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Abstract
In this paper, we suggest a new exponential implicit method based on full step
discretization of order four for the solution of quasilinear elliptic partial differential
equation of the form A(x, y, z)zxx + C(x, y, z)zyy = k(x, y, z, zx , zy), 0 < x, y < 1. In this
method a single compact cell consisting of nine nodal points is used. Convergence
analysis of the said method is discussed in detail. The developed method is
successfully applied to solving problems in polar coordinates. The method for scalar
equation is eventually applied to solving the system of quasilinear elliptic equations.
To measure the rationality and precision, the method is applied to solving several
noteworthy problems and numerical results are provided to exhibit the effectiveness
of the method.
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1 Introduction
We examine a quasilinear elliptic equation in two space dimensions of the form

A(x, y, z)zxx + C(x, y, z)zyy = k(x, y, z, zx, zy), (1.1)

where (x, y) ∈ Γ = (0, 1) × (0, 1).

z(x, y) = z0(x, y), (x, y) ∈ ∂Γ . (1.2)

The partial differential equations (PDEs) of the type (1.1) with non-constant coefficients
illustrate several real world problems of phenomenological importance like Poisson’s
equation, convection–diffusion equation, Burgers’ equation and the nonlinear steady-
state Navier–Stokes (NS) equations of motion.

We presuppose the following about the boundary value problem (1.1)–(1.2):
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1. A.C > 0 in Γ ,
2. z(x, y) ∈ C6,
3. A, C ∈ C4,
4. k is continuous,
5. ∂k

∂z ≥ 0,
6. | ∂k

∂zx
| ≤ H , | ∂k

∂zy
| ≤ I ,

where H and Iare finite positive real bounds and Cp is the class of functions with smooth
partial derivatives up to order p (Jain et al. [1]).

The ellipticity condition of Eq. (1.1) is ensured by (1). Assumptions (2)–(4) are required
to enable the Taylor series expansions, and (5)–(6) are the adequate conditions for the
existence and uniqueness of the solution of the boundary value problem (1.1)–(1.2) (Jain
et al. [2]).

Elliptic equations, a type of partial differential equations illustrate behavior that remains
static with time. In other words processes which are in equilibrium, like heat flow or fluid
flow through a medium without any accumulations. The elliptic equation satisfies a dif-
ferential equation within a domain along with the values near the boundary of the re-
gion (boundary values), representing the effect from outside the domain. These conditions
fall in two categories, one representing fixed temperature distribution at boundary points
(Dirichlet problem) another, where heat is added or removed across the boundary in such
a manner so that constant temperature is maintained throughout (Neumann problem).

The elliptic equations are used to model many natural phenomena like heat dissipation
in a metal sheet. They are used in aircraft design as well as in weather prediction (weather,
flow over wing, turbulence etc.). Many numerical strategies to solve a specific PDE are
iterative methods based on finite differencing whereby a mesh is generated to represent a
physical domain, the points on the mesh or grid are initialized usually with an approximate
solution and then repeatedly updated to obtain an increasingly accurate solution. This
process may be repeated for a fixed number of iterations or until the solution has reached
the desired level of accuracy. Each iteration stores the newly calculated values in another
array and swaps the arrays at the end of the iteration.

The Laplace equation, zxx + zyy = 0, is one of the most fundamental 2D elliptic equation
which represents the steady-state condition. It arises in electrostatics, gravitation, steady-
state flow of inviscid fluids and steady-state heat conduction. We have numerically solved
substantially important equations like Navier–Stokes equations which are beneficial in ex-
plaining multitude of phenomena arising in science and engineering-modeling weather,
ocean currents, water flowing in a pipe and air flowing around a wing. The Navier–Stokes
equations find their way in a host of applications viz. creating blueprints of aircraft and
cars, flow of blood in animals, designing power stations, analyzing soil, air and water pol-
lution and a plethora of real world phenomena. These equations govern the motion of flu-
ids and can be seen as Newton’s second law of motion for fluids. These are always solved
together with the continuity equation. The Navier–Stokes equations symbolize the con-
servation of momentum while the continuity equation describes the conservation of mass.
They form the core of fluid dynamics. Due to their complex behavior, these equations al-
low for a few restricted analytical solutions. In 1995, Li, Tang, Fornberg [3] discussed a
compact finite difference method for the equilibrium state of non-compressible Navier–
Stokes equations.
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In the year 2006, Erturk, Gökcöl [4] developed a fourth order compact method to solve
Navier–Stokes equations with high Reynolds numbers. Then, in the year 2008, Liu, Wang
proposed a fourth order numerical scheme for the primitive equations formulated in mean
vortices [5]. In the same year Ito and Qiao [6] discussed compact MAC finite difference
scheme of high order for the Stokes equations.

We have also numerically solved the Poisson equation, which arises in electrostatics and
elasticity theory. The solution of a Poisson equation describes the steady state of a system.
For example, the stabilized temperature of a steel rod with one end held in your hand
and the other end in the air is a solution of a certain Poisson equation. To approximate
the solution of a Poisson equation numerically, one needs to solve a diagonally dominant
linear system.

For linear elliptic equations many numerical schemes have been discussed which date
back to the year 1984 (see [7–11]). Solving fully nonlinear elliptic partial differential equa-
tions numerically finds strong interest among the research community. The applicability of
these equations in innumerable areas of science, such as transportation theory, optimiza-
tion, fluid dynamics and differential geometry, provides strong impetus to pursue deeper
research into this field. Among various numerical methods in the literature for solving
fully nonlinear equations; finite difference and finite element type methods are quite pop-
ular (see [1, 12–15]). In 1994, Jain et al. [16] developed fourth order difference method for
quasilinear Poisson equation in cylindrical symmetry. The following year Ananthakrish-
naiah, Saldanha [17] discussed a fourth order finite difference scheme for two-dimensional
nonlinear elliptic partial differential equations. Thereafter, Mohanty et al. [18–21], Zhang
[22], Saldanha [23] discussed order h4 difference methods for a class of elliptic boundary
value problem. Dehghan et al. [24] proposed preconditioning techniques to obtain faster
convergence of the higher order methods applied to linear elliptic PDEs. Using the split-
ting technique, Mohanty et al. [25–28], Khattar et al. [29] and Singh et al. [30, 31] have
proposed high accuracy numerical methods for the solution of nonlinear bi- and trihar-
monic elliptic boundary value problems.

