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Abstract
By means of a variational analysis and the theory of variable exponent Sobolev
spaces, the existence of weak solutions for two point boundary value problems of
Schrödingerean predator-prey system with latent period is investigated either
analytically or numerically. More precisely, the local stability of the Schrödingerean
equilibrium and endemic equilibrium of the model are discussed in detail. And we
specially analyzed the existence and stability of the Schrödingerean Hopf bifurcation
by using the center manifold theorem and the bifurcation theory. As applications,
theoretic analysis and numerical simulation show that the Schrödingerean
predator-prey system with latent period has very rich dynamic characteristics.
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1 Introduction
The role of mathematical modeling has been intensively growing in the study of epidemi-
ology. Various epidemic models have been proposed and explored extensively and great
progress has been achieved in the studies of disease control and prevention. Many authors
have investigated the autonomous epidemic models. May and Odter [] proposed a time-
periodic reaction-diffusion epidemic model which incorporates a simple demographic
structure and the latent period of an infectious disease. Guckenheimer and Holmes []
examined an SIR epidemic model with a non-monotonic incidence rate, and they also
analyzed the dynamical behavior of the model and derived the stability conditions for
the disease-free and the endemic equilibrium. Berryman and Millstein [] investigated
an SVEIS epidemic model for an infectious disease that spreads in the host population
through horizontal transmission, and they have shown that the model exhibits two equi-
libria, namely, the disease-free equilibrium and the endemic equilibrium. Hassell et al.
[] presented four discrete epidemic models with the nonlinear incidence rate by using
the forward Euler and backward Euler methods, and they discussed the effect of two dis-
cretizations on the stability of the endemic equilibrium for these models. Shilnikov et al.
[] proposed an VEISV network worm attack model and derived global stability of a worm-
free state and local stability of a unique worm-epidemic state by using the reproduction
rate. Robinson and Holmes [] discussed the dynamical behaviors of a Schrödingerean
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predator-prey system, and they showed that the model undergoes a flip bifurcation and
Hopf bifurcation by using the center manifold theorem and bifurcation theory. Bacaër and
Dads [] investigated an SVEIS epidemic model for an infectious disease that spreads in
the host population through horizontal transmission.

Recently, Yan et al. [, ] and Xue [] discussed the threshold dynamics of a time-
periodic reaction-diffusion epidemic model with latent period. In this paper, we will study
the existence of the disease-free equilibrium and endemic equilibrium, and the stability
of the disease-free equilibrium and the endemic equilibrium for this system. Conditions
will be derived for the existence of a flip bifurcation and a Hopf bifurcation by using the
center manifold theorem [] and bifurcation theory [–].

The rest of this paper is organized as follows. A discrete SIR epidemic model with latent
period is established in Section . In Section  we obtain the main results: the existence
and local stability of fixed points for this system. We show that this system undergoes the
flip bifurcation and the Hopf bifurcation by choosing a bifurcation parameter in Section .
A brief discussion is given in Section .

2 Model formulation
In , Yan et al. [] discussed the threshold dynamics of a time-periodic reaction-
diffusion epidemic model with latent period. We consider the continuous-time SIR epi-
demic model described by the differential equations

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = βS(t)I(t),
dI
dt = βS(t)I(t) – γ I(t),
dR
dt = γ I(t),

()

where S(t), I(t) and R(t) denote the sizes of the susceptible, infected and removed individ-
uals, respectively, the constant β is the transmission coefficient, and γ is the recovery rate.
Let S = S() be the density of the population at the beginning of the epidemic with ev-
eryone susceptible. It is well known that the basic reproduction number R = βS/γ com-
pletely determines the transmission dynamics (an epidemic occurs if and only if R > );
see also []. It should be emphasized that system () has no vital dynamics (births and
deaths) because it was usually used to describe the transmission dynamics of disease
within a short outbreak period. However, for an endemic disease, we should incorporate
the demographic structure into the epidemic model. The classical endemic model is the
following SIR model with vital dynamics:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μN – μS(t) – βS(t)I(t)

N ,
dI
dt = βS(t)I(t)

N – γ I(t) – μI(t),
dR
dt = γ I(t) – μI(t),

()

which is almost the same as the SIR epidemic model () above, except that it has an inflow
of newborns into the susceptible class at rate μN and deaths in the classes at rates μN , μI
and μR, where N is a positive constant denoting the total population size. For this model,
the basic reproduction number is given by

R =
β

γ + μ
,
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which is the contact rate times the average death-adjusted infectious period 
γ +μ

. The
disease-free equilibrium E(N , , ) of model () is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Sn+ = Sn + h(μN – μSn – βSnIn
N ),

In+ = In + h( βSnIn
N – γ In – μIn),

Rn+ = Rn + h(γ In – μIn),

()

where h, N , μ, β and γ are all defined in ().

