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Abstract
A (2 + 1)-dimensional nonlinear Schrödinger equation is mainly discussed. Based on
the Hirota direct method and the Wronskian technique, multiple-soliton solutions
and a generalized double Wronskian determinant are obtained, respectively.
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1 Introduction
As one of the most important integrable nonlinear equations, the nonlinear Schrödinger
(NLS) equation

iut + uxx + ε|u|u = , ()

is a well-known mathematical model for describing the evolution of pulses in nonlinear
optical fibers and of surface gravity waves in fluid dynamics []. To investigate different
complex nonlinear phenomena of our realistic world, some generalizations of the widely
used ( + )-dimensional Eq. () into a ( + )-dimensional one are obtained [–]. Theo-
retical and experimental research of these higher-dimensional integrable generalizations
has been carried out due to their attraction and application in many fields such as plasma
physics, nonlinear optics, fluid dynamics, and Bose-Einstein condensates [–]. The NLS
equation admits the following ( + )-dimensional extension:

iut + uxx – uQx = ,

iu∗
t – u∗

xx + u∗Qx = , ()

uu∗ = Qy,

where u = u(x, y, t) is a complex function, Q = Q(x, y, t) is a real function, and x, y, t are real.
For system (), Ruan and Chen [] have discussed its Painlevé properties and presented
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infinitely many truncated symmetries in terms of arbitrary functions of time t and vari-
able y. Zhang [] has revealed the rich dromion structures of system () based on the
Hirota bilinear form.

One of vital aspects of soliton theory is searching exact solutions to soliton equations.
Generally speaking, the Hirota bilinear method and the Wronskian technique are effi-
cient and direct methods to construct exact solutions [–]. Recently, Chen et al. []
extended the traditional condition equation to the arbitrary matrix equation and estab-
lished the rational solutions and complexitons in terms of double Wronskian forms for
the AKNS system. At present, general rational soliton solutions to various soliton equa-
tions are also discussed within the Casoratian structure and the Grammian or Pfaffian
formulation [–].

In this paper, using the Hirota bilinear method and Chen’s method, we discuss multiple-
soliton solutions and a generalized double Wronskian determinant solution to system (),
respectively. The paper is organized as follows. In Section , by a dependent variable trans-
formation, system () is transformed into a bilinear equation. Utilizing the perturbation
method, we derive soliton solutions of system () based on the Hirota bilinear form. In
Section , we present a double Wronskian form of system () whose entries satisfy a gen-
eral matrix equation. A conclusion and remarks are given in Section .

2 Multi-soliton solutions
Via the dependent variable transformations []

u =
g
f

, u∗ =
g∗

f
, Q = –(ln f )x, ()

where g = g(x, y, t) is a differentiable complex function, and f = f (x, y, t) is a differentiable
real function, the bilinear form for system () is as follows:

(
D

x + iDt
)
g · f = , (a)

(
D

x – iDt
)
g∗ · f = , (b)

DxDyf · f = –gg∗, (c)

where Dx, Dy, and Dt are the Hirota bilinear differential operators [].
We expand f and g in the form of a power series as

f (x, y, t) =  + f ()ε + f ()ε + · · · + f (j)εj + · · · , (a)

g(x, y, t) = g()ε + g()ε + · · · + g(j+)εj+ + · · · . (b)

Substituting (a)-(b) into Eqs. (a)-(c) and collecting terms of each order of ε, we get

ig()
t + g()

xx = , (a)

ig()
t + g()

xx = –
(
D

x + iDt
)
g() · f (), (b)

· · · · · ·
–ig()∗

t + g()∗
xx = , (c)
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(a) (b)

Figure 1 The plots of expression (8) with special parameters: k1 = 1, p1 = 2, t = 1.

–ig()∗
t + g()∗

xx = –
(
D

x – iDt
)
g()∗ · f (), (d)

· · · · · ·
f ()

xy = –g()g()∗, (e)

f ()
xy = –DxDyf () · f () – g()g()∗ – g()g()∗, (f)

· · · · · ·

2.1 One-soliton solution
It is obvious that Eqs. (a)-(f) possess a particular solution

g() = eξ , f () = eξ+ξ∗
 +θ , g() = f () = · · · = , ()

where

ξ = kx + py + wt + ξ
 , w = ik

 , eθ = –


(k + k∗
 )(p + p∗

 )
.

If we take ε = , then it is easy to see that g = eξ , f =  + eξ+ξ∗
 +θ is a solution of Eqs. (a)-

(c). Thus, through transformations (), we can obtain the one-soliton solution of system
() as

u =
g

f
=

eξ

 + eξ+ξ∗
 +θ

, Q = –(ln f)x. ()

A specific one-soliton solution with choices of the involved parameters is plotted in Fig-
ure .