This paper is devoted to the construction and analysis of the fourth order exponentially
fitted discretization of a second order quasilinear elliptic PDE using full step grid points
on a uniform mesh with Dirichlet boundary conditions. The exponentially fitted scheme
is one of the upcoming classes of robust difference schemes. Such schemes exhibit good
convergence and stability. Furthermore, they do not produce spurious oscillations as the
previously known finite difference schemes. The supremacy of the exponentially fitted
scheme is reflected by the numerical results in terms of maximum absolute errors.

A good first theoretical foundation of the technique of exponential fitting for multistep
methods was given by Gautschi [32] and Lyche [33]. Since then, a lot of exponentially fitted
linear multistep methods have been constructed; most of them were developed for sec-
ond order differential equations where the first derivative is absent and applied to solving
equations of the Schrödinger type.

This paper is structured in the following manner: In Sect. 2, we formulate the full step
fourth order compact discretization scheme for the solution of a nonlinear elliptic equa-
tion with non-constant coefficients. Section 3 is dedicated to a detailed derivation of the
numerical scheme under consideration. Thereafter, in Sect. 4, we establish the fourth or-
der convergence of the method for a scalar equation under suitable conditions. Further,
we extend our method to the system of quasilinear elliptic PDEs with non-constant co-
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efficients, subject to Dirichlet boundary conditions in Sect. 5. In Sect. 6, we discuss our
method to solve the elliptic equation in polar coordinates. The difficulties like the dete-
rioration of the solution in the vicinity of singularity which we encountered in the past
for obtaining the high accuracy numerical solution for the singular elliptic problems are
solved by modifying our method and thus the method becomes valid to compute the sin-
gular problem in the entire solution domain. In Sect. 7, we have applied our method to
solving nonlinear bi- and triharmonic problems. In Sect. 8, we solve a set of linear and
nonlinear elliptic problems of physical importance to present and investigate the preci-
sion of the proposed method. The last section is devoted to concluding remarks.

2 Formulation of the numerical algorithm
We first consider the following two-dimensional elliptic PDE:

A(x, y)zxx + C(x, y)zyy = k(x, y, z, zx, zy), 0 < x, y < 1, (2.1)

where (x, y) ∈ Γ = (0, 1) × (0, 1), satisfying Dirichlet boundary conditions given by (1.2).
We overlay on the solution domain Γ a square grid with spacing h > 0 in both x- and y-

directions. Each nodal point is given by (xp, yq), where xp = ph and yq = qh, 0 ≤ p, q ≤ N+1
and (N + 1)h = 1.

Further, at each grid point (xp, yq), let
(a) Zp,q and zp,q be the exact and approximate values of z(xp, yq), respectively,
(b) Kp,q = k(xp, yq, Zp,q, Zxp,q , Zyp,q ),
(c) kp,q = k(xp, yq, zp,q, zxp,q , zyp,q ),
(d) Slm = ∂ l+mS

∂xl∂ym , for l, m = 0, 1, 2, . . . and for S = A, C, Z.
At each nodal point (xp, yq), the differential equation (2.1) can be written as

A00Z20 + C00Z02 = Kp,q. (2.2)

Let δxZl = (Zl+ 1
2

– Zl– 1
2

) and μxZl = 1
2 (Zl+ 1

2
+ Zl– 1

2
).

For the fourth order discretization of PDE (2.1), we use the following approximations:

Zxp,q =
1

2h
[2μxδx]Zp,q = Zxp,q +

h2

6
Z30 + O

(
h4), (2.3a)

Zxp±1,q =
1

2h
[
2μxδx ± 2δ2

x
]
Zp,q = Zxp±1,q –

h2

3
Z30 ± O

(
h3), (2.3b)

Zxp,q±1 =
1

2h
[2μxδx]Zp,q±1 = Zxp,q±1 +

h2

6
Z30 ± O

(
h3), (2.3c)

Zyp,q =
1

2h
[2μyδy]Zp,q = Zyp,q +

h2

6
Z03 + O

(
h4), (2.4a)

Zyp±1,q =
1

2h
[2μyδy]Zp±1,q = Zyp±1,q +

h2

6
Z03 ± O

(
h3), (2.4b)

Zyp,q±1 =
1

2h
[
2μyδy ± 2δ2

y
]
Zp,q = Zyp,q±1 –

h2

3
Z03 ± O

(
h3), (2.4c)

Zxxp,q =
1
h2

[
δ2

x
]
Zp,q = Zxxp,q +

h2

12
Z40 + O

(
h4), (2.5a)

Zxxp,q±1 =
1
h2

[
δ2

x
]
Zp,q±1 = Zxxp,q±1 +

h2

12
Z40 ± O

(
h3), (2.5b)



Mohanty et al. Advances in Difference Equations         (2019) 2019:47 Page 5 of 36

Zyyp,q =
1
h2

[
δ2

y
]
Zp,q = Zyyp,q +

h2

12
Z04 + O

(
h4), (2.6a)

Zyyp±1,q =
1
h2

[
δ2

y
]
Zp±1,q = Zyyp±1,q +

h2

12
Z04 ± O

(
h3). (2.6b)

Define

Kp±1,q = k(xp±1, yq, Zp±1,q, Zxp±1,q , Zyp±1,q ), (2.7a)

Kp,q±1 = k(xp, yq±1, Zp,q±1, Zxp,q±1 , Zyp,q±1 ). (2.7b)

Let

Zxp,q = Zxp,q –
h

12A00
(Kp+1,q – Kp–1,q) +

hC00

12A00
(Zyyp+1,q – Zyyp–1,q )

+
h2

6A00
(A10Zxxp,q + C10Zyyp,q ), (2.8a)

Zyp,q = Zyp,q –
h

12C00
(Kp,q+1 – Kp,q–1) +

hA00

12C00
(Zxxp,q+1 – Zxxp,q–1 )

