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Abstract
We prove that the system θ̇ (t) =�(t)θ (t), t ∈ R+, is Hyers-Ulam stable if and only if it is
uniformly exponentially stable under certain conditions; we take the exact solutions
of the Cauchy problem φ̇(t) =�(t)φ(t) + eiγ tξ (t), t ∈R+, φ(0) = θ0 as the approximate
solutions of θ̇ (t) =�(t)θ (t), where γ is any real number, ξ is a 2-periodic, continuous,
and bounded vectorial function with ξ (0) = 0, and �(t) is a 2-periodic square matrix
of order l.
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1 Introduction
The stability theory is an important branch of the qualitative theory of differential equa-
tions. In , Ulam [] queried a problem regarding the stability of differential equations
for homomorphism as follows: when can an approximate homomorphism from a group
G to a metric group G be approximated by an exact homomorphism?

Hyers [] brilliantly gave a partial answer to this question assuming that G and G are
Banach spaces. Later on, Aoki [] and Rassias [] extended and improved the results ob-
tained in []. In particular, Rassias [] relaxed the condition for the bound of the norm of
Cauchy difference f (x + y) – f (x) – f (y). To the best of our knowledge, papers by Obłoza
[, ] published in the late s were among the first contributions dealing with the
Hyers-Ulam stability of differential equations.

Since then, many authors have studied the Hyers-Ulam stability of various classes of
differential equations. Properties of solutions to different classes of equations were ex-
plored by using a wide spectrum of approaches; see, e.g., [–] and the references cited
therein. Alsina and Ger [] proved Hyers-Ulam stability of a first-order differential equa-
tion y′(x) = y(x), which was then extended to the Banach space-valued linear differential
equation of the form y′(x) = λy(x) by Takahasi et al. []. Zada et al. [] generalized the
concept of Hyers-Ulam stability of the nonautonomous w-periodic linear differential ma-
trix system θ̇ (t) = �(t)θ (t), t ∈ R to its dichotomy (for dichotomy in autonomous case;
see, e.g., [, ]). We conclude by mentioning that Barbu et al. [] proved that Hyers-
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Ulam stability and the exponential dichotomy of linear differential periodic systems are
equivalent.

Very recently, Li and Zada [] gave connections between Hyers-Ulam stability and uni-
form exponential stability of the first-order linear discrete system

θn+ = �nθn, n ∈ Z+, (.)

where Z+ is the set of all nonnegative integers and (�n) is an ω-periodic sequence of
bounded linear operators on Banach spaces. They proved that system (.) is Hyers-Ulam
stable if and only if it is uniformly exponentially stable under certain conditions. The
natural question now is: is it possible to extend the results of [] to continuous nonau-
tonomous systems over Banach spaces? The purpose of this paper is to develop a new
method and give an affirmative answer to this question in finite dimensional spaces. We
consider the first-order linear nonautonomous system θ̇ (t) = �(t)θ (t), t ∈ R+, where �(t)
is a square matrix of order l. We proved that the -periodic system θ̇ (t) = �(t)θ (t) is Hyers-
Ulam stable if and only if it is uniformly exponentially stable under certain conditions. Our
result can be extended to any q-periodic system, because we choose  as the period in our
approach.

2 Notation and preliminaries
Throughout the paper, R is the set of all real numbers, R+ denotes the set of all non-
negative real numbers, Z+ stands for the set of all nonnegative integers, Cl denotes the
l-dimensional space of all l-tuples complex numbers, ‖ · ‖ is the norm on C

l , L(Z+,Cl) is
the space of all Cl-valued bounded functions with ‘sup’ norm, and let W

 (R+,Cl) be the
set of all continuous, bounded, and -periodic vectorial functions f with the property that
f () = .

Let H be a square matrix of order l ≥  which has complex entries and let ϒ denote the
spectrum of H, i.e., ϒ := {λ : λ is an eigenvalue of H}. We have the following lemmas.

