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Abstract
A delayed SEIQRS-V model with quarantine describing the dynamics of worm
propagation is considered in the present paper. Local stability of the endemic
equilibrium is addressed and the existence of a Hopf bifurcation at the endemic
equilibrium is established by analyzing the corresponding characteristic equation. By
means of the normal form theory and the center manifold theorem, properties of the
Hopf bifurcation at the endemic equilibrium are investigated. Finally, numerical
simulations are also given to support our theoretical conclusions.
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1 Introduction
A computer worm is a self-contained program that can spread functional copies of it-
self or its segments to other systems without depending on another program to host its
code [, ]. With the development of information technology and the increase of network
complexity, the problem of computer worms has become the focus with its tremendous
destruction. So, it is of considerable interest to understand the law governing spread of the
worms in a network. Enlightened by the fact that propagation of the worms in a network
could be compared with infectious diseases in a population, many mathematical models
have been established to predict the spread of worms [–].

The quarantine strategy is an effective method on controlling disease. Inspired of this,
many researchers introduce the quarantine strategy into mathematical models to inves-
tigate the spread of the worms in a network [–]. In order to describe the dynamics of
worm propagation in a network, Kumar et al. proposed the following SEIQRS-V model in
[]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – dS(t) – ρS(t) + θR(t) + χV (t),

dE(t)
dt = βS(t)I(t) – dE(t) – γ E(t),

dI(t)
dt = γ E(t) – dI(t) – αI(t) – δI(t) – ηI(t),

dQ(t)
dt = δI(t) – dQ(t) – αQ(t) – εQ(t),

dR(t)
dt = εQ(t) – dR(t) – θR(t) + ηI(t),

dV (t)
dt = ρS(t) – dV (t) – χV (t),

()
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where S(t), E(t), I(t), Q(t), R(t) and V (t) are the numbers of the uninfected computers
which have no immunity, the exposed computers which are susceptible to infection, the in-
fected computers which have to be cured, the infected computers which are quarantined,
the uninfected computers which have temporary immunity and the vaccinated computers
which have susceptibility to infection at time t, respectively. A is the rate at which the new
computers are attached to the network; d is the natural death rate of the computers in the
network; α is the death rate of computers in the network due to the attack of the worms;
β , γ , δ, η, ε, θ , ρ and χ are the state transition rates of system ().

Clearly, system () neglects the delays during the propagation process of the worms
in the network. It is well known that delays of one type or another have been incorpo-
rated into worm propagation models due to latent period, temporary immunization pe-
riod or other reasons. Worm propagation models with delay have been investigated by
some scholars at home or broad in recent years [–]. Delays can play a complicated role
in the dynamics of the dynamical models, especially they can cause Hopf bifurcation in
the predator-prey models [–], epidemic models [–] and economic models [–
]. For worm propagation models, the occurrence of a Hopf bifurcation means that the
state of the worm propagation changes from an equilibrium to a limit cycle and this phe-
nomenon makes the propagation of worms out of control. Therefore, it is of substantial
importance to investigate the effect of delays on the worm propagation models. Based on
this and considering the fact that one of the typical features of worms is its latent charac-
teristic, we incorporate the latent period delay into system () and get the following worm
propagation model with quarantine strategy and time delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – dS(t) – ρS(t) + θR(t) + χV (t),

dE(t)
dt = βS(t)I(t) – dE(t) – γ E(t – τ ),

dI(t)
dt = γ E(t – τ ) – dI(t) – αI(t) – δI(t) – ηI(t),

dQ(t)
dt = δI(t) – dQ(t) – αQ(t) – εQ(t),

dR(t)
dt = εQ(t) – dR(t) – θR(t) + ηI(t),

dV (t)
dt = ρS(t) – dV (t) – χV (t),

()

where τ is the latent period delay.
The rest of the present paper is organized as follows. In Section , we analyze the local

stability of the endemic equilibrium and the threshold of a Hopf bifurcation. Section  is
devoted to the explicit formulas determining direction of the Hopf bifurcation and stability
of the bifurcating periodic solutions. In Section , a simulation example is presented and
the simulation results match well with our obtained theoretical results. Finally, Section 
draws the conclusions.