+
h2

6C00
(A01Zxxp,q + C01Zyyp,q ), (2.8b)

and let

Kp,q = k(xp,q, yp,q, Zp,q, Zxp,q , Zyp,q ). (2.9)

Further, let

ˆ̂Zxp,q = Zxp,q –
h

8A00
(Kp+1,q – Kp–1,q) +

hC00

8A00
(Zyyp+1,q – Zyyp–1,q )

+
h2

4A00
(A10Zxxp,q + C10Zyyp,q ), (2.10a)

ˆ̂Zyp,q = Zyp,q –
h

8C00
(Kp,q+1 – Kp,q–1) +

hA00

8C00
(Zxxp,q+1 – Zxxp,q–1 )

+
h2

4C00
(A01Zxxp,q + C01Zyyp,q ), (2.10b)

and let

ˆ̂Kp,q = k(xp,q, yp,q, Zp,q, ˆ̂Zxp,q , ˆ̂Zyp,q ). (2.11)

We denote

P1 = A10/A00, P2 = C01/C00,

I1 = A00 +
1

12
h2(A20 + A02 – 2P1A10 – 2P2A01),

I2 = C00 +
1

12
h2(C20 + C02 – 2P1C10 – 2P2C01),
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I3 =
1

12
h(A01 – P2A00), I4 =

1
12

h(C10 – P1C00), I5 =
1

12
(A00 + C00),

J1 = 1 – hP1, J2 = 1 + hP1, J3 = 1 – hP2, J4 = 1 + hP2.

Assume that Kp,q �= 0, then at each interior nodal point (xp, yq), the differential equation
(2.1) is discretized as

[
I1δ

2
x + I2δ

2
y + I3

(
2δ2

xμyδy
)

+ I4
(
2δ2

y μxδx
)

+ I5
(
δ2

xδ
2
y
)]

Zp,q

= h2Kp,q exp

(
J1Kp+1,q + J2Kp–1,q + J3Kp,q+1 + J4Kp,q–1 – 4 ˆ̂Kp,q

12Kp,q

)
+ Ep,q,

1 ≤ p, q ≤ N , (2.12)

where Ep,q = O(h6).

3 Deriving the numerical scheme
For the derivation of the scheme (2.12), at the nodal point (xp,yq), we denote

αp,q =
(

∂k
∂zx

)

p,q
, βp,q =

(
∂k
∂zy

)

p,q
. (3.1)

With the help of (2.3b), (2.4b) and (3.1) from (2.7a), we get

Kp±1,q = k
(

xp±1, yq,Zp±1,q, Zxp±1,q –
h2

3
Z30 ± O

(
h3), Zyp±1,q +

h2

6
Z30 ± O

(
h3)

)

= k(xp±1, yq,Zp±1,q, Zxp±1,q , Zyp±1,q ) –
h2

3
Z30αp±1,q +

h2

6
Z03βp±1,q + O

(±h3 + h4))

= Kp±1,q –
h2

3
Z30

(
αp,q ± O(h)

)
+

h2

6
Z03

(
βp,q ± O(h)

)
+ O

(±h3 + h4))

= Kp±1,q +
h2

6
E1 + O

(±h3 + h4). (3.2)

Similarly, using (2.3c), (2.4c) and (3.1) from (2.7b), we get

Kp,q±1 = Kp,q±1 +
h2

6
E2 + O

(±h3 + h4), (3.3)

where

E1 = –2αp,qZ30 + βp,qZ03, (3.4)

E2 = αp,qZ30 – 2βp,qZ03. (3.5)

Let us consider the following linear combinations:

Zxp,q = Zxp,q + ha1(Kp+1,q – Kp–1,q) + ha2(Zyyp+1,q – Zyyp–1,q )

+ 2h2(a3Zxxp,q + a4Zyyp,q ), (3.6a)
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Zyp,q = Zyp,q + hb1(Kp,q+1 – Kp,q–1) + hb2(Zxxp,q+1 – Zxxp,q–1 )

+ 2h2(b3Zxxp,q + b4Zyyp,q ), (3.6b)

ˆ̂Zxp,q = Zxp,q + ha′
1(Kp+1,q – Kp–1,q) + ha′

2(Zyyp+1,q – Zyyp–1,q )

+ 2h2(a′
3Zxxp,q + a′

4Zyyp,q

)
, (3.7a)

ˆ̂Zyp,q = Zyp,q + hb′
1(Kp,q+1 – Kp,q–1) + hb′

2(Zxxp,q+1 – Zxxp,q–1 )

+ 2h2(b′
3Zxxp,q + b′

4Zyyp,q

)
, (3.7b)

where ai, bi, a′
i, b′

i, i = 1(1)4 are parameters to be determined.
Using (2.3a), (2.5a), (2.6a), (2.6b), (3.2) in (3.6a) and (2.4a), (2.5a), (2.5b), (2.6a), (3.3) in

(3.6b), we get

Zxp,q = Zxp,q +
h2

6
(1 + 12a1A00)Z30 + 2h2(a1C00 + a2)Z12 + 2h2(a1A10 + a3)Z20

+ 2h2(a1C10 + a4)Z02 + O
(
h4), (3.8)

Zyp,q = Zyp,q +
h2

6
(1 + 12b1C00)Z03 + 2h2(b1A00 + b2)Z21 + 2h2(b1A01 + b3)Z20

+ 2h2(b1C01 + b4)Z02 + O
(
h4). (3.9)

Note that

Zxp,q = Zxp,q + O
(
h4),

and

Zyp,q = Zyp,q + O
(
h4),

if

a1 =
–1

12A00
, a2 =

C00

12A00
, a3 =

A10

12A00
, a4 =

C10

12A00
,

b1 =
–1

12C00
, b2 =

A00

12C00
, b3 =

A01

12C00
, b4 =

C01

12C00
.