2.2 Two-soliton solution
If we choose the solution to Eq. (a) in the form

g() = eξ + eξ , ξj = kjx + pjy + wjt + ξ
j , wj = ik

j (j = , ), ()
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(a) (b)

Figure 2 The plots of expression (15) with special parameters: k1 = –1, k2 = 3, p1 = 2, p2 = 4, y = 1.

then substituting () into Eq. (e), we get

f () = eξ+ξ∗
 +θ + eξ+ξ∗

 +θ + eξ+ξ∗
 +θ + eξ+ξ∗

 +θ ,

eθj,+l = –


(kj + k∗
l )(pj + p∗

l )
, (j, l = , ).

()

Substituting () and () into Eq. (b), we have

g() = eξ+ξ+ξ∗
 +θ+θ+θ + eξ+ξ+ξ∗

 +θ+θ+θ , eθ = (k – k)(p – p). ()

With the help of ()-(), solving Eq. (f), we can obtain

f () = eξ+ξ+ξ∗
 +ξ∗

 +θ+θ+θ+θ+θ+θ , eθ = 
(
k∗

 – k∗

)(

p∗
 – p∗


)
. ()

By similar steps as before a direct calculation yields

g() = f () = · · · = .

Taking ε = , then we have

f =  + eξ+ξ∗
 +θ + eξ+ξ∗

 +θ + eξ+ξ∗
 +θ + eξ+ξ∗

 +θ

+ eξ+ξ+ξ∗
 +ξ∗

 +θ+θ+θ+θ+θ+θ , ()

g = eξ + eξ + eξ+ξ+ξ∗
 +θ+θ+θ + eξ+ξ+ξ∗

 +θ+θ+θ . ()

Hence, the two-soliton solution of system () is

u =
g

f
, Q = –(ln f)x. ()

Figure  shows the plots of the two-soliton solution by choosing specific parameters.



Gao and Cheng Advances in Difference Equations  (2017) 2017:172 Page 5 of 10

We now consider the asymptotic analysis on the two-soliton solution of (). Let us define
the soliton wave variables as

ξR = kRx + pRy – kRkI t, ξI = kIx + pIy +
(
k

R – k
I
)
t

and

ξR = kRx + pRy – kRkI t, ξI = kIx + pIy +
(
k

R – k
I

)
t,

where kR, kI , kR, kI , pR, pI , pR, and pI all are real parameters.
Before collision (limit t → –∞):
() Soliton  (ξ + ξ ∗

 ∼ , ξ + ξ ∗
 → –∞):

u → u– =
eξ

 + eξ+ξ∗
 +θ

=



eiξI e– θ
 sech

(
ξR +

θ



)
, (a)

Q → Q– = –
[
ln

(
 + eξ+ξ∗

 +θ
)]

x. (b)

() Soliton  (ξ + ξ ∗
 ∼ , ξ + ξ ∗

 → +∞):

u → u– =
eξ+θ+θ

 + eξ+ξ∗
 +θ+θ+θ+θ+θ

=



eiξI e
θ+θ–θ–θ–θ

 sech
(

ξR +
θ + θ + θ + θ + θ



)
, (a)

Q → Q– = –
[
ln

(
 + eξ+ξ∗

 +θ+θ+θ+θ+θ
)]

x. (b)

After collision (limit t → +∞):
() Soliton  (ξ + ξ ∗

 ∼ , ξ + ξ ∗
 → +∞):

u → u+ =
eξ+θ+θ

 + eξ+ξ∗
 +θ+θ+θ+θ+θ

=



eiξI e
θ+θ–θ–θ–θ

 sech
(

ξR +
θ + θ + θ + θ + θ



)
, (a)

Q → Q+ = –
[
ln

(
 + eξ+ξ∗

 +θ+θ+θ+θ+θ
)]

x. (b)

() Soliton  (ξ + ξ ∗
 ∼ , ξ + ξ ∗

 → –∞):

u → u+ =
eξ

 + eξ+ξ∗
 +θ

=



eiξI e– θ
 sech

(
ξR +

θ



)
, (a)

Q → Q– = –
[
ln

(
 + eξ+ξ∗

 +θ
)]

x. (b)

From these expressions it is easy to observe that the amplitude of the colliding solitons
in the u change from 

 e– θ
 and 

 e– θ+θ–θ–θ–θ
 to 

 e– θ+θ–θ–θ–θ
 and 

 e– θ
 due

to collision, respectively. In addition to this change in the amplitudes, the phase shift is
given by

