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Abstract
We consider a classification problem for Darboux-integrable hyperbolic semidiscrete
equations. In particular, we obtain a complete description for a special class of
equations admitting four-dimensional characteristic x-rings and two-dimensional
characteristic n-rings. For all described equations, the corresponding x- and
n-integrals are constructed.

Keywords: semidiscrete equations; Darboux integrability; characteristic rings

1 Introduction
Classification problems play an important role in the study of integrable equations. For
classification of hyperbolic equations, it is convenient to define integrability in terms of
characteristic rings. The notion of a characteristic ring was introduced by Shabat for in-
tegrable hyperbolic equations of exponential type (see [, ]) and then used by Zhiber to
study general integrable hyperbolic equations (see [–]). Later, Habibullin extended this
notion to the case of semidiscrete and discrete equations (see [–]). For more details on
characteristic rings, see survey paper [].

We consider semidiscrete hyperbolic equations that admit nontrivial x- and n-integrals,
so-called Darboux-integrable equations []. It was proved in [] that a semidiscrete hy-
perbolic equation is Darboux integrable if and only if its characteristic x- and n-rings are
finite-dimensional. Description of all equations with characteristic x- and n-rings of fi-
nite dimensions is a very difficult classification problem. The majority of known Darboux-
integrable semidiscrete equations possess x- and n-rings of dimensions not exceeding five
(see [, , ]). Necessary and sufficient conditions for a characteristic x-ring to be four-
dimensional were obtained in [] (also see [] for a characterization of five-dimensional
characteristic x-rings). In [] the conditions for a two-dimensional characteristic n-ring
were obtained. We use these conditions to explicitly derive integrable equations with four-
dimensional characteristic x-rings and two-dimensional characteristic n-rings.

Consider the equation

tx = f (x, t, t, tx), ()

where the function t(n, x) depends on the discrete variable n and continuous variable x.
We use the notations tx = ∂

∂x t and t = t(n + , x). It is also convenient to denote t[k] = ∂k

∂xk t,
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k ∈ N, and tm = t(n + m, x), m ∈ Z. It was proved in [] that if equation () has a four-
dimensional characteristic x-ring, then the function f has the form

f = A(x, t, t)M(x, t, tx) + B(x, t, t)tx + C(x, t, t). ()

In this work, we assume that the function M depends only on tx and f does not depend
on x, that is, we study equations of the form

tx = A(t, t)M(tx) + B(t, t)tx + C(t, t). ()

It turns out that we have to consider two cases of f linear and nonlinear in tx. The results
of our investigation are given in the following theorems.

Theorem  Let f be a linear function of tx. Equation () has a four-dimensional charac-
teristic x-ring and a two-dimensional characteristic n-ring if and only if

f =
γ (t)
γ (t)

tx –
γ (t)
γ (t)

σ (t) + σ (t),

where the functions γ and σ satisfy either of the relations

(
γ (t)σ (t)

)′ = γ (t)
√

B + Bγ (t)σ (t)

or

(
γ (t)σ (t)

)′ = γ (t)
√

B + B
(
γ (t)σ (t)

)

with arbitrary constants B and B.

Theorem  Let f be a nonlinear function of tx. Equation () has a four-dimensional char-
acteristic x-ring and a two-dimensional characteristic n-ring if and only if

f =
cη(t)η(t)

tx
or f =

cec(t+t)

tx + P
– P,

where c, c, and P are arbitrary constants, and η is an arbitrary function of one variable,
or

f =
√

B – 
√

t
x + Ptx + Q + Btx +




P(B – ),

where B, P, and Q are arbitrary constants.

The paper is organized as follows. First, we give proofs of Theorems  and , and in the
last section, we provide x- and n- integrals for equations found in Theorems  and .
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2 Proofs of Theorem 1 and Theorem 2
2.1 Preliminary results
In what follows, all calculations are done on the set of solutions of equation (), that is,
we consider . . . , t–, t, t, . . . and tx, txx, txxx, . . . as independent dynamical variables. The
derivatives of . . . , t–, t, t, . . . and shifts of tx, txx, txxx, . . . are expressed in terms of the dy-
namical variables using ().