2 Analysis of Hopf bifurcation
By a direct computation, we can know that if AR(d + χ ) > d + (ρ + χ )d and β(d +
θ )(d + α + ε) > Rθεδ + Rθη(d + α + ε), then system () has a unique endemic equilib-
rium P∗(S∗, E∗, I∗, Q∗, R∗, V∗), where

S∗ =
(d + γ )(d + α + δ + η)

βγ
=


R

, E∗ =
d + α + δ + η

γ
I∗,
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R∗ =
εδ + η(d + α + ε)
(d + θ )(d + α + ε)

I∗, V∗ =
ρ

(d + χ )R
,

Q∗ =
δ

d + α + ε
I∗, I∗ =

(d + θ )(d + α + ε)[d + (ρ + χ )d – AR(d + χ )]
(d + χ )[Rθεδ + (d + α + ε)(Rθη – βd – βθ )]

,

R =
βγ

(d + γ )(d + α + δ + η)
.

The linearized system of system () at P∗(S∗, E∗, I∗, Q∗, R∗, V∗) can be given by

dS(t)
dt

= aS(t) + aI(t) + aR(t) + aV (t),

dE(t)
dt

= aS(t) + aE(t) + aI(t) + bE(t – τ ),

dI(t)
dt

= aI(t) + bE(t – τ ),

dQ(t)
dt

= aI(t) + a dQ(t),

dR(t)
dt

= aI(t) + aQ(t) + aR(t),

dV (t)
dt

= aS(t) + aV (t).

()

The characteristic equation for system () is

λ + rλ
 + rλ

 + rλ
 + rλ

 + rλ + r

+
(
sλ

 + sλ
 + sλ

 + sλ
 + sλ + s

)
e–λτ = , ()

where

r = aaaa(aa – aa),

r = aa
[
aa(a + a) + aa(a + a)

]

– aaaa(a + a)

– aa
[
aa(a + a) + aa(a + a)

]
,

r = (a + a)
[
aa(a + a) + aa(a + a)

]

+ aa
[
aa + aa + (a + a)(a + a)

]

– aa
[
aa + aa + (a + a)(a + a)

]

+ aaaa,

r = aa(a + a + a + a) – aa(a + a + a + a)

–
[
aa(a + a) + aa(a + a)

]

– (a + a)
[
aa + aa + (a + a)(a + a)

]
,

r = aa + aa + aa – aa – (a + a)(a + a)

× (a + a)(a + a + a + a),
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r = –(a + a + a + a + a + a),

s = aaaab(a – a) + aaab(aa – aa)

+ aaaa(ab – ab),

s = ab
[
aa(a + a) + aa(a + a)

]

+ aaab(a + a) – aab
[
aa + a(a + a)

]

– aaaab – aaab(a + a)

+ aab
[
aa + a(a + a)

]
– aaaab

– ab
[
aa(a + a) + aa(a + a)

]
,

s = aaab + aab(a + a + a)

+ aab(a + a + a) – aaab

– ab
[
aa + aa + (a + a)(a + a)

]

+ ab
[
aa + aa + (a + a)(a + a)

]

+ b
[
aa(a + a) + aa(a + a)

]
,

s = ab(a + a + a + a) + aab – aab

– b
[
aa + aa + (a + a)(a + a)

]

– ab(a + a + a + a),

s = b(a + a + a + a + a) – ab, s = –b.

When τ = , equation () becomes

λ + rλ
 + rλ

 + rλ
 + rλ

 + rλ + r = , ()

with

r = r + s, r = r + s, r = r + s,

r = r + s, r = r + s, r = r + s.

Obviously, D = r > . Therefore, a set of sufficient conditions for all roots of equation
() to have a negative real part is given by the Routh-Hurwitz criteria in the following form:

D = det

(
r 
r r

)

> , ()

D = det

⎛

⎜
⎝

r  
r r r

r r r

⎞

⎟
⎠ > , ()

D = det

⎛

⎜
⎜
⎜
⎝

r   
r r r 
r r r r

 r r r

⎞

⎟
⎟
⎟
⎠

> , ()
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D = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

r    
r r r  
r r r r r

 r r r r

   r r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

> , ()

D = r > . ()

Assume that λ = iω(ω > ) is a solution of equation (). Then one can obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(sω
 – sω

 + sω) sin τω + (sω
 – sω

 + s) cos τω

= ω – rω
 + rω

 – r,

(sω
 – sω

 + sω) cos τω – (sω
 – sω

 + s) sin τω

= rω
 – rω

 – rω,

()

from which it follows that

ω + pω
 + pω

 + pω
 + pω

 + pω
 + p = , ()

where

p = r
 – s

, p = r
 – rr – s

 + ss,

p = r
 + rr – rr + ss – s

 – ss,

p = r
 + rr – r – rr – s

 – ss + ss,

p = r
 + r – rr + ss – s

, p = r
 – s

 – r.

