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Abstract
This article deals with some existence and Ulam-Hyers-Rassias stability results for a
class of functional differential equations involving the Hilfer-Hadamard fractional
derivative. An application is made of a Schauder fixed point theorem for the existence
of solutions. Next we prove that our problem is generalized Ulam-Hyers-Rassias stable.
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1 Introduction
Fractional differential equations have recently been applied in various areas of engineer-
ing, mathematics, physics and bio-engineering, and other applied sciences. For some fun-
damental results in the theory of fractional calculus and fractional ordinary and partial
differential equations, we refer the reader to the monographs of Abbas et al. [, ], Samko
et al. [], Kilbas et al. [] and Zhou [], the papers [–] and the references therein.

The stability of functional equations was originally raised by Ulam [], next by Hy-
ers []. Thereafter, this type of stability is called the Ulam-Hyers stability. In , Ras-
sias [] provided a remarkable generalization of the Ulam-Hyers stability of mappings by
considering variables. The concept of stability for a functional equation arises when we re-
place the functional equation by an inequality which acts as a perturbation of the equation.
Considerable attention has been given to the study of the Ulam-Hyers and Ulam-Hyers-
Rassias stability of all kinds of functional equations; one can see the monographs of [],
and the papers of Abbas et al. [, , , –], Petru et al. [], Rus [, ], and Wang et
al. [, ]. More details from historical point of view, and recent developments of such
stabilities are reported in [, ].

Recently, considerable attention has been given to the existence of solutions of initial
and boundary value problems for fractional differential equations with Hilfer fractional
derivative; see [–]. Motivated by the Hilfer fractional derivative (which interpolates
the Riemann-Liouville derivative and the Caputo derivative), Qassim et al. [, ] con-
sidered a new type of fractional derivative (which interpolates the Hadamard derivative
and its Caputo counterpart). Motivated by the above papers, in this article we discuss the
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existence and the Ulam stability of solutions for the following problem of Hilfer-Hadamard
fractional differential equations of the form

⎧
⎨

⎩

(HDα,β
 u)(t) = f (t, u(t)); t ∈ J := [, T],

(HI–γ
 u)(t)

∣
∣
t= = φ,

()

where α ∈ (, ), β ∈ [, ], γ = α + β – αβ , T > , φ ∈R, f : J ×R →R is a given function,
HI–γ

 is the left-sided mixed Hadamard integral of order  – γ , and HDα,β
 is the Hilfer-

Hadamard fractional derivative of order α and type β , introduced by Hilfer in [].
The present paper initiates the Ulam stability for differential equations involving the

Hilfer-Hadamard fractional derivative.

2 Preliminaries
Let C be the Banach space of all continuous functions v from I into R with the supremum
(uniform) norm

‖v‖∞ := sup
t∈J

∣
∣v(t)

∣
∣.

By L(J), we denote the space of Lebesgue-integrable functions v : J →R with the norm

‖v‖ =
∫ T



∣
∣v(t)

∣
∣dt.

As usual, AC(J) denotes the space of absolutely continuous functions from J into R. We
denote by AC(J) the space defined by

AC(J) :=
{

w : J →R :
d
dt

w(t) ∈ AC(J)
}

.

Let

δ = t
d
dt

, q > , n = [q] + ,

where [q] is the integer part of q. Define the space

ACn
δ :=

{
u : [, T] → E : δn–[u(t)

] ∈ AC(J)
}

.

Let γ ∈ (, ], by Cγ ,ln(J), Cγ (J) and C
γ (J), we denote the weighted spaces of continuous

functions defined by

Cγ ,ln(J) =
{

w(t) : (ln t)–γ w(t) ∈ C
}

with the norm

‖w‖Cγ ,ln := sup
t∈J

∣
∣(ln t)–γ w(t)

∣
∣,

Cγ (J) =
{

w : (, T] →R : t–γ w(t) ∈ C
}
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with the norm

‖w‖Cγ := sup
t∈J

∣
∣t–γ w(t)

∣
∣,

and

C
γ (J) =

{

w ∈ C :
dw
dt

∈ Cγ

}

with the norm

‖w‖C
γ

:= ‖w‖∞ +
∥
∥w′∥∥

Cγ
.