� =
θ + θ + θ + θ


. ()
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2.3 N-soliton solution
In general, the N-solition solution of system () can be expressed as

u =
gn

fn
, Q = –(ln fn)x, ()

with

fn =
∑

μ=,

A(μ)e
∑n

j= μjξj+
∑n

≤j<l μjμlθjl ,

gn =
∑

μ=,

A(μ)e
∑n

j= μjξj+
∑n

≤j<l μjμlθjl ,
()

where

ξn+j = ξ ∗
j (j = , , . . . , n), e

θj(n+l)=– 
(kj+k∗

l )(pj+p∗
l ) (j, l = , , . . . , n), (a)

eθjl = (kj – kl)(pl – pj) (j < l = , , . . . , n), (b)

eθ(n+j)(n+l) = 
(
k∗

j – k∗
l
)(

p∗
l – p∗

j
)

= eθ∗
jl (j < l = , , . . . , n), (c)

and A(u) and A(u) take all possible combinations of μj = ,  (j = , , . . . , n) and satisfy
the following conditions:

n∑

j=

μj =
n∑

j=

μn+j,
n∑

j=

μj =
n∑

j=

μn+j + . ()

Thus, we can obtain the N-soliton solution of system () via the above results.

3 Generalized double Wronskian solution
In what follows, we derive the generalized double Wronskian determinant solution of sys-
tem () by applying the Wronskian technique. To use this technique, we adopt the compact
notation introduced by Freeman and Nimmo [, ], who set

W N ,M(φ;ψ) =
∣∣φ, ∂xφ, . . . , ∂N–

x φ;ψ , ∂xψ , . . . , ∂M–
x ψ

∣∣

= |̂N – ;̂M – |,

where φ = (φ,φ, . . . ,φN+M)T , ψ = (ψ,ψ, . . . ,ψN+M)T , and ∂
(j)
x denotes the jth partial

derivative with respect to x.

Theorem . The bilinear system (a)-(c) possesses the following generalized double
Wronskian solution:

f = W N+,N+(φ;ψ) = |N̂ ; N̂ |, (a)

g = W N+,N (φ;ψ) = |̂N + ; ̂N – |, (b)

g∗ = –W N ,N+(φ;ψ) = –|̂N – ; ̂N + |, (c)
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where the entries φj and ψj (j = , , . . . , N + ) satisfy the following conditions:

φx = –Aφ, ψx = Aψ , (a)

φj,y =


φj,x, ψj,y =



ψj,x, (b)

φj,t = iφj,xx, ψj,t = –iψj,xx, (c)

φN++j = –ψ∗
j , ψN++j = –φ∗

j , (d)

with A = (aij) is an (N + ) × (N + ) arbitrary real matrix independent of x, y, t.

For convenience of proof, we first give the following lemma.

Lemma .

|M, a, b||M, c, d| – |M, a, c||M, b, d| + |M, a, d||M, b, c| = , ()

where M is an N × (N – ) matrix, and a, b, c, d represent N column vectors.

Lemma . has been proved by Chen et al. [].

Proof of Theorem . The derivatives of f can be easily computed:

fx = |̂N – , N + ; N̂ | + |N̂ ; ̂N – , N + |,
fxx = | ̂N – , N , N + ; N̂ | + |̂N – , N + ; N̂ | + |̂N – , N + ; ̂N – , N + |

+ |N̂ ; ̂N – , N , N + | + |N̂ ; ̂N – , N + |,

fy =


(|̂N – , N + ; N̂ | + |N̂ ; ̂N – , N + |),

fxy =


(| ̂N – , N , N + ; N̂ | + |̂N – , N + ; N̂ | + |̂N – , N + ; ̂N – , N + |

+ |N̂ ; ̂N – , N , N + | + |N̂ ; ̂N – , N + |),

ft = i(–| ̂N – , N , N + ; N̂ | + |̂N – , N + ; N̂ |
+ |N̂ ; ̂N – , N , N + | – |N̂ ; ̂N – , N + |,

gx = (|N̂ , N + ; ̂N – | + |̂N + ; ̂N – , N |,
gxx = (|̂N – , N + , N + ; ̂N – | + |N̂ , N + ; ̂N – | + |N̂ , N + ; ̂N – , N |

+ |N̂ , N + ; ̂N – , N | + |̂N + ; ̂N – , N – , N | + |̂N + ; ̂N – , N + |,
gt = i

(
–|̂N – , N + , N + ; ̂N – | + |N̂ , N + ; ̂N – |

+ |̂N + ; ̂N – , N – , N | – |̂N + ; ̂N – , N + |).