If all the coefficients of system () are given, we can solve equation () by Matlab soft-
ware package easily. So, we make the following assumption.

(H) equation () has at least one positive root.

If the condition (H) holds, then there exists ω >  such that equation () has a pair of
purely imaginary roots ±iω. For ω, one can obtain

τ =


ω
× arccos

{
F(ω)
F(ω)

}

, ()

where

F(ω) = (s – sr)ω
 + (sr + sr – sr – s)ω



+ (sr + sr – sr – sr – sr + s)ω


+ (sr + sr – sr – sr – sr)ω


+ (sr + sr + sr)ω
 – sr,

F(ω) = sω

 +

(
s

 – ss
)
ω

 +
(
s

 + ss – ss
)
ω



+
(
s

 + ss – ss
)
ω

 +
(
s

 – ss
)
ω

 + s
.
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For equation (), by direct computation we have

dλ

dτ
=

G(λ)
H(λ)

, ()

where

G(λ) = λ
(
sλ

 + sλ
 + sλ

 + sλ
 + sλ + s

)
e–λτ ,

H(λ) = λ + rλ
 + rλ

 + rλ
 + rλ + r

+
(
sλ

 + sλ
 + sλ

 + sλ + s
)
e–λτ

– τ
(
sλ

 + sλ
 + sλ

 + sλ
 + sλ + s

)
e–λτ .

Then we obtain

[
dλ

dτ

]–

= –
λ + rλ

 + rλ
 + rλ

 + rλ + r

λ(λ + rλ + rλ + rλ + rλ + rλ + r)

+
sλ

 + sλ
 + sλ

 + sλ + s

λ(sλ + sλ + sλ + sλ + sλ + s)
–

τ

λ
. ()

Thus,

Re

[
dλ

dτ

]–

τ=τ

=
f ′(v∗)

(sω

 – sω


 + sω) + (sω


 – s – ω

 + s)
, ()

with f (v) = v + pv + pv + pv + pv + pv + p and v∗ = ω
.

Therefore, if we have the condition (H): f ′(v∗) �= , then Re[dλ/dτ ]–
τ=τ �= . Accord-

ing to the discussion above and the Hopf bifurcation theorem in [], we can obtain the
following.

Theorem  For system (), if the conditions (H)-(H) hold, then the endemic equilibrium
P∗(S∗, E∗, I∗, Q∗, R∗, V∗) is asymptotically stable for τ ∈ [, τ); a Hopf bifurcation occurs
at the endemic equilibrium P∗(S∗, E∗, I∗, Q∗, R∗, V∗) when τ = τ and a family of periodic
solutions bifurcate from the endemic equilibrium P∗(S∗, E∗, I∗, Q∗, R∗, V∗) near τ = τ.

3 Direction and stability of the Hopf bifurcation
Motivated by the ideas of Hassard et al. [], in this section, we will derive the explicit
formulas that determine the direction and stability of the Hopf bifurcation at the critical
value τ. For the sake of simplicity, let τ = τ +μ, μ ∈ R. Then μ =  is the Hopf bifurcation
value for system (). Setting u(t) = S(t)–S∗, u(t) = E(t)–E∗, u(t) = I(t)– I∗, u(t) = Q(t)–
Q∗, u(t) = R(t) – R∗, u(t) = V (t) – V∗ and t → (t/τ ). Then system () can be transformed
into functional differential equations in C = C([–, ], R):

u̇(t) = Lμut + f (μ, ut), ()

with

Lμφ = (τ + μ)
(
Bφ() + Bφ(–)

)
,
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f (μ,φ) = (τ + μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–βφ()φ()
βφ()φ()






⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a  a  a a

a a a   
  a   
  a a  
  a a a 

a     a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

     
 b    
 b    
     
     
     

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Based on the Riesz representation theorem, there exists a bounded variation function
η(θ ,μ) for θ ∈ [–, ] such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C. ()

In fact, we choose

η(θ ,μ) = (τ + μ)
(
Bδ(θ ) + Bδ(θ + )

)
,

where δ(θ ) is the Dirac delta function. Next, for φ ∈ C, we define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, – ≤ θ < ,
∫ 

– dη(θ ,μ)φ(θ ), θ = ,

and

R(μ)φ =

⎧
⎨

⎩

, – ≤ θ < ,

F(μ,φ), θ = .