In the following, we denote ‖w‖Cγ ,ln by ‖w‖C .
Now, we give some results and properties of fractional calculus.

Definition . ([–]; Riemann-Liouville fractional integral) The left-sided mixed Rie-
mann-Liouville integral of order r >  of a function w ∈ L(J) is defined by

(
Ir

 w
)
(t) =


�(r)

∫ t


(t – s)r–w(s) ds for a.e. t ∈ J ,

where �(·) is the (Euler’s) gamma function defined by

�(ξ ) =
∫ ∞


tξ–e–t dt; ξ > .

Notice that for all r, r, r >  and each w ∈ C, we have Ir
 w ∈ C, and

(
Ir

 Ir
 w

)
(t) =

(
Ir+r

 w
)
(t) for a.e. t ∈ J .

Definition . ([–]; Riemann-Liouville fractional derivative) The Riemann-Liouville
fractional derivative of order r >  of a function w ∈ L(J) is defined by

(
Dr

w
)
(t) =

(
dn

dtn In–r
 w

)

(t)

=


�(n – r)
dn

dtn

∫ t


(t – s)n–r–w(s) ds for a.e. t ∈ J ,

where n = [r] +  and [r] is the integer part of r.

In particular, if r ∈ (, ], then

(
Dr

w
)
(t) =

(
d
dt

I–r
 w

)

(t)

=


�( – r)
d
dt

∫ t


(t – s)–rw(s) ds for a.e. t ∈ J .
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Let r ∈ (, ], γ ∈ [, ) and w ∈ C–γ (J). Then the following expression leads to the left
inverse operator as follows:

(
Dr

Ir
 w

)
(t) = w(t) for all t ∈ (, T].

Moreover, if I–r
 w ∈ C

–γ (J), then the following composition is proved in []:

(
Ir

 Dr
w

)
(t) = w(t) –

(I–r
 w)(+)
�(r)

tr– for all t ∈ (, T].

Definition . ([–]; Caputo fractional derivative) The Caputo fractional derivative of
order r >  of a function w ∈ L(J) is defined by

(cDr
w

)
(t) =

(

In–r


dn

dtn w
)

(t)

=


�(n – r)

∫ t


(t – s)n–r– dn

dsn w(s) ds for a.e. t ∈ J .

In particular, if r ∈ (, ], then

(cDr
w

)
(t) =

(

I–r


d
dt

w
)

(t)

=


�( – r)

∫ t


(t – s)–r d

ds
w(s) ds for a.e. t ∈ J .

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [, ] for a more detailed analysis.

Definition . ([, ]; Hadamard fractional integral) The Hadamard fractional integral
of order q >  for a function g ∈ L(I, E) is defined as

(HIq
 g

)
(x) =


�(q)

∫ x



(

ln
x
s

)q– g(s)
s

ds,

provided the integral exists.

Example . Let  < q < . Then

HIq
 ln t =


�( + q)

(ln t)+q for a.e. t ∈ [, e].

Set

δ = x
d

dx
, q > , n = [q] + 

and

ACn
δ :=

{
u : [, T] → E : δn–[u(x)

] ∈ AC(J)
}

.
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Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional deriva-
tive is defined in terms of the Hadamard fractional integral in the following way.

Definition . ([, ]; Hadamard fractional derivative) The Hadamard fractional deriva-
tive of order q >  applied to the function w ∈ ACn

δ is defined as

(HDq
 w

)
(x) = δn(HIn–q

 w
)
(x).

In particular, if q ∈ (, ], then

(HDq
 w

)
(x) = δ

(HI–q
 w

)
(x).

Example . Let  < q < . Then

HDq
 ln t =


�( – q)

(ln t)–q for a.e. t ∈ [, e].

It has been proved (see, e.g., Kilbas [], Theorem .) that in the space L(J) the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.,

(HDq

)(HIq

 w
)
(x) = w(x).

From Theorem . of [], we have

(HIq

)(HDq

 w
)
(x) = w(x) –

(HI–q
 w)()
�(q)

(ln x)q–.

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional
derivative is defined in the following way.

