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Abstract
In this paper, by using the fibering map and the Nehari manifold, we prove the
existence and multiple results of solutions for the following fractional differential
equation:

{
tDα

T (0D
α
t u) = λh(t)|u|p–2u + b(t)|u|q–2u, t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ ( 12 , 1), 0 < p < 2,q > 2,λ > 0 and h(t),b(t) are sign-changing continuous
functions.

Keywords: fractional differential equation; concave-convex nonlinearities; Nehari
manifold; fibering map

1 Introduction
The concept of fractional calculus (that is, calculus of integrals and derivatives of any ar-
bitrary real or complex order) is believed to have stemmed from a question raised in 
by L’Hôpital to Leibniz, which sought the meaning of Leibniz’s derivative notation dnx

dtn

of order n ∈ N = {, , , . . .} when n = 
 (What if n = 

 ?). There have been many math-
ematicians who contributed to the study of fractional operator, and we can refer to the
monographs of Kilbas [], Podlubny [], Samko [], etc. An important characteristic of a
fractional-order differential operator that distinguishes it from an integer-order differen-
tial operator is its nonlocal behavior, that is, the future state of a dynamical system or pro-
cess involving fractional derivatives depends on its current state as well as its past states.
During the last three decades or so, due to its demonstrated applications in numerous
fields of science and engineering, such as viscoelasticity, neurons, electrochemistry, con-
trol (see [–]), more attention was paid to the fractional differential equations.

Many important results have been obtained about the existence and multiplicity of so-
lutions for fractional boundary value problems based on the techniques of nonlinear anal-
ysis, such as fixed point theory [–], topological degree theory [–], the method of
upper and lower solutions and the monotone iterative method [].
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As is well known, the variational method has turned out to be a very effective tool in
studying the existence of solutions for boundary value problems (BVPs for short) of integer
order differential equations with variational structure. However, most fractional differen-
tial operators do not have a variational structure, for example, the operator Dα(α /∈N), so
the variational method cannot be applied. On the other hand, for the operator including
both left and right fractional derivatives, the critical point theory can be used. In recent
years, many authors have studied the existence of solutions of the fractional boundary
value problems (FBVPs for short) by use of the variational method [–]. The author of
[, ] treated fractional order differential equations that contain left and right Riemann-
Liouville fractional derivatives. The equations arose as the Euler-Lagrange equation in
variational principles with fractional derivatives. They discussed solutions of such equa-
tions (tDα

T (Dα
t y)(x) = λy(x) + g(x)) or constructed corresponding integral equations and

other properties. In the paper [], for the first time, the authors showed that the critical
point theory is an effective approach to tackle the existence of solutions for the following
fractional boundary value problem:

⎧⎨
⎩tDα

T (Dα
t u) = ∇F(t, u(t)), a.e. t ∈ [, T],

u() = u(T) = ,

and obtained the existence of at least one nontrivial solution. What is more, in the pa-
per [], more precisely they studied the fractional nonlinear Dirichlet problem, and they
proved the existence of mountain pass solution for the proposed fractional boundary value
problem. Jin Hua [] discussed the eigenvalue problem for the fractional differential equa-
tion containing left and right fractional derivatives with Dirichlet boundary value condi-
tions. For fractional Hamiltonian systems given by

⎧⎨
⎩tDα∞(–∞Dα

t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R, RN ),

the author of paper [] proved the existence of solution; and in the paper [], by the
critical point theory, they considered the existence and multiplicity of solutions. Such dif-
ferential equations mixing both types of derivatives have found interesting applications
in fractional variational principles, fractional control theory, fractional Lagrangian and
Hamiltonian dynamics as well as in the construction industry (see [–]).

However, as far as we know, there are few results about the multiplicity of solutions
on the fractional equations involving concave-convex nonlinearities and sign-changing
weight functions. In order to improve fractional boundary value problem, we use the fiber-
ing map and the Nehari manifold to investigate the existence and multiple results of so-
lutions for the following fractional differential equation when the parameter belongs to
a different interval. In this paper, in the fractional Sobolev space Eα,

 , we investigate the
existence and multiplicity of solutions for the following FBVPs:

⎧⎨
⎩tDα

T (Dα
t u) = λh(t)|u|p–u + b(t)|u|q–u, t ∈ [, T],

u() = u(T) = ,
(.)
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where 
 < α ≤ ,  < p < , q > . Note that, when α = , the fractional differential operator

tDα
T Dα

t reduces to the standard second differential operator –D.
In the following, we set cpq = ( –p

q–p )
–p
q– q–

q–p and λ = cpq(cbcq
q)

p–
q– /chcp

p, where ch =
max{|h(t)||t ∈ [, T]}, cb = max{|b(t)||t ∈ [, T]}, cp, cq are the Sobolev embedding con-
stants. For the sign-changing weight functions, we suppose the following.