For this choice of parameters, from (2.9), it is easy to verify that

Kp,q = Kp,q + O
(
h4). (3.10)

Using (2.3a), (2.5a), (2.6a), (2.6b), (3.1) in (3.6a) and (2.4a), (2.5a), (2.5b), (2.6a), (3.2) in
(3.6b) we get

ˆ̂Zxp,q = Zxp,q +
h2

6
E3 + O

(
h4). (3.11)

ˆ̂Zyp,q = Zyp,q +
h2

6
E4 + O

(
h4). (3.12)
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where

E3 =
(
1 + 12a′

1A00
)
Z30 +

(
12a′

1C00 + 12a′
2
)
Z12 +

(
12a′

1A10 + 12a′
3
)
Z20

+
(
12a′

1C10 + 12a′
4
)
Z02, (3.13)

E4 =
(
1 + 12b′

1C00
)
Z03 +

(
12b′

1A00 + 12b′
2
)
Z21 +

(
12b′

1A01 + 12b′
3
)
Z20

+
(
12b′

1C01 + 12b′
4
)
Z02. (3.14)

Using (3.10) and (3.11) in (2.11) we get

ˆ̂Kp,q = Kp,q +
h2

6
E3αp,q +

h2

6
E4βp,q + O

(
h4). (3.15)

With the help of a Taylor expansion, it is easy to verify that

[
I1δ

2
x + I2δ

2
y + I3

(
2δ2

xμyδy
)

+ I4
(
2δ2

y μxδx
)

+ I5
(
δ2

xδ
2
y
)]

Zp,q

= h2Kp,q exp

(
J1Kp+1,q + J2Kp–1,q + J3Kp,q+1 + J4Kp,q–1 – 4Kp,q

12Kp,q

)
+ O

(
h6),

Kp,q �= 0. (3.16)

With the help of approximations (3.2), (3.3), (3.10), (3.15), from (2.12) and (3.16), we get
the local truncation error

Ep,q =
–h4

36
[E1 + E2 – 2E3αp,q – 2E4βp,q] + O

(
h6). (3.17)

For the proposed method (2.12) to be of O(h4), the coefficient of h4 in (3.17) must be zero.
Thus we obtain the values of the coefficients,

a′
1 =

–1
8A00

, a′
2 =

C00

8A00
, a′

3 =
A10

8A00
, a′

4 =
C10

8A00
,

b′
1 =

–1
8C00

, b′
2 =

A00

8C00
, b′

3 =
A01

8C00
, b′

4 =
C01

8C00
.

We now consider the numerical method of O(h4) for the solution of the 2D quasilinear
elliptic equation (1.1). Using the technique discussed in [19], we can get the fourth order
method for the quasilinear equation (1.1).

4 Study of convergence
Consider the following 2D nonlinear elliptic partial differential equation:

Azxx + Czyy = k(x, y, z, zx, zy), (4.1)

defined in the region Γ and subject to z(x, y) = z0(x, y), (x, y) ∈ ∂Γ , where A and Care pos-
itive constants.

Then the difference method (2.12) for Eq. (4.1) becomes

λ1(Zp+1,q + Zp–1,q) + λ2(Zp,q+1 + Zp,q–1)

+ λ3(Zp+1,q+1 + Zp+1,q–1 + Zp–1,q+1 + Zp–1,q–1 – 20Zp,q)
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= 6h2Kp,q exp

(
J1Kp+1,q + J2Kp–1,q + J3Kp,q+1 + J4Kp,q–1 – 4 ˆ̂Kp,q

12Kp,q

)
+ Ep,q,

1 ≤ p, q ≤ N , (4.2)

where Ep,q = O(h6), λ1 = 5A – C, λ2 = 5C – A and λ3 = A+C
2 . The conditions which are

usually imposed on (4.2) are λ1>0 and λ2>0.
The scheme (4.2) can easily be written in matrix form.
Let S = [S1, S2, S1]N2×N2 be a triblock-diagonal matrix, where S1 = [–λ3, –λ2, –λ3 ]N×N

and S2 = [–λ1, 20λ3, –λ1 ]N×N are tri-diagonal matrices.
Let

φp,q = 6h2Kp,q exp

(
J1Kp+1,q + J2Kp–1,q + J3Kp,q+1 + J4Kp,q–1 – 4 ˆ̂Kp,q

12Kp,q

)
.

Then the method (4.2) in matrix form may be written as

SZ + φZ + E = 0, (4.3)

where E is the local truncation error vector.
Thus the method involves computing a numerical value z for the exact value Z by solving

a system of (N2 × N2) equations:

Sz + φz = 0. (4.4)

Let

εp,q = zp,q – Zp,q
(
p = 1(1)N , q = 1(1)N

)
, (4.5)

and

T = z – Z

Let

kp±1,q = k(xp±1, yq, zp±1,q, z̄xp±1,q , z̄yp±1,q ) ≈ Kp±1,q, (4.6a)

kp,q±1 = k(xp, yq±1, zp,q±1, z̄xp,q±1 , z̄yp,q±1 ) ≈ Kp,q±1, (4.6b)

kp,q = k(xp, yq, zp,q, ¯̄zxp,q , ¯̄zyp,q ) ≈ Kp,q, (4.6c)

ˆ̂kp,q = k(xp, yq, zp,q, ˆ̂zxp,q , ˆ̂zyp,q ) ≈ ˆ̂Kp,q. (4.6d)

We may write

kp±1,q – Kp±1,q = εp±1,qV (1)
p±1,q

+ (zxp±1,q – Zxp±1,q )G(1)
p±1,q + (zyp±1,q – Zyp±1,q )H (1)

p±1,q, (4.7a)
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kp,q±1 – Kp,q±1 = εp,q±1V (2)
p,q±1 + (zxp,q±1 – Zxp,q±1 )G(2)

p,q±1

+ (zyp,q±1 – Zyp,q±1 )H (2)
p,q±1, (4.7b)

kp,q – Kp,q = εp,qV (3)
p,q + ( ¯̄zxp,q – Zxp,q )G(3)

p,q + ( ¯̄zyp,q – Zyp,q )H (3)
p,q, (4.7c)

ˆ̂kp,q – ˆ̂Kp,q = εp,qV (4)
p,q + ( ˆ̂zxp,q – ˆ̂Zxp,q )G(4)

p,q + ( ˆ̂zyp,q – ˆ̂Zyp,q )H (4)
p,q, (4.7d)

for suitable R(1)
p±1,q, R(2)

p,q±1, R(3)
p,q and R(4)

p,q, where R = V , G and H .
Also, for R = G and H we may write

R(1)
p±1,q = R(1)

p,q ± hR(1)
xp,q + O

(
h2), (4.8a)

