

Therefore,

G(t, s) ≥ α∗
i , ∀t ∈ [θi,  – θi], s ∈ J .

And then, by (.), for t ∈ [θi,  – θi], s ∈ J , we have

H(t, s) = G(t, s) +
A(t)
 – μ

∫ 


G(s, τ )c(τ )g(τ ) dτ

≥ α∗
i +

Ai

 – μ

∫ 


G(s, τ )c(τ )g(τ ) dτ

≥ α∗
i +

Ai

 – μ

∫ –θi

θi

G(s, τ )c(τ )g(τ ) dτ

≥ α∗
i +

Aiα
∗
i

 – μ

∫ –θi

θi

c(τ )g(τ ) dτ

= α∗
i Di.

So,

H(t, s) ≥ αi, ∀t ∈ [θi,  – θi], s ∈ J .

The proof is complete. �

Lemma . (see []) Let E be a real Banach space and K be a cone in E. For r > , define
Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx �= x
for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = .
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = .

Lemma . (Hölder) Let e ∈ Lp[a, b] with p > , h ∈ Lq[a, b] with q > , and 
p + 

q = . Then
eh ∈ L[a, b] and

‖eh‖ ≤ ‖e‖p‖h‖q.
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Let e ∈ L[a, b], h ∈ L∞[a, b]. Then eh ∈ L[a, b] and

‖eh‖ ≤ ‖e‖‖h‖∞.

3 The existence of two infinite families of positive solutions
In this part, applying the well-known fixed point index theory in a cone, we get the op-
timal interval of parameter λ in which problem (.) has two infinite families of positive
solutions. We remark that our methods are entirely different from those used in [–].

Let E = C[, ]. Then E is a real Banach space with the norm ‖ · ‖ defined by

‖y‖ = max
t∈J

∣
∣y(t)

∣
∣, y ∈ E.

Define a cone K in E by

K =
{

y ∈ E : y(t) ≥ , t ∈ J , min
t∈[θ ,–θ ]

y(t) ≥ δD‖y‖, t ∈ J
}

, (.)

where δD = δ
D .

Remark . It follows from the definition of δ and D that  < δD < .

Define Tλ : K → K by

(Tλy)(t) =

λ

∫ 


H(t, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds. (.)

Theorem . Assume that (H)-(H) hold. Then Tλ(K) ⊂ K and Tλ : K → K is completely
continuous.

Proof For y ∈ K , it follows from (.) and (.) that

(Tλy)(t) =

λ

∫ 


H(t, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≤ 
λ

D
∫ 


G(s, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds, t ∈ J . (.)

It follows from (.), (.) and (.) that

min
t∈[θ ,–θ ]

(Tλy)(t) =

λ

min
t∈[θ ,–θ ]

∫ 


H(t, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≥ 
λ

δ

∫ 


G(s, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≥ 
λ

δ

D
D

∫ 


G(s, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≥ δD‖Tλy‖.

Next, by similar arguments of Theorem  in [] one can prove that Tλ : K → K is com-
pletely continuous. So it is omitted, and the theorem is proved. �
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Remark . From (.), we know that y ∈ E is a solution of problem (.) if and only if y
is a fixed point of operator Tλ.

Let {θi}∞i= be such that t′
i+ < θi < t′

i , i = , , . . . . Then, for any i ∈ N, we define the cone
Kθi by

Kθi =
{

y ∈ E : y(t) ≥ , t ∈ J , min
t∈[θi ,–θi]

y(t) ≥ δiD‖y‖, t ∈ J
}

, (.)

where

δiD =
δi

D
, δi =

b + aθi

a + b
, i = , , . . . . (.)

Remark . Assume that (H)-(H) hold. Then Tλ(Kθi ) ⊂ Kθi and Tλ : Kθi → Kθi is com-
pletely continuous.

Next, using Lemmas .-., we give our main results under the case ω ∈ LP[, ]; p > ,
p =  and p = ∞.

For convenience, we write

f ρ
δDρ = min

{

min
t∈[θ ,–θ ]

f (t, y)
ρ

: y ∈ [δDρ,ρ]
}

, f ρ
 = max

{

max
t∈J

f (t, y)
ρ

: y ∈ [,ρ]
}

,

Kρθi = {y ∈ Kθi : ‖y‖ < ρ}, ρ > .