Let us formulate necessary and sufficient conditions so that equation () has a charac-
teristic x-ring of dimension four and a characteristic n-ring of dimension two. First, we
consider the n-ring. The following theorem was proved in [].

Theorem  Equation () has a characteristic n-ring of dimension two if and only if

D
(

ft

ftx

)
= –ft , ()

where D is the shift operator: Dg(n, x) = g(n + , x).

We remark that equality () implies that

∂

∂t

(
ft

ftx

)
=  ()

since ft does not depend on t. We use this observation later.
For the characteristic x-ring, we have to consider two cases: ftxtx = , that is, f is a linear

function of tx, and ftxtx �= , that is, f is a nonlinear function of tx.
The following theorems were proved in [].

Theorem  Equation () with ftxtx =  has a characteristic ring Lx of dimension four if and
only if

D
(

K(m)
m

– m +
ft

ftx

)
=

K(m)
m

+ m – ft , ()

where K is the vector field

K =
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t
+ · · · ,

and m = –(fxtx +txftxt+fftxt )+ft+ftx ft
ftx

.

Theorem  Equation () with ftxtx �=  has a characteristic ring Lx of dimension four if and
only if

D
(

ftxtxtx

ftxtx

)
=

ftxtxtx ftx – f 
txtx

ftxtx f 
tx

()

and

Dm̃ = m̃ftx – (fx + txft + ft f ), ()

where m̃ = fxtx +txftxt+fftxt –ft–ftx ft
ftxtx

.



Zheltukhin et al. Advances in Difference Equations  (2017) 2017:182 Page 4 of 14

In the same way as in equation (), we have

∂

∂t
m =  and

∂

∂t
m̃ = . ()

For convenience of the reader, let us give definitions of x- and n-integrals and of
Darboux-integrable semidiscrete equations.

Definition  A function F(x, t, t, . . . , tk) is called an x-integral of equation () if

DxF(x, t, t, . . . , tk) = 

for all solutions of (). Here Dx is the operator of total differentiation with respect to x:
Dxg(n, x) = (d/dx)g(n, x).

A function G(x, t, tx, . . . , t[m]) is called an n-integral of equation () if

DG(x, t, tx, . . . , t[m]) = G(x, t, tx, . . . , t[m])

for all solutions of ().
Equation () is called Darboux integrable if it admits a nontrivial x-integral and a non-

trivial n-integral.

2.2 Proof of Theorem 1
We assume that f is a linear function of tx. Thus

f (t, t, tx) = A(t, t)tx + B(t, t), ()

and equation () becomes

tx = A(t, t)tx + B(t, t). ()

The proof of the Theorem  is based on the following lemmas.

Lemma  Let ftxtx = . Then the characteristic n-ring of equation () has dimension two
if and only if

f (t, t, tx) =
cγ (t)
γ (t)

tx +
c

γ (t)
–

cγ (t)σ (t)
γ (t)

+ σ (t), ()

where γ and σ are functions of one variable, and c, c are constants.

Proof It follows from condition () that

ft

ftx
=

At

A
tx +

Bt

A
()

does not depend on t. Hence At
A and Bt

A do not depend on t. So we can write A(t, t) =
γ (t)ϕ(t) and B(t, t) = l(t)ϕ(t) +σ (t) for some functions γ , ϕ, and σ . The function f takes
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form

f (t, t, tx) = γ (t)ϕ(t)tx + l(t)ϕ(t) + σ (t). ()

Applying condition () to f given by (), we get

γ ′(t)
γ (t)

(
γ (t)ϕ(t)tx + l(t)ϕ(t) + σ (t)

)
+

l′(t)
γ (t)

= –γ (t)ϕ′(t)tx – l(t)ϕ′(t) – σ ′(t). ()