R(2)
p,q±1 = R(2)

p,q ± hR(2)
yp,q + O

(
h2) (4.8b)

and

V (1)
p±1,q = V (1)

p,q ± O(h), (4.8c)

V (2)
p,q±1 = V (2)

p,q ± O(h). (4.8d)

With the help of Eqs. (4.7a)–(4.7d) and (4.8a)–(4.8d), we get

φz – φZ = QT. (4.9)

where Q = (Qi,j), ((i = 1(1)N2), j = 1(1)N2) is the triblock-diagonal matrix with

Q(q–1)N+p,(q–1)N+p

= h2[α1G(1)
p,q

(
2G(3)

p,q – G(4)
p,q

)
+ β1H (2)

p,q
(
2H (3)

p,q – H (4)
p,q

)
+ 2

(
3V (3)

p,q – V (4)
p,q

)

– 2G(1)
xp,q – 2H (2)

yp,q

]
+ O

(
h4),

((
p = 1(1)N

)
, q = 1(1)N

)
;

Q(q–1)N+p,(q–1)N+p±1

= ±h
2
[
G(1)

p,q + 2
(
3G(3)

p,q – G(4)
p,q

)
– α2

(
2G(3)

p,q – G(4)
p,q

)]

+
h2

2
[
V (1)

p,q + 2G(1)
xp,q – α1G(1)

p,q
(
2G(3)

p,q – G(4)
p,q

)]
+ O

(
h3),

((
p = 1(1)N – 1, 2(1)N

)
, q = 1(1)N

)
;

Q(q–1)N+p,(q–1±1)N+p

= ±h
2
[
H (2)

p,q + 2
(
3H (3)

p,q – H (4)
p,q

)
– β2

(
2H (3)

p,q – H (4)
p,q

)]

+
h2

2
[
V (2)

p,q + 2H (2)
yp,q – β1H (2)

p,q
(
2H (3)

p,q – H (4)
p,q

)]
+ O

(
h3),

((
p = 1(1)N

)
, q = 1(1)N – 1, 2(1)N

)
;

Q(q–1)N+p,qN+p±1

=
h
4
[±G(2)

p,q + H (1)
p,q ± α2

(
2G(3)

p,q – G(4)
p,q

)
+ β2

(
2H (3)

p,q – H (4)
p,q

)]
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± h2

8
[
2H (1)

xp,q + 2G(2)
yp,q – α1H (1)

p,q
(
2G(3)

p,q – G(4)
p,q

)
– β1G(2)

p,q
(
2H (3)

p,q – H (4)
p,q

)]
+ O

(
h3),

((
p = 1(1)N – 1, 2(1)N

)
, q = 1(1)N – 1

)
;

Q(q–1)N+p,(q–2)N+p±1

=
h
4
[±G(2)

p,q – H (1)
p,q ± α2

(
2G(3)

p,q – G(4)
p,q

)
– β2

(
2H (3)

p,q – H (4)
p,q

)]

± h2

8
[
–2H (1)

xp,q – 2G(2)
yp,q + α1H (1)

p,q
(
2G(3)

p,q – G(4)
p,q

)
+ β1G(2)

p,q
(
2H (3)

p,q – H (4)
p,q

)]
+ O

(
h3),

((
p = 1(1)N – 1, 2(1)N

)
, q = 2(1)N

)
;

where

α1 =
1

A00
, α2 =

C00

A00
, β1 =

1
C00

, β2 =
A00

C00
.

With the help of (4.9), from (4.3) and (4.4), we get the following equation:

(S + Q)T = E. (4.10)

Let

V (2)
∗ = Min

(x,y)∈Γ

∂k
∂Z

and V ∗
(2) = Max

(x,y)∈Γ

∂k
∂Z

,

where Γ = Γ ∪ ∂Γ .
Then 0 < V (2)∗ ≤ V (1)

p±1,q, V (2)
p,q±1, V (3)

p,q , V (4)
p,q ≤ V ∗

(2), and for R = G, H , let 0 < |R(1)
p±1,q|, |R(2)

p,q±1|,
|R(3)

p,q|, |R(4)
p,q| ≤ R, and |R(1)

xp,q | ≤ R(1), |R(2)
yp,q | ≤ R(2) for some positive constants R(1) and R(2).

Further it is easy to verify that, for howsoever small h,

|Q(q–1)N+p,(q–1)N+p±1| < λ1,
((

p = 1(1)N – 1, 2(1)N
)
, q = 1(1)N

)
;

|Q(q–1)N+p,(q–1±1)N+p| < λ2,
((

p = 1(1)N
)
, q = 1(1)N – 1, 2(1)N

)
;

|Q(q–1)N+p,qN+p±1| < λ3,
((

p = 1(1)N – 1, 2(1)N
)
, q = 1(1)N – 1

)
;

|Q(q–1)N+p,(q–2)N+p±1| < λ3,
((

p = 1(1)N – 1, 2(1)N
)
, q = 2(1)N

)
;

Further, the directed graph of (S + Q) shows that it is an irreducible matrix (see Fig. 1).
The arrows indicate the paths i → j for every nonzero entry of the matrix (S + Q). For any

ordered pair of nodes i and j, there exists a direct path (
−→
i, l1), (

−−→
l1, l2), . . . , (

−→
lk , j) connecting i

to j. Thus, the graph is strongly connected. So, the matrix (S + Q) is irreducible. (See Varga
[34], Young [35].)