Firstly, we consider the case p > .

Theorem . Assume that (H)-(H) hold. Let {ri}∞i=, {γi}∞i= and {Ri}∞i= be such that

Ri+ < δiDri < ri < cmδiDγi < cMγi < Ri, i = , , . . . .

For each natural number i, let f satisfy the following conditions:

(H) f cMri
 ≤ l and f cMRi

 ≤ l, where

 < l ≤ max

{
λcm

cM‖G‖q‖ω‖p
,

λcm

cM‖G‖‖ω‖∞
,

λcm

cMβ‖ω‖

}

; (.)

(H) f cMγi
cmδiDγi

≥ η, where η > .

Then there exists τ >  such that, for  < λ < τ , problem (.) has two infinite families of
positive solutions x()

iλ (t), x()
iλ (t) and maxt∈J x()

iλ (t) > cmδiDγi, i = , , . . . .

Proof Let τ = inf{τi}, τi = αic–
m ξη( – θi)γ –

i , i = , , . . . . Then, for  < λ < τ , (.) and
Theorem . imply that Tλ : K → K is completely continuous.

Let t ∈ J , y ∈ ∂Kriθi . Then  ≤ c(t)y(t) ≤ cMri. Therefore, for t ∈ J , y ∈ ∂Kriθi , it follows
from f cMri

 ≤ l that

(Tλy)(t) =

λ

∫ 


H(t, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≤ 
λ

c–
m

∫ 


H(s, s)ω(s)f

(
s, c(s)y(s)

)
ds
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≤ 
λ

c–
m ‖H‖q‖ω‖plcMri

≤ 


ri < ri. (.)

Consequently, for y ∈ ∂Kriθi , we have ‖Tλy‖ < ‖y‖, i.e., by Lemma .,

i(Tλ, Kriθi , Kθi ) = . (.)

Similarly, for y ∈ ∂KRiθi , we have ‖Tλy‖ < ‖y‖, and then it follows from Lemma . that

i(Tλ, KRiθi , Kθi ) = . (.)

On the other hand, let

y ∈ K̄γi
δiDγiθi

=
{

y ∈ Kθi : ‖y‖ ≤ γi, min
t∈[θi ,–θi]

y(t) ≥ δiDγi

}
,

then  ≤ c(t)y(t) ≤ cM‖y‖ ≤ cMγi. And hence, it follows from (.) and (.) that

‖Tλy‖ ≤ 
λ

c–
m ‖H‖q‖ω‖plcMγi < γi. (.)

Furthermore, for y ∈ K̄γi
δiDγiθi

, we have c(t)y(t) ≤ cMγi, t ∈ J , mint∈[θiD ,–θi] c(t)y(t) ≥
cmδiDγi, and then

min
t∈[θi ,–θi]

(Tλy)(t) = min
t∈[θi ,–θi]


λ

∫ 


H(t, s)ω(s)c–(s)f

(
s, c(s)y(s)

)
ds

≥ 
λ

αic–
m ξ

∫ 


f
(
s, c(s)y(s)

)
ds

≥ 
λ

αic–
m ξ

∫ –θi

θi

f
(
s, c(s)y(s)

)
ds

≥ 
λ

αic–
m ξ ( – θi)η

>

τ

αic–
m ξ ( – θi)η

= γi. (.)

Let y ≡ δiDγi+γi
 and F(t, y) = ( – t)Tλy + ty, then F : J × K̄γi

δiDγiθi
→ Kθi is completely

continuous. From the analysis above, we obtain for (t, y) ∈ J × K̄γi
δiDγiθi

,

F(t, y) ∈ Kγi
δiDγiθi

. (.)

Therefore, for t ∈ J , y ∈ ∂Kγi
δiDγiθi

, we have F(t, y) �= y. Hence, by the normality property
and the homotopy invariance property of the fixed point index, we obtain

i
(
Tλ, Kγi

δiDγiθi
, Kθi

)
= i

(
x, Kγi

δiDγiθi
, Kθi

)
= . (.)
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Consequently, by the solution property of the fixed point index, Tλ has a fixed point y()
iλ

and y()
iλ ∈ Kγi

δiDγiθi
. By Lemma . and Remark ., it follows that y()

iλ is a solution to problem
(.), and

max
t∈J

y()
iλ (t) ≥ min

t∈[θi ,–θi]
y()

iλ (t) > δiDγi.