By comparing the coefficients of tx in () we get

γ ′(t)
γ (t)

+
ϕ′(t)
ϕ(t)

= ,

so that ϕ(t) = c
γ (t) , where c is some constant. Substituting this ϕ into equation () and

collecting the terms independent of tx, we get

γ ′(t)σ (t) + γ (t)σ ′(t) + l′(t) = . ()

Solving (), we find

l(t) = –γ (t)σ (t) + c̃, ()

where c is some constant. Substituting ϕ and l found into equation (), we get equation
(). We can check that condition () is satisfied for function (). �

Now we can rewrite equation () as

tx =
cγ (t)
γ (t)

tx +
c

γ (t)
–

cγ (t)σ (t)
γ (t)

+ σ (t), ()

where γ and σ are functions of one variable, and c, c are constants. The equation can be
simplified by introducing the new variable

τ = L(t), ()

where L satisfies L′(t) = γ (t). Equation () becomes

τx = cτx + c – cQ(τ ) + Q(τ) ()

for some function Q of one variable. We can check that condition () is satisfied for the new
equation. Hence our change of variable does not affect the dimension of the characteristic
n-ring.

In the next lemma, we give conditions for equation () to have a four-dimensional char-
acteristic x-ring.
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Lemma  Equation () has a four-dimensional characteristic x-ring if and only if

Q(τ ) = Aτ
 + Aτ or Q(τ ) = Aeατ + Ae–ατ ()

for some constants A, A, and α.

Proof Applying condition () to function f = cτx + c – cQ(τ ) + Q(τ), we get

cτx + c – cQ(τ ) + Q(τ)
Q′(τ) – Q′(τ)

(
cQ′′(τ) – Q′′(τ)

)

+
Q′′(τ)(c – cQ(τ) + Q(τ))

Q′(τ) – Q′(τ)
– Q′(τ) + Q′(τ)

=
cQ′′(τ) – Q′′(τ )

Q′(τ) – Q′(τ )
τx +

Q′′(τ)(c – cQ(τ ) + Q(τ))
Q′(τ) – Q′(τ )

+ Q′(τ) – Q′(τ ).

By comparing the coefficients of τx in this equality, we get

cD
(

cQ′′(τ) – Q′′(τ )
Q′(τ) – Q′(τ )

)
=

cQ′′(τ) – Q′′(τ )
Q′(τ) – Q′(τ )

,

which implies that either c =  and cQ′′(τ)–Q′′(τ )
Q′(τ)–Q′(τ ) is constant or cQ′′(τ) – Q′′(τ ) = . In the

second case, we also get c = . Thus, equation () has the form

τx = τx + d(τ , τ). ()

Equations of this form were completely classified in [] (together with their x– and n-
characteristic rings). It follows from [] that Q must have the form given in the statement
of the lemma. �

Returning to the original variable t in equation () with Q given by equation (), we
get Theorem .

2.3 Proof of Theorem 2
We assume that f is a nonlinear function of tx. Thus

f (t, t, tx) = A(t, t)M(tx) + B(t, t)tx + C(t, t), ()

and equation () becomes

tx = A(t, t)M(tx) + B(t, t)tx + C(t, t). ()

The proof of the Theorem  is based on the following lemmas.

Lemma  Let equation () have a characteristic n-ring of dimension two, and let M be a
nonlinear function. Then the function M satisfies

M′ = –
αM + αtx + α

αM + αtx + α
, ()

where αM + αtx + α �= .
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Proof If the dimension of the characteristic n-ring is two, then ( ft
ftx

)t = . Hence, for f
given by equation (), we have

(
AtM + txBt + Ct

AM′ + B

)

t

=
(Att M + txBtt + Ctt )(AM′ + B) – (At M′ + Bt )(AtM + txBt + Ct)

(AM′ + B) = .