Lemma . If ‖Hn‖ < ∞ for any n ∈ Z+, then |λ| ≤  for any λ ∈ ϒ .

Proof Suppose to the contrary that |λ| > . By the definition of eigenvalue, there exists
a nonzero vector θ ∈ C

l such that Hθ = λθ , which implies that Hnθ = λnθ for any n ∈
Z+, and thus ‖Hn‖ ≥ ‖Hnθ‖/‖θ‖ = |λ|n → ∞ as n → ∞. Therefore, |λ| ≤ . The proof is
complete. �

Lemma . If ‖∑P
j= Hj‖ < ∞ for any P ∈ Z+, then  does not belong to ϒ .

Proof If  ∈ ϒ , then Hθ = θ for some nonzero vector θ in C
l and Hkθ = θ for all k =

, , . . . , P. Therefore, we conclude that

sup
P∈Z+

∥
∥
∥
∥
∥

P∑

j=

Hj

∥
∥
∥
∥
∥

= sup
P∈Z+

sup
θ 	=

‖(I + H + · · · + HP)(θ )‖
‖θ‖ ≥ sup

P∈Z+,θ 	=

P‖θ‖
‖θ‖ = ∞,

and so  does not belong to ϒ . This completes the proof. �

Let S be a square matrix of order l ≥  which has complex entries. We have the following
two corollaries.
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Corollary . If ‖∑P
j= (eiγS)j‖ < ∞ for any γ ∈ R and any P ∈ Z+, then e–iγ is not an

eigenvalue of S .

Proof LetH = eiγS . By virtue of Lemma .,  is not an eigenvalue of eiγS , and thus I –eiγS
is an invertible matrix or eiγ (e–iγ I –S) is an invertible matrix, i.e., e–iγ is not an eigenvalue
of S . The proof is complete. �

Corollary . If ‖∑P
j= (eiγS)j‖ < ∞ for any γ ∈ R and any P ∈ Z+, then |λ| <  for any

eigenvalue λ of S .

Proof By virtue of

I –
(
eiγS

)P =
(
I – eiγS

)(
I + eiγS + · · · +

(
eiγS

)P–) for any P ∈ Z+ and any γ ∈ R,

we deduce that

∥
∥
(
eiγS

)P∥
∥ ≤  +

∥
∥
(
I – eiγS

)∥
∥
∥
∥
(
I + eiγS + · · · +

(
eiγS

)P–)∥∥ ≤  +
(
 + ‖S‖)K .

It follows from Lemmas . and . that the absolute value of each eigenvalue λ of eiγS is
less than or equal to one and e–iγ is in the resolvent set of S , respectively. Thus, we have,
for any eigenvalue λ of S , |λ| < . This completes the proof. �

Definition . Let ε be a positive real number. If there exists a constant L ≥  such that,
for every differentiable function φ satisfying the relation ‖φ̇(t) – �(t)φ(t)‖ ≤ ε for any
t ∈R+, there exists an exact solution θ (t) of θ̇ (t) = �(t)θ (t) such that

∥
∥φ(t) – θ (t)

∥
∥ ≤ Lε, (.)

then the system θ̇ (t) = �(t)θ (t) is said to be Hyers-Ulam stable.

Remark . If φ(t) is an approximate solution of θ̇ (t) = �(t)θ (t), then φ̇(t) ≈ �(t)φ(t).
Hence, letting g be an error function, then φ(t) is the exact solution of φ̇(t) = �(t)φ(t)+g(t).

On the basis of Remark ., Definition . can be modified as follows.

Definition . Let ε be a positive real number. If there exists a constant L ≥  such that,
for every differentiable function φ satisfying ‖g(t)‖ ≤ ε for any t ∈R+, there exists an exact
solution θ (t) of θ̇ (t) = �(t)θ (t) such that (.) holds, then the system θ̇ (t) = �(t)θ (t) is said
to be Hyers-Ulam stable.