Definition . (Caputo-Hadamard fractional derivative) The Caputo-Hadamard frac-
tional derivative of order q >  applied to the function w ∈ ACn

δ is defined as

(HcDq
 w

)
(x) =

(HIn–q
 δnw

)
(x).

In particular, if q ∈ (, ], then

(HcDq
 w

)
(x) =

(HI–q
 δw

)
(x).

In [], Hilfer studied applications of a generalized fractional operator having the
Riemann-Liouville and the Caputo derivatives as specific cases (see also [–]).

Definition . (Hilfer fractional derivative) Let α ∈ (, ), β ∈ [, ], w ∈ L(J),
I(–α)(–β)

 w ∈ AC(J). The Hilfer fractional derivative of order α and type β of w is defined
as

(
Dα,β

 w
)
(t) =

(

Iβ(–α)


d
dt

I(–α)(–β)
 w

)

(t) for a.e. t ∈ J . ()
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Properties Let α ∈ (, ), β ∈ [, ], γ = α + β – αβ , and w ∈ L(J).
. The operator (Dα,β

 w)(t) can be written as

(
Dα,β

 w
)
(t) =

(

Iβ(–α)


d
dt

I–γ
 w

)

(t) =
(
Iβ(–α)

 Dγ
 w

)
(t) for a.e. t ∈ J .

Moreover, the parameter γ satisfies

γ ∈ (, ], γ ≥ α, γ > β ,  – γ <  – β( – α).

. The generalization () for β =  coincides with the Riemann-Liouville derivative and
for β =  with the Caputo derivative.

Dα,
 = Dα

 , and Dα,
 =c Dα

 .

. If Dβ(–α)
 w exists and in L(J), then

(
Dα,β

 Iα
 w

)
(t) =

(
Iβ(–α)

 Dβ(–α)
 w

)
(t) for a.e. t ∈ J .

Furthermore, if w ∈ Cγ (J) and I–β(–α)
 w ∈ C

γ (J), then

(
Dα,β

 Iα
 w

)
(t) = w(t) for a.e. t ∈ J .

. If Dγ
 w exists and in L(J), then

(
Iα

 Dα,β
 w

)
(t) =

(
Iγ

 Dγ
 w

)
(t) = w(t) –

I–γ
 (+)
�(γ )

tγ – for a.e. t ∈ J .

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative (in-
troduced for the first time in []) is defined in the following way.

Definition . (Hilfer-Hadamard fractional derivative) Let α ∈ (, ), β ∈ [, ], γ = α +
β – αβ , w ∈ L(J), and HI(–α)(–β)

 w ∈ AC(J). The Hilfer-Hadamard fractional derivative of
order α and type β applied to the function w is defined as

(HDα,β
 w

)
(t) =

(HIβ(–α)


(HDγ
 w

))
(t)

=
(HIβ(–α)

 δ
(HI–γ

 w
))

(t) for a.e. t ∈ J . ()

This new fractional derivative () may be viewed as interpolating the Hadamard frac-
tional derivative and the Caputo-Hadamard fractional derivative. Indeed, for β = , this
derivative reduces to the Hadamard fractional derivative, and when β = , we recover the
Caputo-Hadamard fractional derivative.

HDα,
 = HDα

 , and HDα,
 =Hc Dα

 .

From Theorem  in [], we concluded the following lemma.
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Lemma . Let f : I × E → E be such that f (·, u(·)) ∈ Cγ ,ln(J) for any u ∈ Cγ ,ln(J). Then
problem () is equivalent to the problem of the solutions of the Volterra integral equation

u(t) =
φ

�(γ )
(ln t)γ – +

(HIα
 f

(·, u(·)))(t).

Now, we consider the Ulam stability for problem (). Let ε >  and 
 : I → [,∞) be a
continuous function. We consider the following inequalities:

∣
∣
(HDα,β

 u
)
(t) – f

(
t, u(t)

)∣
∣ ≤ ε; t ∈ J . ()

∣
∣
(HDα,β

 u
)
(t) – f

(
t, u(t)

)∣
∣ ≤ 
(t); t ∈ J . ()

∣
∣
(HDα,β

 u
)
(t) – f

(
t, u(t)

)∣
∣ ≤ ε
(t); t ∈ J . ()

Definition . ([, ]) Problem () is Ulam-Hyers stable if there exists a real number
cf >  such that for each ε >  and for each solution u ∈ Cγ ,ln of inequality () there exists
a solution v ∈ Cγ ,ln of () with

∣
∣u(t) – v(t)

∣
∣ ≤ εcf ; t ∈ J .