Therefore, it follows from Lemma . that problem (.) has a solution x()
iλ (t) = c(t)y()

iλ (t)
with

max
t∈J

x()
iλ (t) = max

t∈J
c(t)y()

iλ (t) ≥ min
t∈[θi ,–θi]

c(t)y()
iλ (t) > cmδiDγi.

On the other hand, from (.), (.) and (.) together with the additivity of the fixed
point index, we get

i
(
Tλ, KRiθi\

(
K̄riθi ∪ K̄γi

δiDγiθi

)
, Kθi

)

= i(Tλ, KRiθi , Kθi ) – i
(
Tλ, Kγi

δiDγiθi
, Kθi

)
– i(Tλ, Kriθi , Kθi )

=  –  –  = –. (.)

Hence, by the solution property of the fixed point index, Tλ has a fixed point y()
iλ and

y()
iλ ∈ KRi\(K̄ri ∪ K̄γi

δiDγiθi
). By Lemma . and Remark ., it follows that y()

iλ is also a solution
to problem (.), and y()

iλ �= y()
iλ . And then, by Lemma ., we have problem (.) has another

solution x()
iλ (t) = c(t)y()

iλ (t). Since i ∈ N was arbitrary, the proof is complete. �

The following results deal with the case p = ∞.

Theorem . Assume that (H)-(H) hold. Let {ri}∞i=, {γi}∞i= and {Ri}∞i= be such that

Ri+ < δiDri < ri < cmδiDγi < cMγi < Ri, i = , , . . . .

For each natural number i, letf satisfy (H) and (H), then there exists τ >  such that,
for  < λ < τ , problem (.) has two infinite families of positive solutions x()

iλ (t), x()
iλ (t) and

maxt∈J x()
iλ (t) > cmδiDγi, i = , , . . . .

Proof Let ‖G‖‖ω‖∞ replace ‖G‖q‖ω‖p and repeat the previous argument. �

Finally, we consider the case of p = .

Theorem . Assume that (H)-(H) hold. Let {ri}∞i=, {γi}∞i= and {Ri}∞i= be such that

Ri+ < δiDri < ri < cmδiDγi < cMγi < Ri, i = , , . . . .

For each natural number i, let f satisfy (H) and (H), then there exists τ >  such that,
for  < λ < τ , problem (.) has two infinite families of positive solutions x()

iλ (t), x()
iλ (t) and

maxt∈J x()
iλ (t) > cmδiDγi, i = , , . . . .

Proof Let β‖ω‖ replace ‖G‖q‖ω‖p and repeat the previous argument. �
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Remark . Comparing with Kaufmann and Kosmatov [], the main features of this paper
are as follows.

(i) The solvable intervals of positive parameter λ are available.
(ii) Two infinite families of positive solutions are obtained.

(iii) ck > –, k = , , . . . , n, not only ck ≡ .

4 Examples
From Section , it is not difficult to see that (H) and (H) play an important role in the
proof that problem (.) has two infinite families of positive solutions. So, we firstly provide
an example of families of functions ω(t) satisfying conditions (H) and (H). And then we
consider a boundary value problem associated with problem (.).

Example . We will check that there exists a function ω(t) satisfying conditions (H) and
(H).

Let

t′
n =




–



n∑

i=


i , n = , , . . . .

It is easy to know

t′
 =




–



=



<




, t′
n – t′

n+ =


(n + ) , n = , , . . . ,

and from
∑∞

n=


n = π

 , there is

t′
 = lim

n→∞ t′
n =




–



∞∑

n=


n =




–



· π


=




–
π


>




.

Consider the function

ω(t) =
∞∑

n=

ωn(t), t ∈ J ,

where

ωn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩


(n–)(n+)(t′n+t′n+) , t ∈ [, t′n+t′n+

 ),
√
t′n–t

, t ∈ [ t′n+t′n+
 , t′

n),

√
t–t′n

, t ∈ [t′
n, t′n+t′n–

 ],


(n–)(n+)(–t′n–t′n–) , t ∈ ( t′n+t′n–

 , ].