Noting that

{(N+∑

i=

aii –
N+∑

i=

aii

)

|N̂ ; N̂ |
}

|N̂ ; N̂ | =

{(N+∑

i=

aii –
N+∑

i=

aii

)

|N̂ ; N̂ |
}

, (a)
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from condition (a) we have

|N̂ ; N̂ |(| ̂N – , N , N + ; N̂ | + |̂N – , N + ; N̂ | – |̂N – , N + ; ̂N – , N + |
+ |N̂ ; ̂N – , N , N + | + |N̂ ; ̂N – , N + |)

=
(|̂N – , N + ; N̂ | – |N̂ ; ̂N – , N + |). (b)

Under condition (d), we also have

g∗ = –W N ,N+(φ;ψ) = –|̂N – ; ̂N + |.

Substituting f , g ,g∗ and the derivatives of f into the left-hand side of (c) and using (a)-
(b), we get

(ffxy – fxfy) + gg∗

= 
(|N̂ ; N̂ ||̂N – , N + ; ̂N – , N + | – |̂N – , N + ; N̂ ||N̂ ; ̂N – , N + |

– |̂N + ; ̂N – ||̂N – ; ̂N + |). ()

By Lemma . the right-hand side of () is equal to zero. So the proof of (c) is finished.
Using the identities, which are similar to (a)-(b),

{(N+∑

i=

aii –
N+∑

i=

aii

)

|N̂ ; N̂ |
}

|̂N + ; ̂N – |

=

{(N+∑

i=

aii –
N+∑

i=

aii

)

|N̂ ; N̂ |
}{(N+∑

i=

aii –
N+∑

i=

aii

)

|̂N + ; ̂N – |
}

=

{(N+∑

i=

aii –
N+∑

i=

aii

)

|̂N + ; ̂N – |
}

|N̂ ; N̂ |, (a)

namely,

|N̂ ; N̂ |(|̂N – , N + , N + ; ̂N – | + |N̂ , N + ; ̂N – | – |N̂ , N + ; ̂N – , N |
+ |̂N + ; ̂N – , N – , N | + |̂N + ; ̂N – , N + |)

=
(|̂N – , N + ; N̂ | – |N̂ ; ̂N – , N + |)

× (|N̂ , N + ; ̂N – | – |̂N + ; ̂N – , N |), (b)

|̂N + ; ̂N – |(| ̂N – , N , N + ; N̂ | + |̂N – , N + ; N̂ | – |̂N – , N + ; ̂N – , N + |
+ |N̂ ; ̂N – , N , N + | + |N̂ ; ̂N – , N + |)

=
(|N̂ , N + ; ̂N – | – |̂N + ; ̂N – , N |)

× (|̂N – , N + ; N̂ | – |N̂ ; ̂N – , N + |), (c)
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we compute the left-hand side of (a):

gxxf – gxfx + gfxx + igtf – igft

= |N̂ ; N̂ ||̂N – , N + , N + ; ̂N – | + |N̂ ; N̂ ||̂N + ; ̂N – , N + |
+ |̂N + ; ̂N – ||̂N – , N + ; N̂ | + |̂N + ; ̂N – ||N̂ ; ̂N – , N , N + |
– |N̂ , N + ; ̂N – ||̂N – , N + ; N̂ | – |̂N + ; ̂N – , N ||N̂ ; ̂N – , N + |. ()

By Lemma . the right-hand side of () is equal to zero. Similarly, the bilinear form (b)
can be verified.

Based on conditions (a)-(d), we get the general solution

φ = e–Ax– 
 Ay+iAtC, ψ = eAx+ 

 Ay–iAtD, ()

where C = (c, c, . . . , cN+)T , D = (d, d, . . . , dN+)T are constant vectors. Thus, with trans-
formations (), the corresponding double Wronskian solutions of system () can be ex-
pressed as

u = 
W N+,N (φ;ψ)

W N+,N+(φ;ψ)
, u∗ = –

W N ,N+(φ;ψ)
W N+,N+(φ;ψ)

, Q = –
(
ln W N+,N+(φ;ψ)

)
x.

If the coefficient matrix A has the form

A =

⎛

⎜⎜
⎜⎜
⎝

k 
k

. . .
 kN+

⎞

⎟⎟
⎟⎟
⎠

,  < k < k < · · · < kN+, ()

then we can obtain solitons of system (), where

φj = cje
–kjx– 

 kjy+ik
j t , ψj = dje

kjx+ 
 kjy–ik

j t (j = , , . . . , N + ). ()
�

4 Conclusion and remarks
In summary, by using the Hirota method and the Wronskian technique, the multiple-
soliton solutions and the double Wronskian form satisfying a matrix equation to system ()
have been presented, respectively. As is well known, the Wronskian technique can also be
applied to construct rational solutions, positons, negatons, complexitons, and interaction
solutions of the nonlinear equations. We also point out that the N-soliton solutions of
system () may be expressed by the Grammian determinants. Therefore, there is a lot of
work to be done in these directions, and it should be interesting yet difficult to construct
more solution formulas for system ().
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