This can be rewritten as

M′(αM + αtx + α) = –(αM + αtx + α) ()

for some constants αi, i = , , . . . , . Note that if αM + αtx + α = , then either M′ =  or
αM + αtx + α = . In both cases, we get that f is a linear function of tx. Hence we can
assume that αM + αtx + α �= , and we can write equality (). �

The above lemma allows us to express the derivative M′ in terms of M. We can also
express the shift DM in terms of M. Indeed, as it was proved in [] (see Lemma ), if
equation () has a four-dimensional characteristic x-ring and ftxtx �= , then

Df = –H(t, t, t)tx + H(t, t, t)f + H(t, t, t) ()

for some functions H, H, and H. Therefore,

D(AM + Btx + C) = –Htx + H(AM + Btx + C̃), ()

and

DM = Q(t, t, t)M + Q(t, t, t)tx + Q(t, t, t) ()

for some functions Q, Q and Q.
We use expressions () and () for the derivative and shift of M in the next lemma.

Lemma  Let equation () have a characteristic n-ring of dimension two. Then M has
either of the forms M = 

tx+P , or M =
√

t
x + Ptx + Q, or M = t

x .

Proof Consider the vector field X = ∂
∂tx

. We can easily check that DX = 
ftx

XD. Thus
DX(M) = 

ftx
X(DM). Using equation () for X(M) and equation () for DM, we get

–D
(

αM + αtx + α

αM + αtx + α

)
=


AM′ + B

X(QM + Qtx + Q).

Using equation () and equation () once more, we get

–
α̃(QM + Qtx + Q) + α̃(AM + Btx + C) + α̃

α̃(QM + Qtx + Q) + α̃(AM + Btx + C) + α̃

=
Q – Q

αM+αtx+α
αM+αtx+α

B – A αM+αtx+α
αM+αtx+α

,
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where Dαk = α̃k . Hence we can write

RM – (Rtx + R)M +
(
Rt

x + Rtx + R
)

=  ()

for some functions Rk , k = , , . . . , . Then, we find that

M =
(Rtx + R) ± √

(Rtx + R) – R(Rt
x + Rtx + R)

R
if R �= 

or

M =
Rt

x + Rtx + R

Rtx + R
if R = .

Since the function f = AM + Btx + C has a linear term Btx and a free term C, we can assume
that M has the form given in the statement of the lemma. �

Now we consider each value of M obtained in the lemma, separately. We start with the
simple case M = t

x .

Lemma  Equation () cannot have a four-dimensional characteristic x-ring if M = t
x .

Proof We can easily check that, for any

f = A(t, t)t
x + B(t, t)tx + C(t, t),

condition () is not satisfied. Hence equation () cannot have a four-dimensional char-
acteristic x-ring if M = t

x . �

Let us consider the case M = 
tx+P .

Lemma  Let M = 
tx+P , and let equation () have a four-dimensional characteristic x-

ring and a two-dimensional characteristic n-ring. Then equation () takes either of the
forms

tx =
c∗η(t)η(t)

tx
or tx =

c∗ec∗∗(t+t)

tx + P
– P. ()

Proof We have

f (t, t, tx) =
A(t, t)
tx + P

+ B(t, t)tx + C(t, t). ()

Applying condition () to f , we get

(tx + P)
B(tx + P) + (C + P – BP)(tx + P) + A

=
(tx + P)(B(tx + P) + A)

(B(tx + P) – A) .
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From this equality we get

B(C + P – BP)(tx + P) + AB(tx + P)

+ A(C + P – BP)(tx + P) = .

In this equality the coefficients of (tx + P)k , k = , , , must be zero. So we find

B(C + P – BP) = , AB = , and A(C + P – BP) = .

Since A(t, t) �=  (otherwise ftxtx = ), we find B =  and C = –P. Thus we have

f (t, t, tx) =
A(t, t)
tx + P

– P. ()

Using condition (), we get

At (t, t)A(t, t)
A(t, t)(tx + P)

=
At (t, t)

tx + P

or

At (t, t)
A(t, t)

=
At (t, t)
A(t, t)

. ()

It follows that At (t,t)
A(t,t) does not depend on t, so ∂

∂t∂t
ln A(t, t) = , and At (t,t)

A(t,t) does not
depend on t, so ∂

∂t∂t
ln A(t, t) = .