(f ) There exists u ∈ Eα,
 such that

∫ T
 h(t)|u(t)|q dt > .

(f ) There exists v ∈ Eα,
 such that

∫ T
 b(t)|v(t)|p dt > .

The main theorems are as follows.

Theorem . If λ ∈ (,λ) and h(t) satisfies (f ), problem (.) has at least one nontrivial
solution.

Theorem . If λ ∈ (, p
 λ), and h(t), b(t) satisfy (f ), (f ), problem (.) has at least two

nontrivial solutions.

2 Preliminaries
For the convenience of readers, in this section, the definitions of fractional integral and
fractional derivative are presented. Since we use the critical point theory to investigate
problem (.), the appropriate fractional Sobolev space is necessary.

Definition . ([]) For n –  ≤ α < n, the left (right) Riemann-Liouville fractional integral
operator of order α of a function u : [a, b] →R is given by

aIα
t u(t) =


�(α)

∫ t

a
(t – s)α–u(s) ds, t ∈ [a, b],

tIα
b u(t) =


�(α)

∫ b

t
(s – t)α–u(s) ds, t ∈ [a, b],

provided that the right-hand side integral is pointwise defined on [a, b], where �(·) >  is
the gamma function.

Definition . ([]) For n –  ≤ α < n, the left (right) Riemann-Liouville fractional deriva-
tive operator of order α of a function u : [a, b] →R is given by

aDα
t u(t) =

dn

dtn aIn–α
t u(t), t ∈ [a, b],

tDα
b u(t) = (–)n dn

dtn tIn–α
b u(t), t ∈ [a, b].

Next we give the definitions of left and right weak fractional derivatives and the corre-
sponding function spaces. For the details, we refer to [, ].

Definition . Let n –  ≤ α < n, u, v ∈ L[, T], if

∫ T


vϕ =

∫ T


u
(

tD
α
Tϕ

)
, ∀ϕ ∈ C∞

 (, T),

then v is named the left weak fractional derivative, and we denote it by v = Ḋα
t u.
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Definition . Let n –  ≤ α < n, u, v ∈ L[, T], if

∫ T


vϕ =

∫ T


u
(

Dα
t ϕ

)
, ∀ϕ ∈ C∞

 (, T),

then v is named the right weak fractional derivative denoted by tḊα
T u.

Definition . For  ≤ p ≤ ∞,  < α ≤ , the space Eα, is defined by

Eα, =
{

u|u ∈ L[, T], Ḋα
t u ∈ L[, T]

}

with the norm

‖u‖ = ‖u‖
Eα, = ‖u‖

L +
∥∥Ḋα

t u
∥∥

L ,

and the product

(u, v)Eα, = (u, v)L +
(

Ḋα
t u, Ḋα

t v
)

L .

Definition . Fractional Sobolev space Eα,
 is defined by the closure of C∞

 (, T) in Eα,

equipped with the norm of Eα,. What is more, by studying Remark . of paper [], we
can obtain that the norm ‖ · ‖Eα, is equivalent to the norm ‖Ḋα

t u‖L .

Lemma . ([]) If α ∈ ( 
 , ), the embedding map from Eα,

 into C[, T] is compact, and it
is also true for the embedding map from Eα,

 into Lr[, T](r ∈R
+). So there exists a constant

cr such that ‖u(t)‖Lr [,T] ≤ cr‖u‖.

Remark . From Theorem . in [], we obtain that any u ∈ Eα,
 (α ∈ (/, )) satisfies

u ∈ L[, T], Ḋα
t u ∈ L[, T] and u() = u(T) = . In the following, we all set α ∈ (/, ).

3 Proof of Theorems 1.1 and 1.2
In this section, we investigate the existence of solutions of equation (.) when the param-
eter λ changes by using the fibering map and the Nehari manifold.

The Euler functional Iλ : Eα,
 →R associated with problem (.) is defined by

Iλ(u) =


‖u‖ –

λ

p

∫ T


h(t)

∣∣u(t)
∣∣p dt –


q

∫ T


b(t)

∣∣u(t)
∣∣q dt. (.)