Let Mk be the sum of the elements in the kth row of (S + Q), then for k = 1 and N , we
have

Mk = 11λ3 +
h
4

(
dk +

h
2

pk

)
+

h2

2
[
V (1)

k,1 + V (2)
k,1 + 4

(
3V (3)

k,1 – V (4)
k,1

)]
+ O

(
h3), (4.11a)
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Figure 1 Directed graph of (S + Q)

where

dk = ± 2G(1)
k,1 ± G(2)

k,1 ± 4
(
3G(3)

k,1 – G(4)
k,1

) ∓ α2
(
2G(3)

k,1 – G(4)
k,1

)

+ H (1)
k,1 + 2H (2)

k,1 + 4
(
3H (3)

k,1 – H (4)
k,1

)
– β2

(
2H (3)

k,1 – H (4)
k,1

)

pk = 4α1G(1)
k,1

(
2G(3)

k,1 – G(4)
k,1

)
+ 4β1H (2)

k,1
(
2H (3)

k,1 – H (4)
k,1

) ∓ β1G(2)
k,1

(
2H (3)

k,1 – H (4)
k,1

)

∓ α1H (1)
k,1

(
2G(3)

k,1 – G(4)
k,1

)
– 8G(1)

xk,1
– 8H (2)

yk,1
± 2G(2)

yk,1
± 2H (1)

xk,1
,

(4.11b)

M(N–1)N+k = 11λ3 +
h
4

(
d(N–1)N+k +

h
2

p(N–1)N+k

)

+
h2

2
[
V (1)

k,N + V (2)
k,N + 4

(
3V (3)

k,N – V (4)
k,N

)]
+ O

(
h3),

where

d(N–1)N+k = ± 2G(1)
k,N ± G(2)

k,N ± 4
(
3G(3)

k,N – G(4)
k,N

) ∓ α2
(
2G(3)

k,N – G(4)
k,N

)

– H (1)
k,N – 2H (2)

k,N – 4
(
3H (3)

k,N – H (4)
k,N

)
+ β2

(
2H (3)

k,N – H (4)
k,N

)

p(N–1)N+k = 4α1G(1)
k,N

(
2G(3)

k,N – G(4)
k,N

)
+ 4β1H (2)

k,N
(
2H (3)

k,N – H (4)
k,N

) ± β1G(2)
k,N

(
2H (3)

k,N – H (4)
k,N

)

± α1H (1)
k,N

(
2G(3)

k,N – G(4)
k,N

)
– 8G(1)

xk,N
– 8H (2)

yk,N
∓ 2G(2)

yk,N
∓ 2H (1)

xk,N
.

For (2 ≤ j ≤ N – 1):

M(j–1)N+k = 6A +
h
2

[d(j–1)N+k + hp(j–1)N+k]

+
h2

2
[
V (1)

k,j + 2V (2)
k,j + 4

(
3V (3)

k,j – V (4)
k,j

)]
+ O

(
h3), (4.11c)

where

d(j–1)N+k = ±[
G(1)

k,j + G(2)
k,J + 2

(
3G(3)

k,j – G(4)
k,j

)]
,
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p(j–1)N+k = α1
[
G(1)

k,j
(
2G(3)

k,j – G(4)
k,j

)]
– 2G(1)

xk,j
.

For (i = 2(1)N – 1):

M(k–1)N+i = 6B +
h
2

[d(k–1)N+i + hp(k–1)N+i]

+
h2

2
[
2V (1)

i,k + V (2)
i,k + 4

(
3V (3)

i,k – V (4)
i,k

)]
+ O

(
h3), (4.11d)

where

d(k–1)N+i = ±[
H (1)

i,k + H (2)
i,k + 2

(
3H (3)

i,k – H (4)
i,k

)]
,

p(k–1)N+i = β1
[
H (2)

i,k
(
2H (3)

i,k – H (4)
i,k

)
– 2H (2)

yi,k

]
,

and, finally, for ((2 ≤ i ≤ N – 1), 2 ≤ j ≤ N – 1):

M(j–1)N+i = h2[V (1)
i,j + V (2)

i,j + 2
(
3V (3)

i,j – V (4)
i,j

)]
+ O

(
h4). (4.11e)

With the help of Eqs. (4.11a)–(4.11e), for k = 1, N , (N – 1)N + 1 and N2

|dk| ≤ (19 + 3α2)G + (19 + 3β2)H ,

|pk| ≤ 12
(
α1G2 + β1H2) + 3(α1 + β1)GH + 8

(
G(1) + H (2)) + 2

(
G(2) + H (1)),

and for k = i and (N – 1)N + i; i = 2(1)N – 1

|dk| ≤ 10H ,

|pk| ≤ 3β1H2 + 2H (2),

and for k = (j – 1)N + 1 and jN ; j = 2(1)N – 1

|dk| ≤ 10G,

|pk| ≤ 3α1G2 + 2G(1).

Hence for h (howsoever small) using (4.11) it is easy to see that

Mk > 9h2V (2)
∗ ; k = 1, N , (N – 1)N + 1 and N2, (4.12a)

Mk >
19
2

h2V (2)
∗ ; k = i and (N – 1)N + i; i = 2(1)N – 1, (4.12b)

Mk >
19
2

h2V (2)
∗ ; k = (j – 1)N + 1 and jN ; j = 2(1)N – 1, (4.12c)

M(j–1)N+i ≥ 10h2V (2)
∗ ;

((
i = 2(1)N – 1

)
, j = 2(1)N – 1

)
. (4.12d)

Thus, for h (howsoever small), (S + Q) is monotone. Hence, (S + Q)–1 exists and (S + Q)–1 =
J > 0 where J = [Ji,j]N2×N2 .
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Since
∑N2

j=1 Jl,jMj = 1, l = 1(1)N2, using (4.12a)–(4.12d) with l = 1(1)N2, we obtain

Jl,k ≤ 1
Mk

<
1

9h2V (2)∗
, k = 1, N , (N – 1)N + 1, N2, (4.13a)

N–1∑

i=2

Jl,k ≤ 1
min2≤i≤N–1 Mk

<
2

19h2V (2)∗
; k = i, (N – 1)N + i, (4.13b)

N–1∑

j=2

Jl,k ≤ 1
min2≤j≤N–1 Mk

<
2

19h2V (2)∗
; k = (j – 1)N + 1, jN , (4.13c)

N–1∑

i=2

N–1∑

j=2

Jl,k ≤ 1
min 2≤i≤N–1

2≤j≤N–1
Mk

≤ 1
10h2V (2)∗

, k = (j – 1)N + i. (4.13d)