Remark  If the basic reproductive rate R < , then model () has only a disease-free
equilibrium E(N , ). If the basic reproductive rate R > , then model () has two equilib-
ria: a disease-free equilibrium E(N , ) and an endemic equilibrium E(S∗, I∗), where

S∗ =
N(γ + μ)

β
and I∗ =

N(βμ – μ(γ + μ))
β(γ + μ)

.

3 Main results
We firstly discuss the existence of the equilibria of model () by using a linearization
method and the Jacobian matrix. The Jacobian matrix of it is defined by

J(E) =

(
 – hμ –hβ

  + hβ – h(γ + μ)

)

.

If we take the two eigenvalues of J(E)

ω =  – hμ and ω =  + hβ – h(γ + μ),

then we have the following results from Remark  and a simple calculation.

Theorem  Let R be the basic reproductive rate such that R < . Then:
() If

 < h < min

{

μ

,


(γ + μ) – β

}

,

then E(N , ) is asymptotically stable.
() If

h > max

{

μ

,


(γ + μ) – β

}

or

μ

< h <


(γ + μ) – β

or


(γ + μ) – β

< h <

μ

,

then E(N , ) is unstable.
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() If

h =

μ

or h =


(γ + μ) – β
,

then E(N , ) is non-hyperbolic.

The Jacobian matrix of model () at E(S∗, I∗) is

J(E) =

(
 – hμβ

γ +μ
–h(γ + μ)

hμ

γ +μ
(β – γ – μ) 

)

,

which gives

F(ω) = ω – tr J(E)ω + det J(E), ()

where

tr J(E) =  –
hμβ

γ + μ
()

and

det J(E) =  –
hμβ

γ + μ
+ h[μβ – μ(γ + μ)

]
. ()

The two eigenvalues of J(E) are

ω, =  +



(

–
hμβ

γ + μ
±

√

(μR) – 
[
μβ – μ(γ + μ)

]
)

. ()

Next we obtain the following result for E(S∗, I∗) by Remark  and a simple calcula-
tion.

Theorem  Let R be the basic reproductive rate such that R < . Then:
() Put

(A)  < h < h∗ and (μR) – [μβ – μ(γ + μ)] ≥ ,
(B)  < h < h∗∗ and (μR) – [μβ – μ(γ + μ)] < .

If one of the above conditions holds, then we see that E(S∗, I∗) is asymptotically
stable.

() Put
(A) h > h∗∗∗ and (μR) – [μβ – μ(γ + μ)] ≥ ,
(B)  < h < h∗∗ and (μR) – [μβ – μ(γ + μ)] < ,
(C) h∗ < h < h∗∗∗ and (μR) – [μβ – μ(γ + μ)] ≥ .

If one of the above conditions holds, then E(S∗, I∗) is unstable.
() Put

(A) h = h∗ or h = h∗∗∗ and (μR) – [μβ – μ(γ + μ)] ≥ ,
(B) h = h∗∗ and (μR) – [μβ – μ(γ + μ)] < ,
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where

h∗ =
μβ – μ(γ + μ)

√
(μR) – [μβ – μ(γ + μ)]

(γ + μ)[μβ – μ(γ + μ)]
,

h∗∗ =
μβ

(γ + μ)[μβ – μ(γ + μ)]
,

and

h∗∗∗ =
μβ + μ(γ + μ)

√
(μR) – [μβ – μ(γ + μ)]

(γ + μ)[μβ – μ(γ + μ)]
.

If one of the above conditions holds, then E(S∗, I∗) is non-hyperbolic.

By a simple calculation, Conditions (A) in Theorem  can be written in the following
form:

(μ, N ,β , h,γ ) ∈ M ∪ M,

where

M =
{

(μ, N ,β , h,γ ) : h = h∗, N > ,� ≥ , R > ,  < μ,β ,γ < 
}

and

M =
{

(μ, N ,β , h,γ ) : h = h∗∗∗, N > ,� ≥ , R > ,  < μ,β ,γ < 
}

.

It is well known that if h varies in a small neighborhood of h∗ or h∗∗∗ and (μ, N ,β , h∗,γ ) ∈
M or (μ, N ,β , h∗∗∗,γ ) ∈ M, then there may be a flip bifurcation of equilibrium E(S∗, I∗).