It is easy to see that Iλ(u) is C and

〈
Iλ

′(u), u
〉

= ‖u‖ – λ

∫ T


h(t)

∣∣u(t)
∣∣p dt –

∫ T


b(t)

∣∣u(t)
∣∣q dt, ∀u ∈ Eα,

 .

It is obvious that Iλ is not bounded below on Eα,
 , but it is bounded below on an appro-

priate subset of Eα,
 , and a minimizer on this set (if it exists) may give rise to solutions of

the corresponding differential equation. A good candidate for the subset is the so-called
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Nehari manifold

Nλ =
{

u ∈ Eα,
 \ {}|〈Iλ

′(u), u
〉

= 
}

.

It is clear that all critical points of Iλ must lie on Nλ. On the other hand, if u ∈ Nλ, we have

‖u‖ – λ

∫ T


h(t)

∣∣u(t)
∣∣p dt –

∫ T


b(t)

∣∣u(t)
∣∣q dt = . (.)

Define the fibering map ϕu(s) = Iλ(su) by

ϕu(s) =
s


‖u‖ –

λsp

p

∫ T


h(t)

∣∣u(t)
∣∣p dt –

sq

q

∫ T


b(t)

∣∣u(t)
∣∣q dt.

After a simple calculation, we have

ϕ′
u(s) = s‖u‖ – λsp–

∫ T


h(t)

∣∣u(t)
∣∣p dt – sq–

∫ T


b(t)

∣∣u(t)
∣∣q dt,

ϕ′′
u(s) = ‖u‖ – λ(p – )sp–

∫ T


h(t)

∣∣u(t)
∣∣p dt – (q – )sq–

∫ T


b(t)

∣∣u(t)
∣∣q dt.

(.)

It is easy to see that su ∈ Nλ if and only if ϕ′
u(s) =  and u ∈ Nλ if and only if ϕ′

u() = .
That is to say, if u is the minimizer point of Iλ, ϕu(s) has the local minimum or maxi-
mum at s = . Thus it is natural to split Nλ into three subsets N+

λ , N–
λ , N

λ corresponding
to local minima, local maxima and points of inflexion of a fibering map. Hence we de-
fine

N+
λ =

{
u ∈ Nλ|ϕ′′

u() > 
}

,

N–
λ =

{
u ∈ Nλ|ϕ′′

u() < 
}

,

N
λ =

{
u ∈ Nλ|ϕ′′

u() = 
}

.

Lemma . (see []) Suppose that u ∈ Nλ is a local minimizer of Iλ on Nλ and u /∈ N
λ ,

then u is a critical point of Iλ.

Lemma . Iλ(u) is coercive and bounded from below on Nλ.

Proof Let u ∈ Nλ, then we have

‖u‖ – λ

∫ T


h(t)

∣∣u(t)
∣∣p dt =

∫ T


b(t)

∣∣u(t)
∣∣q dt.

From Lemma ., we obtain

∣∣∣∣
∫ T


h(t)

∣∣u(t)
∣∣p dt

∣∣∣∣ ≤ ch

∫ T



∣∣u(t)
∣∣p dt ≤ chcp

p‖u‖p,

where ch = max{|h(t)||t ∈ [, T]} and cp is the Sobolev embedding constant.
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For u ∈ Nλ,

Iλ(u) =


‖u‖ –

λ

p

∫ T


h(t)

∣∣u(t)
∣∣p dt –


q

(
‖u‖ – λ

∫ T


h(t)

∣∣u(t)
∣∣p dt

)

=
(




–

q

)
‖u‖ – λ

(

p

–

q

)∫ T


h(t)

∣∣u(t)
∣∣p dt

≥
(




–

q

)
‖u‖ – λchcp

p

(

p

–

q

)
‖u‖p.

Since  < p < , q > , it is easy to see that the functional Iλ(u) is coercive and bounded
from below on Nλ. The proof is finished. �

Before studying the behavior of a Nehari manifold by using a fibering map, we consider
the function ψu(s) : R+ →R defined by

ψu(s) = s–p‖u‖ – sq–p
∫ T


b(t)

∣∣u(t)
∣∣q dt.

It is obvious that ψu() =  and

ψ ′
u(s) = ( – p)s–p‖u‖ – (q – p)sq–p–

∫ T


b(t)

∣∣u(t)
∣∣q dt. (.)