Definition . ([, ]) Problem () is generalized Ulam-Hyers stable if there exists cf :
C([,∞), [,∞)) with cf () =  such that for each ε >  and for each solution u ∈ Cγ ,ln of
inequality () there exists a solution v ∈ Cγ ,ln of () with

∣
∣u(t) – v(t)

∣
∣ ≤ cf (ε); t ∈ J .

Definition . ([, ]) Problem () is Ulam-Hyers-Rassias stable with respect to 
 if
there exists a real number cf ,
 >  such that for each ε >  and for each solution u ∈ Cγ ,ln

of inequality () there exists a solution v ∈ Cγ ,ln of () with

∣
∣u(t) – v(t)

∣
∣ ≤ εcf ,

(t); t ∈ J .

Definition . ([, ]) Problem () is generalized Ulam-Hyers-Rassias stable with re-
spect to 
 if there exists a real number cf ,
 >  such that for each solution u ∈ Cγ ,ln of
inequality () there exists a solution v ∈ Cγ ,ln of () with

∣
∣u(t) – v(t)

∣
∣ ≤ cf ,

(t); t ∈ J .

Remark . It is clear that
(i) Definition . ⇒ Definition .,

(ii) Definition . ⇒ Definition .,
(iii) Definition . for 
(·) =  ⇒ Definition ..

One can have similar remarks for inequalities () and ().
In the sequel we will make use of the following fixed point theorem.

Theorem . (Schauder fixed point theorem []) Let E be a Banach space and Q be
a nonempty bounded convex and closed subset of E, and N : Q → Q is a compact and
continuous map. Then N has at least one fixed point in Q.
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3 Existence of solutions
Let us start by defining what we mean by a solution of problem ().

Definition . By a solution of problem () we mean a measurable function u ∈ Cγ ,ln that
satisfies the condition (HI–γ

 u)(+) = φ and the equation (HDα,β
 u)(t) = f (t, u(t)) on J .

The following hypotheses will be used in the sequel.

(H) The function t 
→ f (t, u) is measurable on I for each u ∈ Cγ ,ln, and the function u 
→
f (t, u) is continuous on Cγ ,ln for a.e. t ∈ J ,

(H) There exists a continuous function p : I → [,∞) such that

∣
∣f (t, u)

∣
∣ ≤ p(t)

 + |u| |u| for a.e. t ∈ J and each u ∈R.

Set

p∗ = sup
t∈J

p(t).

Now, we shall prove the following theorem concerning the existence of solutions of
problem ().

Theorem . Assume that hypotheses (H) and (H) hold. Then problem () has at least
one solution defined on J .

Proof Consider the operator N : Cγ ,ln → Cγ ,ln defined by

(Nu)(t) =
φ

�(γ )
(ln t)γ – +

∫ t



(

ln
t
s

)α– f (s, u(s))
s�(α)

ds. ()

Clearly, the fixed points of the operator N are solution of problem ().
For any u ∈ Cγ ,ln and each t ∈ J , we have

∣
∣(ln t)–γ (Nu)(t)

∣
∣ ≤ |φ|

�(γ )
+

(ln t)–γ

�(α)

∫ t



(

ln
t
s

)α–∣
∣f

(
s, u(s)

)∣
∣ds

s

≤ |φ|
�(γ )

+
(ln t)–γ

�(α)

∫ t



(

ln
t
s

)α–

p(s)
ds
s

≤ |φ|
�(γ )

+
p∗(ln T)–γ

�(α)

∫ t



(

ln
t
s

)α– ds
s

≤ |φ|
�(γ )

+
p∗(ln T)–γ +α

�( + α)
.