Hence we get A(t, t) = ϕ(t)η(t) for some functions ϕ and η. Using equation (), we
obtain ϕ′(t)

ϕ(t) = η′(t)
η(t) , which implies that ϕ(t) = c∗η(t), where c∗ is some constant. Hence

we have

f =
c∗η(t)η(t)

tx + P
– P. ()

From condition () it follows that

m̃ =
(

–
Pη′(t)
η(t)

+
Pη′(t)
η(t)

)
(tx + P) –

(tx + P)η′(t)
η(t)

()

does not depend on t. So, either P =  or η′(t) = c∗∗η(t), which implies η(t) = ec∗∗t with
some constant c∗∗. Thus we obtain equations (). We can easily check that these equa-
tions have a two-dimensional characteristic n-ring and a four-dimensional characteristic
x-ring. �

Let us consider the case M =
√

t
x + Ptx + Q.

Lemma  Let M =
√

t
x + Ptx + Q, and let equation () have a four-dimensional charac-

teristic x-ring and a two-dimensional characteristic n-ring. Then equation () takes the
form

tx =
√

B – 
√

t
x + Ptx + Q + Btx +




P(B – ), ()

where B, Q, P are constants, and B �= .
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Proof We have

f = A(t, t)
√

t
x + Ptx + Q + B(t, t)tx + C(t, t). ()

Applying condition (), we find

–
BP + tx + A

√
t
x + txP + Q

(AP + Atx + B
√

t
x + txP + Q)

=
–P – C – Btx – A

√
t
x + Ptx + Q

Q + (C + Btx + A
√

t
x + Ptx + Q)(C + P + Btx + A

√
t
x + Ptx + Q)

,

or


(

Q +
(

C + Btx + A
√

t
x + Ptx + Q

)(
C + P + Btx + A

√
t
x + Ptx + Q

))

·
(

BP + tx + A
√

t
x + txP + Q

)

=
(

AP + Atx + B
√

t
x + txP + Q

)(
P + C + Btx + A

√
t
x + Ptx + Q

)
.

Comparing the coefficients of (
√

t
x + Ptx + Q)i(tx)j for i, j = , , , we get

AB(C + P – BP) = ,

A
(
–C – CP + A(P – Q

)
+ 

(
B – 

)
Q

)
= ,

(
A + B)(–C + (B – )P

)
= ,

–AP(C + P) + BQ – B
(
C + CP + Q + A(–P + Q

))
= ,

A(C + P)
(
P – Q

)
+ B(C + P)Q – BP

(
C + CP + Q – AQ

)
= .

We can check that these equalities are satisfied if and only if

C = PB – P and C + CP = A(P – Q
)

– Q + BQ.

Simplifying, we get

C = PB – P, and either B = A +  or P = Q.

In the case P = Q, we have that M =
√

t
x + Ptx + Q is a linear function of tx. Therefore

we have to study only the case B = A + . Thus we have

f =
√

B(t, t) – 
√

t
x + Ptx + Q + B(t, t)tx +

P


(
B(t, t) – 

)
, ()

where B �= . In the same way, we check that condition () in the form (D ft
ftx

) – (ft ) =  is
satisfied for this function f if and only if

B
t (t, t)

B(t, t) – 
=

B
t (t, t)

B(t, t) – 
. ()
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Hence we can write

Bt (t, t) = A(t, t)ϕ(t), Bt(t, t) = ±A(t, t)ϕ(t) ()

for some function ϕ.
Using condition (), let us show that B can only be a constant function. We have

m̃ = μtx
(
t
x + ptx + q

)
+ μ

(
t
x + ptx + q

) 
 + μ

(
t
x + ptx + q

)
, ()

where

μ =
PB(Bt + Bt)