3 Main results
Let us consider the time dependent -periodic system

θ̇ (t) = �(t)θ (t), θ (t) ∈C
l and t ∈R+,

(
�(t)

)

where �(t + ) = �(t) for all t ∈R+.
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Definition . Let B(t) be the fundamental solution matrix of (�(t)). The system (�(t))
is said to be uniformly exponentially stable if there exist two positive constants M and α

such that

∥
∥B(t)B–(s)

∥
∥ ≤ Me–α(t–s) for all t ≥ s.

It follows from [] that system (�(t)) is uniformly exponentially stable if and only if the
spectrum of the matrix B() lies inside of the circle of radius one.

Consider now the Cauchy problem

⎧
⎨

⎩

φ̇(t) = �(t)φ(t) + eiγ tξ (t), t ∈R+,

φ() = θ.

(
�(t),γ , θ

)

The solution of the Cauchy problem (�(t),γ , θ) is given by

φ(t) = B(t)B–()θ +
∫ t


B(t)B–(s)eiγ sξ (s) ds.

For I := [, ] and i ∈ {, }, we define the functions πi : I →C by

π(t) =

⎧
⎨

⎩

t,  ≤ t < ,

 – t,  ≤ t ≤ ,
and π(t) = t( – t). (.)

Let us denote by Mi the set {ξ ∈ W
 (R+,Cl) : ξ (t) = B(t)πi(t), i ∈ {, }}. We are now in a

position to state our main results.

Theorem . Let the exact solution φ(t) of the Cauchy problem (�(t),γ , θ) be an approxi-
mate solution of system (�(t)) with the error term eiγ tξ (t), where γ ∈R and ξ ∈W

 (R+,Cl).
Then the following two statements hold.

() If system (�(t)) is uniformly exponentially stable, then system (�(t)) is Hyers-Ulam
stable.

() If M := M ∪M, ξ ∈M⊂W
 (R+,Cl), and system (�(t)) is Hyers-Ulam stable,

then system (�(t)) is uniformly exponentially stable.

Proof () Let ε >  and φ(t) be the approximate solution of (�(t)) such that supt∈R+ ‖φ̇(t) –
�(t)φ(t)‖ = supt∈R+ ‖eiγ tξ (t)‖, φ() = θ, and supt∈R+ ‖ξ (t)‖ ≤ ε, and let θ (t) be the exact
solution of (�(t)). Then

sup
t∈R+

∥
∥φ(t) – θ (t)

∥
∥ = sup

t∈R+

∥
∥
∥
∥B(t)B–()θ +

∫ t


B(t)B–(s)eiγ sξ (s) ds – B(t)B–()θ

∥
∥
∥
∥

=
∫ t


B(t)B–(s)eiγ sξ (s) ds ≤

∫ t



∥
∥B(t)B–(s)

∥
∥
∥
∥ξ (s)

∥
∥ds

≤
∫ t


Me–α(t–s)∥∥ξ (s)

∥
∥ds = Me–αt

∫ t


eαs∥∥ξ (s)

∥
∥ds

≤ Me–αt
∫ t


eαsε ds = ε

M
α

(
 – e–αt) ≤ M

α
ε = Lε,
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where M > , α > , and L := M/α. Hence, supt∈R+ ‖φ(t) – θ (t)‖ ≤ Lε, which implies that
system (�(t)) is Hyers-Ulam stable.

() The proof of the second part is more tricky. Let a ∈ C
l and ξ ∈ W

 (R+,Cl) be such
that

ξ(s) =

⎧
⎨

⎩

B(s)sa, if s ∈ [, ),

B(s)( – s)a, if s ∈ [, ].

Then we have, for each s ∈ R+, ξ(s) = B(s)π(s)a, where π is defined by (.). Thus, for
any positive integer n ≥ ,

φξ (n) =
∫ n


B(n)B–(τ )eiγ τ ξ(τ ) dτ =

n–∑

k=

∫ k+

k
B(n)B–(τ )eiγ τ ξ(τ ) dτ .