Thus

∥
∥N(u)

∥
∥

C ≤ |φ|
�(γ )

+
p∗(ln T)–γ +α

�( + α)
:= R. ()

This proves that N transforms the ball BR := B(, R) = {w ∈ Cγ ,ln : ‖w‖C ≤ R} into itself. We
shall show that the operator N : BR → BR satisfies all the assumptions of Theorem ..
The proof will be given in several steps.
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Step . N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ J , we have

∣
∣(ln t)–γ (Nun)(t) – (ln t)–γ (Nu)(t)

∣
∣

≤ (ln t)–γ

�(α)

∫ t



(

ln
t
s

)α–∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

s
. ()

Since un → u as n → ∞ and f is continuous, by the Lebesgue dominated convergence
theorem, equation () implies

∥
∥N(un) – N(u)

∥
∥

C →  as n → ∞.

Step . N(BR) is uniformly bounded.
This is clear since N(BR) ⊂ BR and BR is bounded.
Step . N(BR) is equicontinuous.
Let t, t ∈ J , t < t and let u ∈ BR. Thus, we have

∣
∣(ln t)–γ (Nu)(t) – (ln t)–γ (Nu)(t)

∣
∣

≤
∣
∣
∣
∣(ln t)–γ

∫ t



(

ln
t

s

)α– f (s, u(s))
s�(α)

ds – (ln t)–γ

∫ t



(

ln
t

s

)α– f (s, u(s))
s�(α)

ds
∣
∣
∣
∣

≤ (ln t)–γ

∫ t

t

(

ln
t

s

)α– |f (s, u(s))|
s�(α)

ds

+
∫ t



∣
∣
∣
∣(ln t)–γ

(

ln
t

s

)α–

– (ln t)–γ

(

ln
t

s

)α–∣∣
∣
∣
|f (s, u(s))|

s�(α)
ds

≤ (ln t)–γ

∫ t

t

(

ln
t

s

)α– p(s)
s�(α)

ds

+
∫ t



∣
∣
∣
∣(ln t)–γ

(

ln
t

s

)α–

– (ln t)–γ

(

ln
t

s

)α–∣∣
∣
∣

p(s)
s�(α)

ds.

Hence, we get

∣
∣(ln t)–γ (Nu)(t) – (ln t)–γ (Nu)(t)

∣
∣

≤ p∗(ln T)–γ +α

�( + α)

(

ln
t

t

)α

+
p∗

�(α)

∫ t



∣
∣
∣
∣(ln t)–γ

(

ln
t

s

)α–

– (ln t)–γ

(

ln
t

s

)α–∣∣
∣
∣ds.

As t −→ t, the right-hand side of the above inequality tends to zero.
As a consequence of Steps  to  together with the Arzelá-Ascoli theorem, we can con-

clude that N is continuous and compact. From an application of Schauder’s theorem (The-
orem .), we deduce that N has at least a fixed point u which is a solution of problem
(). �

4 Ulam-Hyers-Rassias stability
Now, we are concerned with the generalized Ulam-Hyers-Rassias stability of our problem
().
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Theorem . Assume that hypotheses (H), (H) and the following hypotheses hold.

(H) There exists λ
 >  such that for each t ∈ J , we have

(HIα
 


)
(t) ≤ λ

(t);

(H) There exists q ∈ C(J , [,∞)) such that for each t ∈ J , we have

p(t) ≤ q(t)
(t).

Then problem () is generalized Ulam-Hyers-Rassias stable.

Proof Consider the operator N : Cγ ,ln → Cγ ,ln defined in (). Let u be a solution of in-
equality (), and let us assume that v is a solution of problem (). Thus, we have

v(t) =
φ

�(γ )
(ln t)γ – +

∫ t



(

ln
t
s

)α– f (s, v(s))
s�(α)

ds.

From inequality (), for each t ∈ J , we have

∣
∣
∣
∣u(t) –

φ

�(γ )
(ln t)γ – –

∫ t



(

ln
t
s

)α– f (s, u(s))
s�(α)

ds
∣
∣
∣
∣ ≤ (HIα

 

)
(t).

Set

q∗ = sup
t∈J

q(t).