It follows from (.) that ϕ′
u(s) = sp–(ψu(s) – λ

∫ T
 h(t)|u(t)|p dt). Therefore, su ∈ Nλ if and

only if ψu(s) = λ
∫ T

 h(t)|u(t)|p dt. Thus, if ψu(s) and λ
∫ T

 h(t)|u(t)|p dt have the same sign,
ϕu(s) has stationary points, and if ψu(s) and λ

∫ T
 h(t)|u(t)|p dt have the opposite signs,

ϕu(s) has no stationary points.
For the convenience of investigating the fibering map according to the sign of∫ T

 h(t)|u(t)|p dt and
∫ T

 b(t)|u(t)|q dt, we introduce some notations.

B± =
{

u ∈ Eα,
 \{} :

∫ T


b(t)

∣∣u(t)
∣∣q dt ≷ 

}
,

B =
{

u ∈ Eα,
 \{} :

∫ T


b(t)

∣∣u(t)
∣∣q dt = 

}
,

H± =
{

u ∈ Eα,
 \{} :

∫ T


h(t)

∣∣u(t)
∣∣p dt ≷ 

}
,

H =
{

u ∈ Eα,
 \{} :

∫ T


h(t)

∣∣u(t)
∣∣p dt = 

}
.

Case : If u ∈ B ∩ H, ψu(s) ≥  and is strictly increasing for all s > . As
λ

∫ T
 h(t)|u(t)|p dt ≤ , so ϕu(s) has no stationary points.

Case : If u ∈ B ∩ H+, ψu(s) ≥  and is strictly increasing for all s > . Since
λ

∫ T
 h(t)|u(t)|p dt ≥ , there exists a unique point s∗

 such that s∗
 u ∈ Nλ. We also get that

for  < s < s∗
 , ϕ′

u(s) <  and for s > s∗
 , ϕ′

u(s) > . So ϕu(s) attains its minimum at s∗
 , which

means that s∗
 u ∈ N+

λ .
Case : If u ∈ B+ ∩ H, ψu(s) ≥  for s small enough and ψu(s) → –∞ as s → +∞. From

(.), ψu(s) has a unique maximum stationary point at s∗ = ( (–p)‖u‖

(q–p)
∫ T

 b(t)|u|q dt
)


q– such that
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ψ ′
u(s∗) = . For s > , we infer that

max
{
ψu(s)

}
= ψu

(
s∗) =

(
 – p
q – p

) –p
q– q – 

q – p
‖u‖ (q–p)

q–

(
∫ T

 b(t)|u|q)
–p
q–

= cpq
‖u‖ (q–p)

q–

(
∫ T

 b(t)|u|q)
–p
q–

.

Since u ∈ H, there exists a unique s∗
 and ψu(s∗

) = λ
∫ T

 h(t)|u(t)|p dt satisfying ϕ′
u(s∗

) = ,
which means s∗

u ∈ Nλ. Moreover, we obtain that for  < s < s∗
, ϕ′

u(s) >  and for s > s∗
,

ϕ′
u(s) < . So ϕu(s) gets its maximum at s∗

, that is to say, s∗
u ∈ N–

λ .
Case : If u ∈ B+ ∩H+, similarly to Case , ψu(s) has a unique maximum stationary point

at s∗ such that ψ ′
u(s∗) = . Hence, if

 < λ

∫ T


h(t)

∣∣u(t)
∣∣p dt < ψu

(
s∗), (.)

there exist two points s, s such that λ
∫ T

 h(t)|u(t)|p dt = ψu(s) = ψu(s). From ϕ′
u(s) = 

and ψ ′
u(s) > , we have su ∈ N+

λ . By ϕ′
u(s) =  and ψ ′

u(s) < , we get su ∈ N–
λ .

Lemma . If λ ∈ (,λ), then N
λ = ∅.

Proof Suppose not, that is, N
λ �= ∅. Letting u ∈ N

λ , we have

‖u‖ = λ

∫ T


h(t)

∣∣u(t)
∣∣p dt +

∫ T


b(t)

∣∣u(t)
∣∣q dt = λ

q – p
q – 

∫ T


h(t)

∣∣u(t)
∣∣p dt, (.)

‖u‖ = λ(p – )
∫ T


h(t)

∣∣u(t)
∣∣p dt + (q – )

∫ T


b(t)

∣∣u(t)
∣∣q dt

=
q – p
 – p

∫ T


b(t)

∣∣u(t)
∣∣q dt. (.)