4 Bifurcation analysis
If h varies in a neighborhood of h∗ and (μ, N ,β , h∗,γ ) ∈ M, then we derive the flip bifurca-
tion of model () at E(S∗, I∗). In particular, in the case that h changes in the neighborhood
of h∗∗∗ and (μ, N ,β , h∗∗∗,γ ) ∈ M we need to make a similar calculation.

Set

(μ, N ,β , h,γ ) = (μ, N,β, h,γ) ∈ M.

If we give the parameter h a perturbation h∗, model () is considered as follows:

⎧
⎨

⎩

Sn+m = Sn + (r∗ + h)(μN – μSn – βSnIn
N

),

In+ = In + (h∗ + h)( βSnIn
N

– γIn – μIn),
()

where |h∗| � .
Put Un = Sn – S∗ and Vn = In – I∗. We have

⎧
⎨

⎩

Un+ = aUn + aVn + aUnVn + bUnh∗ + bVnh∗ + bUnVnh∗,

Vn+ = aUn + aVn + aUnVn + bUnh∗ + bVnh∗ + bUnVnh∗,
()
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where

a =  – h

(

μ +
βI∗

N

)

, a = –
hβS∗

N
, a = –

hβ

N
,

b = –
(

μ +
βI∗

N

)

, b = –
βS∗

N
, b = –

β

N
,

a =
hβI∗

N
, a = , a = –

βh

N
,

b =
βI∗

N
, b = , b =

β

N
.

If we define matrix T as follows:

T =

(
a a

– – a ω – a

)

,

then we know that T is invertible. If we use the transformation

(
Un

Vn

)

= T
(

Xn

Yn

)

then model () becomes

⎧
⎨

⎩

Xn+ = –Xn + F(Un, Vn, h∗),

Yn+ = –ωYn + G(Un, Vn, h∗).
()

Thus

W c(, ) =
{

(Xn, Yn) : Yn = aX
n + aXnh∗ + o

((|Xn| +
∣
∣h∗∣∣))},

where o((|Xn| + |h∗|)) is a transform function, and

a =
a( + a – a)

ω + 

and

a =
b( + a)

a(ω + ) –
ab + b( + a)

(ω + ) .

Further we find that the manifold W c(, ) has the following form:

c =
a( + a)(ω – a + a)

ω + 
,

c = –
b(ω – a) – ab

ω + 
–

b(ω – a)( + a)
a(ω + )

,

c = a
a(ω – a – )(ω – a + a) – b( + a)(ω – a + a)

ω + 
,
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and

c = , c =
aa(ω – a – )(ω – a + a)

ω + 
.

Therefore the map G∗ with respect to W c(, ) can be defined by

G∗(Xn) = –Xn + cX
n + cXnh∗ + cX

nh∗ + cXnh∗

+ cX
n + o

((|Xn| +
∣
∣h∗∣∣)). ()

In order to calculate map (), we need two quantities α and α which are not zero,

α =
(

G∗
Xnh∗ +




G∗
h∗G∗

XnXn

)∣
∣
∣
∣
,

and

α =
(




G∗
XnXnXn +

(



G∗
XnXn

))∣
∣
∣
∣
,

.

By a simply calculation, we obtain

α = c = –

h

,

α = c + c
 =

hβ

N(ω + )

{

 –
hβμ

γμ
( – hγ)

}

,

where

c =
hβμ

γμ

[
h(γ + μ) – 

]
{

 +
[

h(γ + μ) +
hβμ

γμ

]}

.

Therefore we have the following result.

Theorem  Let h∗ change in the a neighborhood of the origin. If α �= , then the model ()
has a flip bifurcation at E(S∗, I∗). If α > , then the period- points that bifurcation from
E(S∗, I∗) are stable. If α < , then it is unstable.

We further consider the bifurcation of E(S∗, I∗) if h varies in a neighborhood of h∗∗∗.
Taking the parameters (μ, N ,β , h,γ ) = (μ, N,β, h,γ) ∈ N∗ arbitrarily, and also giving
h a perturbation h∗ at h, then model () gets the following form:

⎧
⎨

⎩

Sn+ = Sn + (h∗ + h)(μN – μSn – βSnIn
N

),

In+ = In + (h∗ + h)( βSnIn
N

– γIn – μIn).
()

Put Un = Sn – S∗ and Vn = In – I∗. We change the equilibrium E(S∗, I∗) of model () and
have the following result:

⎧
⎨

⎩

Un+ = Un + (h∗ + h)(–μUn – β
N

UnVn – β
N

UnI∗ – β
N

VnS∗),

Vn+ = Vn + (h∗ + h)( β
N

UnVn – (γ + μ)Vn + β
N

UnI∗ + β
N

VnS∗),
()
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which gives

ω + P
(
h∗)ω + Q

(
h∗) = ,

where

 + P
(
h∗) =

βμ(h + h∗)
γμ

and

Q
(
h∗) =  –

βμ(h + h∗)
γμ

+
(
h + h∗)[

μβ – μ(μ + γ)
]
.