Since E is the local truncation error vector, we define ‖E‖ = maxp,q |Ēp,q| ≤ C∗h6, where C∗

is a positive constant.
Now, from Eq. (4.10), we obtain

‖T‖ ≤ ‖J‖‖E‖, (4.14)

where

‖J‖ = max
1≤l≤N2

[(

Jl,1 +
(N–1)∑

i=2

Jl,i + Jl,N

)

+

(N–1∑

j=2

Jl,(j–1)N+1 +
N–1∑

i=2

N–1∑

j=2

Jl,(j–1)N+i +
N–1∑

j=2

Jl,jN

)

+

(

Jl,(N–1)N+1 +
N–1∑

i=2

Jl,(N–1)N+i + Jl,N2

)]

. (4.15)

Using inequalities (4.13a)–(4.13d) in Eq. (4.15), we get

‖J‖ ≤ 1651
1710h2V (2)∗

. (4.16)

Finally, with the help of (4.16) for sufficiently small h, from (4.14) we obtain

‖T‖ ≤ O
(
h4). (4.17)

This proves the convergence of the fourth order of the method (4.2) for the elliptic equa-
tion (4.1).

5 Method for system of equations
In this section, we extend our method to the system of quasilinear PDEs of the form

A(i)z(i)
xx + C(i)z(i)

yy = k(i)(x, y, z(1), z(2), . . . , z(n), z(1)
x , z(2)

x , . . . , z(n)
x , z(1)

y , z(2)
y , . . . , z(n)

y
)
,

i = 1(1)n, (5.1)

where (x, y) ∈ Γ = (0, 1) × (0, 1), A(i) = A(i)(x, y) and C(i) = C(i)(x, y).
The boundary conditions of Dirichlet type are given by

z(i)(x, y) = z(i)
0 (x, y), (x, y) ∈ ∂Γ . (5.2)
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We assume Z(i)
p,q and z(i)

p,q to be the exact and approximate values of z(i)(xp, yq) respectively.
For each i = 1(1)n, let

K (i)
p,q = k(i)(xp, yq, Z(1)

p,q, Z(2)
p,q, . . . , Z(n)

p,q, Z(1)
xp,q , Z(2)

xp,q , . . . , Z(n)
xp,q , Z(1)

yp,q , Z(2)
yp,q , . . . , Z(n)

yp,q

)
.

We define the following approximations:

Z(i)
xp,q =

1
2h

[2μxδx]Z(i)
p,q, (5.3a)

Z(i)
xp±1,q =

1
2h

[
2μxδx ± 2δ2

x
]
Z(i)

p,q, (5.3b)

Z(i)
xp,q±1 =

1
2h

[2μxδx]Z(i)
p,q±1, (5.3c)

Z(i)
yp,q =

1
2h

[2μyδy]Z(i)
p,q, (5.4a)

Z(i)
yp±1,q =

1
2h

[2μyδy]Z(i)
p±1,q, (5.4b)

Z(i)
yp,q±1 =

1
2h

[
2μyδy ± 2δ2

y
]
Z(i)

p,q, (5.4c)

Z(i)
xxp,q =

1
h2

[
δ2

x
]
Z(i)

p,q, (5.5a)

Z(i)
xxp,q±1 =

1
h2

[
δ2

x
]
Z(i)

p,q±1, (5.5b)

Z(i)
yyp,q =

1
h2

[
δ2

y
]
Z(i)

p,q, (5.6a)

Z(i)
yyp±1,q =

1
h2

[
δ2

y
]
Z(i)

p±1,q. (5.6b)

Define

K (i)
p±a,q±b = k(i)(xp±a, yq±b, Z(1)

p±a,q±b, Z(2)
p±a,q±b, . . . , Z(n)

p±a,q±b, Z(1)
xp±a,q±b

, Z(2)
xp±a,q±b

, . . . ,

Z(n)
xp±a,q±b

, Z(1)
yp±a,q±b

, Z(2)
yp±a,q±b

, . . . , Z(n)
yp±a,q±b

)
;

(a = 0, b = 1; a = 1, b = 0). (5.7)

Let

Z
(i)
xp,q = Z(i)

xp,q –
h

12A(i)
00

(
K (i)

p+1,q – K (i)
p–1,q

)
+

hC(i)
00

12A(i)
00

(
Z(i)

yyp+1,q – Z(i)
yyp–1,q

)

+
h2

6A(i)
00

(
A(i)

10Z(i)
xxp,q + C(i)

10Z(i)
yyp,q

)
, (5.8a)

Z
(i)
yp,q = Z(i)

yp,q –
h

12C(i)
00

(
K (i)

p,q+1 – K (i)
p,q–1

)
+

hA(i)
00

12C(i)
00

(
Z(i)

xxp,q+1 – Z(i)
xxp,q–1

)

+
h2

6C(i)
00

(
A(i)

01Z(i)
xxp,q + C(i)

01Z(i)
yyp,q

)
, (5.8b)
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ˆ̂Z(i)
xp,q = Z(i)

xp,q –
h

8A(i)
00

(
K (i)

p+1,q – K (i)
p–1,q

)
+

hC(i)
00

8A(i)
00

(
Z(i)

yyp+1,q – Z(i)
yyp–1,q

)

+
h2

4A(i)
00

(
A(i)

10Z(i)
xxp,q + C(i)

10Z(i)
yyp,q

)
, (5.9a)

ˆ̂Z(i)
yp,q = Z(i)

yp,q –
h

8C(i)
00

(
K (i)

p,q+1 – K (i)
p,q–1

)
+

hA(i)
00

8C(i)
00

(
Z(i)

xxp,q+1 – Z(i)
xxp,q–1

)

+
h2

4C(i)
00

(
A(i)

01Z(i)
xxp,q + C(i)

01Z(i)
yyp,q

)
(5.9b)

and let

K
(i)
p,q = k(i)(xp, yq, Z(1)

p,q, Z(2)
p,q, . . . , Z(n)

p,q, Z
(1)
xp,q , Z

(2)
xp,q , . . . , Z

(n)
xp,q Z

(1)
yp,q , Z

(2)
yp,q , . . . , Z

(n)
yp,q

)
, (5.10)