Since  < p < , q > , from (.) and (.) we obtain

‖u‖ ≤
(

λ
q – p
q – 

chcp
p

) 
–p

, (.)

‖u‖ ≥
(

 – p
(q – p)cbcq

q

) 
q–

. (.)

It is easy to verify that, if λ ∈ (,λ), (.) and (.) are contradictory. The proof is fin-
ished. �

By Lemmas . and ., for any λ ∈ (,λ), we know that Nλ = N+
λ ∪ N–

λ and Iλ(u) is
coercive and bounded from below on N+

λ and N–
λ .

Now, we complete the proof of Theorem ..

Proof Since λ ∈ (,λ), N
λ = ∅. In the following, we show that there exists u belonging to

N+
λ and satisfying Iλ(u) = infu∈N+

λ
Iλ(u) < . From Lemma ., u is the critical point of Iλ.
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By (f ), there exists u ∈ Eα,
 satisfying

∫ T
 h(t)|u(t)|p dt > , that is, u ∈ H+. If u ∈ B,

from the argument in Case , there exists a unique point s∗
 such that s∗

 u ∈ N+
λ . If u ∈ B+,

from the argument in Case , we get that

ψu(s∗)∫ T
 h(t)|u(t)|p dt

= cpq
‖u‖ (q–p)

q–

(
∫ T

 b(t)|u|q)
–p
q–

∫ T
 h(t)|u(t)|p dt

≥ cpq
‖u‖ (q–p)

q–

chcp
p‖u‖p(cbcq

q)
–p
q– ‖u‖ q(–p)

q–

=
cpq

chcp
p(cbcq

q)
–p
q–

= λ.

Since λ ∈ (,λ), from (.), we can deduce that there also exists a point, still represented
by s∗

 , such that s∗
 u ∈ N+

λ . So N+
λ is nonempty.

For u ∈ N+
λ , from (.) and

‖u‖ – λ(p – )
∫ T


h(t)

∣∣u(t)
∣∣p dt – (q – )

∫ T


b(t)

∣∣u(t)
∣∣q dt > ,

we obtain

‖u‖ <
λ(q – p)

q – 

∫ T


h(t)

∣∣u(t)
∣∣p dt.

Consequently,

Iλ(u) =
(




–

q

)
‖u‖ – λ

(

p

–

q

)∫ T


h(t)

∣∣u(t)
∣∣p dt

≤ q – 
q

λ(q – p)
q – 

∫ T


h(t)

∣∣u(t)
∣∣p dt –

λ(q – p)
pq

∫ T


h(t)

∣∣u(t)
∣∣p dt

=
λ(p – )(q – p)

pq

∫ T


h(t)

∣∣u(t)
∣∣p dt

< .

Thus we have infu∈N+
λ

Iλ(u) < .
Since Iλ(u) is coercive and bounded from below on N+

λ , there exist a minimizing se-
quence {uk} ⊂ N+

λ and u ∈ Eα,
 such that Iλ(uk) → infu∈N+

λ
Iλ(u) and uk ⇀ u (up to a

subsequence). From Lemma ., uk → u in Lr[, T] (r = p, q). Hence

∫ T


h(t)

∣∣uk(t)
∣∣p dt →

∫ T


h(t)

∣∣u(t)
∣∣p dt,

∫ T


b(t)

∣∣uk(t)
∣∣q dt →

∫ T


b(t)

∣∣u(t)
∣∣q dt.

It follows from (.) and (.) that

λ

(

p

–

q

)∫ T


h(t)

∣∣uk(t)
∣∣p dt =

(



–

q

)
‖uk‖ – Iλ(uk).
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Letting k → ∞, we get
∫ T

 h(t)|u(t)|p dt > . By the same argument as above, there exists
s∗

 such that s∗
 u ∈ N+

λ . That is to say, ϕu (s) attains its local (or global) minimum at s∗
 .

Therefore, there exists t > s∗
 such that

ϕ′
u (s)

⎧⎨
⎩< ,  < s < s∗

 ,

> , s∗
 < s < t.

(.)

Next we claim that uk → u in Eα,
 . Otherwise, ‖u‖ < lim infk→∞ ‖uk‖. Since uk ∈ N+

λ ,
ϕuk (s) attains its local (or global) minimum at s = . So, there exists t >  such that

ϕ′
uk

(s)

⎧⎨
⎩< ,  < s < ,

> ,  < s < t.
(.)