Then system () can be transformed into

u̇(t) = A(μ)ut + R(μ)ut , ()

where ut = u(t + θ ).
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In order to construct the coordinates describing the center manifold near μ = , we have
to define an inner product and the adjoint operator A∗ of A(). Letting C∗ = C([, ], R),
for ϕ ∈ C∗, A∗ is defined by

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds ,  < s ≤ ,

∫ 
– dηT (s, )ϕ(–s), s = ,

where ηT is the transpose of η.
For φ ∈ C and ϕ ∈ C∗, an inner product is defined as the following bilinear form:

〈
ϕ(s),φ(θ )

〉
= ϕ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , ()

where η(θ ) = η(θ , ).
We can see that iωτ is the eigenvalue of A(), and –iωτ is that of A∗. Assume that

q(θ ) = (, q, q, q, q, q)T eiωτθ is the eigenvector of A() corresponding to iωτ and
q∗(s) = M(, q∗

, q∗
, q∗

, q∗
, q∗

)eiωτs is the eigenvector of A∗ corresponding to –iωτ. From
the definitions of A() and A∗, we can obtain

q =
[

iω – a – be–iτω –
be–iτω

iω – a

]–

× a,

q =
bq

(iω – a)eiτω
, q =

aq

iω – a
,

q =
aq + aq

iω – a
, q =

a

iω – a
,

q∗
 =

aa

a(iω + a)
–

iω + a

a
,

q∗
 = –

(iω + a + beiτω )q∗


beiτω
, q∗

 =
aa

(iω + a)(iω + a)
,

q∗
 = –

a

iω + a
, q∗

 = –
a

iω + a
.

In addition, from equation (), one can get the expression of M̄:

M̄ =
[
 + qq̄∗

 + qq̄∗
 + qq̄∗

 + qq̄∗
 + qq̄∗

 + τe–iτω
(
bqq̄∗

 + bqq̄∗

)]–,

such that 〈q∗, q̄〉 = .
Then, following the procedure in [–], we can obtain the expressions of g, g, g

and g as follows:

g = τM̄βq
(
q̄∗

 – 
)
, g = τM̄β Re q

(
q̄∗

 – 
)
, g = τM̄βq̄

(
q̄∗

 – 
)
,

g = τM̄β
(
q̄∗

 – 
)
(

W ()
 ()q +




W ()
 ()q̄ + W ()

 () +



W ()
 ()

)

,

with

W(θ ) =
igq()
τω

eiτωθ +
iḡq̄()
τω

e–iτωθ + Eeiτωθ ,
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W(θ ) = –
igq()
τω

eiτωθ +
iḡq̄()
τω

e–iτωθ + E,

and E and E are given

E = 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∗
  –a  –a –a

–a a∗
 –a   

 –be–iωτ a∗
   

  –a a∗
  

  –a –a a∗
 

–a     a∗


⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

–

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–βq

βq






⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a  a  a a

a a + b a   
 b a   
  a a  
  a a a 

a     a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

–

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β Re{q}
β Re{q}






⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a∗
 = iω – a,

a∗
 = iω – a – be–iωτ ,

a∗
 = iω – a,

a∗
 = iω – a,

a∗
 = iω – a,

a∗
 = iω – a.

Then we can get the following coefficients:

C() =
i

τω

(

gg – |g| –
|g|



)

+
g


,

μ = –
Re{C()}
Re{λ′(τ)} ,

ρ = Re
{

C()
}

,

T = –
Im{C()} + μIm{λ′(τ)}

τω
.

()

Thus, the properties of the Hopf bifurcation of system () can be stated as follows.

Theorem  μ determines the direction of the Hopf bifurcation: if μ >  (μ < ), then the
Hopf bifurcation is supercritical (subcritical); ρ determines the stability of the bifurcating
periodic solutions: if ρ <  (ρ > ), then the bifurcating periodic solutions are stable (un-
stable); T determines the period of the bifurcating periodic solutions: if T >  (T < ),
then the period of the bifurcating periodic solutions increases (decreases).
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Figure 1 The phase plot of the states S, I, R for τ = 9.28 < 9.7698 = τ0.