From
∑∞

n=


(n–)(n+) = 
 and

∑∞
n=


n = π

 , we have

∞∑

n=

∫ 


ωn(t) dt =

∞∑

n=

{∫ (t′n+t′n+)/




(n – )(n + )(t′

n + t′
n+)

dt

+
∫ 

(t′n–+t′n)/


(n – )(n + )( – t′

n – t′
n–)

dt
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+
∫ tn

(t′n+t′n+)/


√

t′
n – t

dt +
∫ (t′n–+t′n)/

tn


√

t – t′
n

dt
}

=
∞∑

n=


(n – )(n + )

+
√




∞∑

n=

(√(
t′
n – t′

n+
)

+
√(

t′
n– – t′

n
))

=



+

√



∞∑

n=

(


(n + ) +


n

)

=



+

√



(
π


– 

)

.

Thus, it is easy to see

∫ 


ω(t) dt =

∫ 



∞∑

n=

ωn(t) dt =
∞∑

n=

∫ 


ωn(t) dt =




+
√




(
π


– 

)

< ∞,

which shows that ω(t) ∈ L[, ].
On the other hand, a simple calculation shows that ω(t) =

∑∞
n= ωn(t) ≥ ξ = 

 × 
 . So

ω satisfies conditions (H) and (H).

Example . Let ω(t) be defined as in Example .. Consider the following boundary
value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λx′′(t) + ω(t)f (t, x(t)) = , t ∈ J , t �= 
 ,

x( 


+) – x( 
 ) = 

 x( 
 ),

x() – x′() =
∫ 

 sx(s) ds,

x() + x′() =
∫ 

 sx(s) ds.

(.)

Let c = t = 
 , h(t) = 

 t, a = 
 , b = 

 . Then d = 
 , and

c(t) =

⎧
⎨

⎩

,  ≤ t ≤ 
 ,


 , 

 ≤ t ≤ ,

and then cM = 
 , cm = , c() = 

 .
Similarly, a simple calculation shows that A(t) = 

 – t, AM = 
 , D = 

 , β = 
 , δi = +θi

 ,
δiD = (+θi)

 , i = , , . . . , and

μ =
∫ 


A(t)h(t)c(t) dt

=




[∫ 




(



– t
)

t dt +



∫ 




(



– t
)

t dt
]

=



,

H(t, s) = G(t, s) +
( – t)



∫ 


G(s, τ )c(τ ) dτ ,
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G(t, s) =



⎧
⎨

⎩

( + s)( – t),  ≤ s ≤ t ≤ ,

( + t)( – s),  ≤ t ≤ s ≤ .

Now we consider the multiplicity of positive solutions for problem (.).
Let f (t, x) = 

‖ω‖β
(t + )x. It follows from the definitions of ω(t), f (t, x), c(t) and h(t) that

conditions (H)-(H) hold. Hence, we only verify the other conditions of our main results.
Let θi = 

 – 
(i+) . Then θi ∈ (, 

 ). For Ri = 
i , γi = 

×i and ri = 
×i , i = , , . . . ,

we have


i+ <

δiD

 × i <


 × i <



 × i <
δiD

 × i <


i .

By a direct calculation, we have

f (t, x) =


‖ω‖β
(t + )x

≤ 
‖ω‖β

× 


ri

=


‖ω‖β ×  × i

<


‖ω‖β × i = l, ∀t ∈ J , x ∈
[

,



ri

]

.

Similarly, for any t ∈ J , x ∈ [, 
 Ri], we have f (t, x) ≤ 

‖ω‖β×i < l, and

f (t, x) =


‖ω‖β
(t + )x

≥  + θi

‖ω‖β
× δiDγi

≥ 
‖ω‖β

× 



 × i

>


‖ω‖β
× 




 × i

=


,‖ω‖β
× 

i = η, ∀t ∈ [θi,  – θi], x ∈
[

δiDγi,


γi

]

.

Hence, by Theorem ., problem (.) has two infinite families of positive solutions
x()

iλ (t) and x()
iλ (t) for  < λ < τ = inf{αiξη( – θi)γ –

i }, i = , , . . . .
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