(P – Q)(B – )
, ()

μ =
P

√
B – (Bt + Bt)

(P – Q)(B – )
, ()

μ =
(Q – P + PB)Bt + QBBt

(P – Q)(B – )
. ()

Since m̃ does not depend on t, we have that μ, μ, and μ also do not depend on t. Using
(), we have

μ =
P(ϕ(t) ± ϕ(t))

P – Q
. ()

Since μ does not depend on t, either ϕ is a constant function or P = . Note that in both
cases, we get μ =  and μ = . We start with the case where φ is some constant C. Using
equation (), we have

μ =
C(Q – P) + C(P ± Q)B

(P – Q)
√

B – 
. ()

Differentiating this equality with respect to t, we get

 =
CBt ((P ± Q) + (Q – P)B)

(P – Q)(B – ) 


, ()

which gives Bt =  or ((P ± Q) + (Q – P)B) = . Both equalities imply that B is a con-
stant.

Now we consider the case P = . Then, using equation (), we have

μ =
Q(Bt + BBt)
–Q(B – )

= –
ϕ(t) ± Bϕ(t)√

B – 
. ()

Differentiating this equality with respect to t, we get

 =
Bt (Bϕ(t) ± ϕ(t))

(B – ) 


, ()

which implies that either Bt =  or B = ± ϕ(t)
ϕ(t) . In both cases, we get that B is a constant

function. Indeed, if Bt = , then Bt =  by equation (), so B is a constant function, and if
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B = ± φ(t)
φ(t) , then μ = ±√

ϕ(t) – ϕ(t), and since μ does not depend on t, we get that φ

is a constant function, and hence B is a constant function. Using the equality B = A + ,
we get the statement of the lemma. �

The proof of Theorem  easily follows from the above lemmas.

3 Examples
The functions f given in the Theorem  lead to the following examples.

Example  The equation

tx =
γ (t)
γ (t)

tx –
γ (t)
γ (t)

σ (t) + σ (t),

where functions γ and σ satisfy the relation

(
γ (t)σ (t)

)′ = γ (t)
√

B + B
(
γ (t)σ (t)

)
, B, B ∈R,

has an x-integral F = (L(t)–L(t))(L(t)–L(t))
(L(t)–L(t))(L(t)–L(t)) , where L(t) =

∫ t
 γ (τ ) dτ , and an n-integral I =

γ (t)tx – σ (t).

Example  The equation

tx =
γ (t)
γ (t)

tx –
γ (t)
γ (t)

σ (t) + σ (t),

where functions γ and σ satisfy the relation

(
γ (t)σ (t)

)′ = γ (t)
√

B + B
(
γ (t)σ (t)

), B, B ∈R,

has an x-integral F = (eL(t)–eL(t))(eL(t)–eL(t))
(eL(t)–eL(t))(eL(t)–eL(t))

, where L(t) =
∫ t

 γ (τ ) dτ , and an n-integral I =
γ (t)tx – σ (t).

The functions f given in the Theorem  lead to the following examples.

Example  The equation

tx =
cη(t)η(t)

tx

has an x-integral F =
∫ t

 η–(τ ) dτ –
∫ t

 η–(τ ) dτ and an n-integral I = tx
cη(t) + η(t)

tx
.

Example  The equation

tx =
cec(t+t)

tx + P
– P

has an x-integral F = e–ct+cPx – e–ct+cPx and an n-integral I = tx+P
cect + ect

tx+P .
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Example  The equation

tx =
√

B – 
√

t
x + Ptx + Q + Btx +




P(B – )

has an x-integral

F =
(
–B – B + B – 

)
t +

(
B – B + 

)
t +

(
–B + B – 

)
t + t

and an n-integral

I =
(
B –

√
B – 

)n
(√

t
x + Ptx + Q + tx + .P

)
.

In all examples, we can check that F is an x-integral and I is an n-integral by direct
calculations.
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