4 Numerical simulation
This section is concerned with some numerical simulations of system () with the aim of
verifying the obtained theoretical results. We choose A = , β = ., d = ., ρ = .,
θ = ., χ = ., γ = ., α = ., δ = ., η = . and ε = .. Then system ()
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt =  – .S(t)I(t) – .S(t) – .S(t) + .R(t) + .V (t),

dE(t)
dt = .S(t)I(t) – .E(t) – .E(t – τ ),

dI(t)
dt = .E(t – τ ) – .I(t) – .I(t) – .I(t) – .I(t),

dQ(t)
dt = .I(t) – .Q(t) – .Q(t) – .Q(t),

dR(t)
dt = .Q(t) – .R(t) – .R(t) + .I(t),

dV (t)
dt = .S(t) – .V (t) – .V (t).

()

It is easy to verify that R = ., AR(d + χ ) = ., d + (ρ + χ )d = ., β(d +
θ )(d + α + ε) = .. Therefore, AR(d + χ ) > d + (ρ + χ )d and β(d + θ )(d + α + ε) >
Rθεδ + Rθη(d + α + ε) is satisfied. Then one can obtain the unique endemic equilibrium
P∗(., ., ., ., ., .) of system (). It can be verified that the
conditions for the occurrence of a Hopf bifurcation are also satisfied for system ().

Then, using Matlab . software package and by some complicated computations, we
obtain ω = ., τ = ., λ′(τ) = . – .i. We choose τ = . < τ =
.. Thus, the endemic equilibrium P∗(., ., ., ., ., .)
is asymptotically stable when τ < τ, which can be illustrated by computer simulations
in Figures -. When τ passes through the critical value τ = ., the endemic equilib-
rium P∗(., ., ., ., ., .) loses its stability and a Hopf bifur-
cation occurs, i.e., a family of periodic solutions bifurcate from the endemic equilibrium
P∗(., ., ., ., ., .). Choosing τ = . > τ = ., the
computer simulations are as shown in Figures -.

Further, we have C() = –. – .i, μ = . > , β = –. <  and T =
. > . Therefore, according to Theorem , the Hopf bifurcation at the critical value
τ = . is supercritical; the bifurcating periodic solutions are stable and the period of
the bifurcating periodic solutions increases.
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Figure 2 The phase plot of the states E, Q, V for τ = 9.28 < 9.7698 = τ0.

Figure 3 The phase plot of the states S, I, R for τ = 10.38 > 9.7698 = τ0.

Figure 4 The phase plot of the states E, Q, V for τ = 10.38 > 9.7698 = τ0.

5 Conclusions
Based on the fact that one of the significant features of computer viruses is its latent char-
acteristic, we incorporate the latent period delay into the model considered in the litera-
ture [] and obtain the delayed SEIQRS-V model describing the worms propagation in a
network. Compared with the work in [], we mainly focus on effects of the delay on the
model.
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We obtained the sufficient conditions for the local stability of the endemic equilibrium.
The stability criteria in the absence of the delay are no longer enough to guarantee the
stability in the presence of the delay, rather there is a critical value τ such that the model
is stable for τ < τ and become unstable for τ > τ. By choosing the latent period delay
as a bifurcation parameter, and analyzing the corresponding characteristic equation, it is
proved that the latent period delay in the model can destabilize the endemic equilibrium
and give rise to a Hopf bifurcation. That is, a family of periodic solutions bifurcate from
the endemic equilibrium when the delay passes through the critical value. Therefore, we
can conclude that when the value of the latent period delay is suitable small, it is helpful
to predict and control the propagation of the worms in system (). Otherwise, the worms
persist in the whole host population. For further research, properties of the Hopf bifurca-
tion such as direction and stability are determined by applying the normal theory and the
center manifold theorem. Finally, the results are validated by some numerical simulations.

It should be pointed out that many other factors besides time delay can influence a worm
propagation system in a real network environment. For example, network congestion and
the network topology are also impact factors to worm propagation. Namely, we will link
the results obtained with the model proposed in the present paper with the results coming
from the networks theory. They will be a major emphasis of our future research.
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