It is easy to see that

ω, =
–P(h∗) ± √

(P(h∗)) – Q(h∗)


,

which yields

|ω,| =
√

Q
(
h∗), k =

d|ω,|
dh∗

∣
∣
∣
∣
h∗=

=
μβ

(μ + γ)
.

We remark that (μ, N,β, h,γ) ∈ N+ and � < , and then we have

(μβ)

(γ + μ)[μβ – μ(μ + γ)]
< .

Thus

P() = – +
(μβ)

(γ + μ)[μβ – μ(μ + γ)]
�= ±,

which means that

μβ

(γ + μ)[μβ – μ(μ + γ)]
�= j(γ + μ)

μβ
, j = , . ()

Hence, the eigenvalues ω, of equilibrium (,) of model () do not lay in the intersec-
tion when h∗ =  and () holds.

When h∗ =  we may begin to study the model (). Put

α =
(μβ)

(γ + μ)[μβ – μ(μ + γ)]
,

β =
μβ

√
[μβ – μ(μ + γ)] – (μβ)

(γ + μ)[μβ – μ(μ + γ)]
,

and

T =

(
 
β α

)

,

where T is invertible.

RETRACTED A
RTIC

LE



Lü and Ülker Advances in Difference Equations  (2017) 2017:159 Page 9 of 11

If we use the transformation

(
Un

Vn

)

= T

(
Xn

Yn

)

,

then the model () gets the following form:

⎧
⎨

⎩

Xn+ = αXn – βYn + F̄(Xn, Yn),

Yn+ = βXn + αYn + Ḡ(Xn, Yn),
()

where

F̄(Xn, Yn) =
hβ( + α)(βXnYn + αY 

n )
Nβ

and

Ḡ(Xn, Yn) =
–hβ(βXnYn + αY 

n )
N

.

Moreover,

F̄XnXn = , F̄YnYn =
hβα( + α)

Nβ
, F̄XnYn =

hβ( + α)
N

,

F̄XnXnXn = F̄XnXnYn = F̄XnYnYn = F̄YnYnYn = ,

ḠXnXn = , ḠYnYn = –
hβα

N
, ḠXnYn = –

hββ

N
,

ḠXnXnXn = ḠXnXnYn = ḠXnYnYn = ḠYnYnYn = .

Thus we have

a = – Re

[
 – ω̄

 – ω
ξξ

]

–


‖ξ‖ – ‖ξ‖ + Re(ω̄ξ),

where

ξ =


[
(F̄XnXn – F̄YnYn – ḠXnYn ) + (ḠXnXn – ḠYnYn + F̄XnYn )i

]
,

ξ =



[
(F̄XnXn + F̄YnYn ) + (ḠXnXn + ḠYnYn )i

]
,

ξ =


[
(F̄XnXn – F̄YnYn + ḠXnYn ) + (ḠXnXn – ḠYnYn – F̄XnYn )i

]
,

and

ξ =



(F̄XnXnXn + F̄XnYnYn + ḠXnXnYn + ḠYnYnYn ).

Therefore we have the following result.
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Theorem  Let a �=  and h∗ change in a neighborhood of h∗∗∗. If the condition () holds,
then model () undergoes a Hopf bifurcation at E(S∗, I∗). If a > , then the repelling in-
variant closed curve bifurcates from E for h∗ < . If a < , then an attracting invariant
closed curve bifurcates from E for h∗ > .

5 Conclusions
The paper investigated the basic dynamic characteristics of a Schrödingerean predator-
prey system with latent period. First, we applied the forward Euler scheme to a continuous-
time SIR epidemic model and obtained the Schrödingerean predator-prey system. Then
the existence and local stability of the disease-free equilibrium and endemic equilibrium
of the model were discussed. In addition, we chose h as the bifurcation parameter and
studied the existence and stability of flip bifurcation and Hopf bifurcation of this model
by using the center manifold theorem and the bifurcation theory. Numerical simulation
results show that the model () shows a flip bifurcation and Hopf bifurcation when the bi-
furcation parameter h passes through the respective critical value, and the direction and
stability of flip bifurcation and Hopf bifurcation can be determined by the sign of α and
a, respectively. Apparently there are more interesting problems as regards this Schrödin-
gerean predator-prey system with latent period which deserve further investigation.
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