From hypotheses (H) and (H), for each t ∈ J , we get

∣
∣u(t) – v(t)

∣
∣ ≤

∣
∣
∣
∣u(t) –

φ

�(γ )
(ln t)γ – –

∫ t



(

ln
t
s

)α– f (s, u(s))
s�(α)

ds
∣
∣
∣
∣

+
∫ t



(

ln
t
s

)α– |f (s, u(s)) – f (s, v(s))|
s�(α)

ds

≤ (HIα
 


)
(t) +

∫ t



(

ln
t
s

)α– q∗
(s)
s�(α)

ds

≤ λφ
(t) + q∗(HIα
 


)
(t)

≤ [
 + q∗]λφ
(t)

:= cf ,

(t).

Hence, problem () is generalized Ulam-Hyers-Rassias stable. �

In the sequel, we will use the following theorem.

Theorem . Let (�, d) be a generalized complete metric space and  : � → � be a
strictly contractive operator with a Lipschitz constant L < . If there exists a nonnegative
integer k such that d(k+x,kx) < ∞ for some x ∈ �, then the following propositions hold
true:
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(A) The sequence (kx)n∈N converges to a fixed point x∗ of ;
(B) x∗ is the unique fixed point of  in �∗ = {y ∈ � | d(kx, y) < ∞};
(C) If y ∈ �∗, then d(y, x∗) ≤ 

–L d(y,x).

Let X = X(I,R) be the metric space, with the metric

d(u, v) = sup
t∈J

‖u(t) – v(t)‖C


(t)
.

Theorem . Assume that (H) and the following hypothesis hold.

(H) There exists ϕ ∈ C(J , [,∞)) such that for each t ∈ J and all u, v ∈R, we have

∣
∣f (t, u) – f (t, u)

∣
∣ ≤ (ln t)–γ ϕ(t)
(t)|u – v|.

If

L := (ln T)–γ ϕ∗λφ < , ()

where ϕ∗ = supt∈J ϕ(t), then there exists a unique solution u of problem (), and problem
() is generalized Ulam-Hyers-Rassias stable. Furthermore, we have

∣
∣u(t) – u(t)

∣
∣ ≤ 
(t)

 – L
.

Proof Let N : Cγ ,ln → Cγ ,ln be the operator defined in (). Applying Theorem ., we have

∣
∣(Nu)(t) – (Nv)(t)

∣
∣ ≤

∫ t



(

ln
t
s

)α– |f (s, u(s)) – f (s, v(s))|
s�(α)

ds

≤
∫ t



(

ln
t
s

)α–
ϕ(s)
(s)|(ln s)–γ u(s) – (ln s)–γ v(s)|

s�(α)
ds

≤
∫ t



(

ln
t
s

)α–
ϕ∗
(s)‖u – v‖C

s�(α)
ds

≤ ϕ∗(HIα
 


)
(t)‖u – v‖C

≤ ϕ∗λφ
(t)‖u – v‖C .

Thus

∣
∣(ln t)–γ (Nu)(t) – (ln t)–γ (Nv)(t)

∣
∣ ≤ (ln T)–γ ϕ∗λφ
(t)‖u – v‖C .

Hence, we get

d
(
N(u), N(v)

)
= sup

t∈J

‖(Nu)(t) – (Nv)(t)‖C


(t)
≤ L‖u – v‖C ,

from which we conclude the theorem. �
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5 An example
As an application of our results, we consider the following problem of Hilfer-Hadamard
fractional differential equation of the form

⎧
⎨

⎩

(HD

 , 


 u)(t) = f (t, u(t)); t ∈ [, e],

(HI



 u)(t)
∣
∣
t= = ,

()

where
⎧
⎨

⎩

f (t, u) = (t–)
–
 sin(t–)

(+
√

t–)(+|u|) ; t ∈ (, e], u ∈R,

f (, u) = ; u ∈ R.

Clearly, the function f is continuous.
Hypothesis (H) is satisfied with

⎧
⎨

⎩

p(t) = (t–)
–
 | sin(t–)|

(+
√

t–) ; t ∈ (, e],

p() = .

Hence, Theorem . implies that problem () has at least one solution defined on [, e].
Also, hypothesis (H) is satisfied with


(t) = e, and λ
 =
√
π

.

Indeed, for each t ∈ [, e], we get

(HIα
 


)
(t) ≤ e

√
π

= λ

(t).

Consequently, Theorem . implies that problem () is generalized Ulam-Hyers-Rassias
stable.
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