Let τ = k + s. We know that B–(k + s) = B–(k)B–(s), and so

φξ (n) =
n–∑

k=

∫ 


B(n)B–(k + s)eiγ keiγ sξ(s) ds

=
n–∑

k=

eiγ kB(n – k)a
∫ 


eiγ sπ(s) ds.

Define

A := R\{kπ : k ∈ Z} and C(γ ) :=
∫ 


eiγ sπ(s) ds.

It is not difficult to verify that C(γ ) 	=  for any γ ∈A, and hence

φξ (n)
(
C(γ )

)– =
n–∑

k=

eiγ kB(n – k)a for all γ ∈A. (.)

Again, let ξ ∈ W
 (R+,Cl) be given on [, ] such that ξ(s) = B(s)π(s)a, where π is de-

fined as in (.). With a similar approach to above, we have

φξ (n)
(
C(γ )

)– =
n–∑

k=

eiγ kB(n – k)a, γ ∈A := {kπ : k ∈ Z}, (.)

where

C(γ ) :=
∫ 


eiγ sπ(s) ds.

By virtue of the fact that system (�(t)) is Hyers-Ulam stable, we conclude that φξ and φξ

are bounded functions, i.e., there exist two positive constants K and K such that

∥
∥φξ (n)

∥
∥ ≤K and

∥
∥φξ (n)

∥
∥ ≤K for all n = , , . . . .
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It follows from (.) and (.) that
∥
∥
∥
∥
∥

n–∑

k=

eiγ kB(n – k)a

∥
∥
∥
∥
∥

≤ K
|C| := R, if γ ∈A, (.)

and
∥
∥
∥
∥
∥

n–∑

k=

eiγ kB(n – k)a

∥
∥
∥
∥
∥

≤ K

|C| := R, if γ ∈A, (.)

respectively. Hence, by virtue of (.) and (.), we have, for any γ ∈A ∪A = R and each
a ∈C

l ,
∥
∥
∥
∥
∥

n–∑

k=

eiγ kB(n – k)a

∥
∥
∥
∥
∥

≤R + R. (.)

Let n – k = j. Then

n–∑

k=

eiγ kB(n – k)a = eiγ n
n∑

j=

e–iγ jB(j)a.

From (.), we obtain
∥
∥
∥
∥
∥

n∑

j=

e–iγ j(B()
)j

∥
∥
∥
∥
∥

≤ L < ∞.

Thus, using S = B() in Corollary ., we deduce that the spectrum of B() lies in the
interior of the circle of radius one, i.e., system (�(t)) is uniformly exponentially stable.
This completes the proof. �

Corollary . Let the exact solution φ(t) of the Cauchy problem (�(t),γ , θ) be an ap-
proximate solution of system (�(t)) with the error term eiγ tξ (t), where γ ∈ R, ξ ∈ M ⊂
W

 (R+,Cl), and M := M ∪ M. Then system (�(t)) is uniformly exponentially stable if
and only if it is Hyers-Ulam stable.
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22. Popa, D, Raşa, I: Hyers-Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math.

Comput. 219, 1562-1568 (2012)
23. Rezaei, H, Jung, S-M, Rassias, ThM: Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math.

Anal. Appl. 403, 244-251 (2013)
24. Takahasi, S-E, Miura, T, Miyajima, S: On the Hyers-Ulam stability of the Banach space-valued differential equation

y′ = λy. Bull. Korean Math. Soc. 39, 309-315 (2002)
25. Yuan, X, Xia, Y-H, O’Regan, D: Nonautonomous impulsive systems with unbounded nonlinear terms. Appl. Math.

Comput. 245, 391-403 (2014)
26. Zada, A, Shah, O, Shah, R: Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy

problems. Appl. Math. Comput. 271, 512-518 (2015)
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