What is more,

lim
k→∞

ϕ′
uk

(
s∗


)

= lim
k→∞

s∗
‖uk‖ – λs∗(p–)



∫ T


h(t)

∣∣uk(t)
∣∣p dt

– s∗(q–)


∫ T


b(t)

∣∣uk(t)
∣∣q dt

> s∗
‖u‖ – λs∗(p–)



∫ T


h(t)

∣∣u(t)
∣∣p dt – s∗(q–)



∫ T


b(t)

∣∣u(t)
∣∣q dt

= ϕ′
u

(
s∗


)

= .

Hence, for k large enough, ϕ′
uk

(s∗
 ) > . Together with (.), we have s∗

 > . Together with
(.), we get

Iλ
(
s∗

 u
) ≤ Iλ(u) < lim inf

k→∞
Iλ(uk) = inf

u∈N+
λ

Iλ(u),

which is a contradiction. Hence, uk → u strongly in Eα,
 . This implies

Iλ(uk) → Iλ(u) = inf
u∈N+

λ

Iλ(u).

Namely, u is a minimizer of Iλ on N+
λ . From Lemmas . and ., u is a critical point of

Iλ(u). The proof is finished. �

Completion of the proof of Theorem ..

Proof From Theorem ., we know that u ∈ N+
λ is a critical point of Iλ(u) when λ ∈ (, p

 λ)
since p < . Next, we show that if λ ∈ (, p

 λ), there exists another critical point u of
Iλ which belongs to N–

λ and satisfies Iλ(u) = infu∈N–
λ

Iλ(u) > . Let u ∈ Eα,
 satisfying∫ T

 b(t)|u(t)|q dt > , namely, u ∈ B+. From the argument in Cases  and , we obtain that
N–

λ is not empty. Since Iλ(u) is coercive and bounded from below on N–
λ , there exist a min-

imizing sequence {uk} and u ∈ Eα,
 such that Iλ(uk) → infu∈N–

λ
Iλ(u) and uk ⇀ u(up to a
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subsequence). Next we claim that Iλ(uk) → Iλ(u) and infu∈N–
λ

Iλ(u) > . For u ∈ N–
λ , from

(.) and

‖u‖ – λ(p – )
∫ T


h(t)

∣∣u(t)
∣∣p dt – (q – )

∫ T


b(t)

∣∣u(t)
∣∣q dt < ,

we have

‖u‖ <
q – p
 – p

∫ T


b(t)

∣∣u(t)
∣∣q dt.

For q >  and from Lemma ., we have

‖u‖ >
(

 – p
(q – p)cbcq

q

) 
q–

= δ > .

Thus

Iλ(u) =
(




–

q

)
‖u‖ – λ

(

p

–

q

)∫ T


h(t)

∣∣u(t)
∣∣p dt

>
q – 

q
‖u‖ –

λ(q – p)
pq

chcp
p‖u‖p

= ‖u‖p
(

q – 
q

‖u‖–p –
λ(q – p)

pq
chcp

p

)

> δ
p


(
q – 

q
δ

–p
 –

λ(q – p)
pq

chcp
p

)

= δ.

Since λ < p
 λ, then Iλ(u) > δ >  and infu∈N–

λ
Iλ(u) > . It follows from (.) and (.) that

(

p

–

q

)∫ T


b(t)

∣∣uk(t)
∣∣q dt = Iλ(uk) +

(

p

–



)
‖uk‖.

Letting k → ∞, from infu∈N–
λ

Iλ(u) > , we get

∫ T


b(t)

∣∣u(t)
∣∣q dt > .

Since λ ∈ (, p
 λ), from the argument in Cases  and , we infer that there exists su ∈ N–

λ .
Next we claim that uk → u strongly in Eα,

 . If not, ‖u‖ < lim infk→∞ ‖uk‖. Since uk ∈ N–
λ ,

then Iλ(suk) attains its global maximum at s = . Hence,

Iλ(su) < lim inf
k→∞

Iλ(suk) ≤ lim inf
k→∞

Iλ(uk) = inf
u∈N–

λ

Iλ(u),

which is a contradiction. So, uk → u strongly in Eα,
 and u ∈ N–

λ . Namely, u is a min-
imizer of Iλ on N–

λ . From Lemmas . and ., u is a critical point of Iλ(u). The proof is
finished. �
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