ˆ̂K (i)
p,q = k(i)(xp, yq, Z(1)

p,q, Z(2)
p,q, . . . , Z(n)

p,q, ˆ̂Z(1)
xp,q , ˆ̂Z(2)

xp,q , . . . , ˆ̂Z(n)
xp,q , ˆ̂Z(1)

yp,q , ˆ̂Z(2)
yp,q , . . . , ˆ̂Z(n)

yp,q

)
. (5.11)

We denote

P(i)
1 = A(i)

10/A(i)
00, P(i)

2 = C(i)
01/C(i)

00,

I(i)
1 = A(i)

00 +
1

12
h2(A(i)

20 + A(i)
02 – 2P(i)

1 A(i)
10 – 2P(i)

2 A(i)
01

)
,

I(i)
2 = C(i)

00 +
1

12
h2(C(i)

20 + C(i)
02 – 2P(i)

1 C(i)
10 – 2P(i)

2 C(i)
01

)
,

I(i)
3 =

1
12

h
(
A(i)

01 – P(i)
2 A(i)

00
)
, I(i)

4 =
1

12
h
(
C(i)

10 – P(i)
1 C(i)

00
)
, I(i)

5 =
1

12
(
A(i)

00 + C(i)
00

)
,

J (i)
1 = 1 – hP(i)

1 , J (i)
2 = 1 + hP(i)

1 , J (i)
3 = 1 – hP(i)

2 , J (i)
4 = 1 + hP(i)

2 .

Assume that K (i)
p,q �= 0, i = 1(1)N . Then at each nodal point (xp, yq) the given system of

differential equations (5.1) is discretized by
[
I(i)

1 δ2
x + I(i)

2 δ2
y + I(i)

3
(
2δ2

xμyδy
)

+ I(i)
4

(
2δ2

y μxδx
)

+ I(i)
5

(
δ2

xδ
2
y
)]

Z(i)
p,.q

= h2K
(i)
p,q exp

( J (i)
1 K (i)

p+1,q + J (i)
2 K (i)

p–1,q + J (i)
3 K (i)

p,q+1 + J (i)
4 K (i)

p,q–1 – 4 ˆ̂K (i)
p,q

12K
(i)
p,q

)

+ O
(
h6). (5.12)

Using the technique discussed in [19], we can derive the fourth order schemes for the
system of quasilinear elliptic PDEs.

6 Application to elliptic equations in polar coordinates
In this section, we aim to derive a stable finite difference scheme for a class of two-
dimensional quasilinear elliptic equations and ensure that the numerical methods devel-
oped here retain their order and accuracy everywhere including the region in the vicinity
of the singularity x = 0.

Let us consider the elliptic equation of the form

zxx + C(x)zyy = D(x)zx + G(x, y), 0 < x, y < 1, (6.1)

where D(x) = 1
x .
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In this section, we denote

Slm =
∂ l+mS
∂xl∂ym for l, m = 0, 1, 2, . . . and for S = C, D, G. (6.2)

With the help of approximations (2.3a)–(2.11) and using the method (2.12), we obtain the
following difference scheme for Eq. (6.1):

[
L1δ

2
x + L2δ

2
y + L3

(
2δ2

y μxδx
)

+ L4
(
δ2

xδ
2
y
)]

zp,q

=
h2

12

[
8D00zxp,q +

(
1 –

hD00

2

)
Dl+1zxp+1,q +

(
1 +

hD00

2

)
Dp–1zxp–1,q

+ D00(zxp,q+1 + zxp,q–1 ) +
hD00C00

2
(zyyp+1,q – zyyp–1,q ) + h2C10D00zyyp,q

]

+
h2

12

[
8Gp,q + Gp+1,q + Gp–1,q + Gp,q+1 + Gp,q–1 –

hD00

2
(Gp+1,q – Gp–1,q)

]
,

p, q = 1, 2, . . . , N , (6.3)

where

L1 = 1, L2 = C00 +
h2

12
C20, L3 =

h
12

C10, L4 =
1 + C00

12
.

Note that the scheme (6.3) is of O(h4) for the difference solution of (6.1). However, the
scheme fails when the solution is to be determined at p = 1. We overcome this difficulty
by modifying the method in such a way that the solutions retain the order and accuracy
even in the vicinity of the singularity x = 0.

We consider the following approximations:

Dp±1 = Dp ± hD10 +
h2

2
D20 + O

(±h3 + h4), (6.4a)

Gp±1,q = G00 ± hG10 +
h2

2
G20 + O

(±h3 + h4), (6.4b)

Gp,q±1 = G00 ± hG01 +
h2

2
G02 + O

(±h3 + h4). (6.4c)

Now using the approximations (6.4a)–(6.4c) and neglecting the higher order terms, we get

[
L1δ

2
x + L2δ

2
y + L3

(
2δ2

y μxδx
)

+ L4
(
δ2

xδ
2
y
)]

zp,q

=
[
M1δ

2
x + M2δ

2
y + M3

(
2δ2

y μxδx
)

+ M4
(
δ2

xδ
2
y
)]

zp,q +
∑

G, (6.5)

where

M1 =
h2

12
(
2D10 – D2

00
)
, M2 =

h2

12
(D00C10),

M3 =
h2

24

(
12
h

D00 + hD20 – hD00D10

)
, M4 = h

D00

24
(1 + c00),

∑
G =

h2

12
[
12G00 + h2(G20 + G02) – h2D00G10

]
.
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Now consider the two dimensional Poisson equation in the r–θ plane,

zrr +
1
r

zr +
1
r2 zθθ = G(r, θ ), 0 < r, θ < 1. (6.6)

Replacing the variables x, y by r, θ , respectively, we get the required difference scheme for
the solution of differential equation (6.6) and the coefficients are given by

L1 = 1, L2 =
1
r2

(
1 +

h2

2r2

)
, L3 =

–h
6r3 , L4 =

1 + r2

12r2 ,

M1 =
h2

12r2 , M2 =
h2

6r4 ,

M3 = –
h
2r

(
1 +

h2

12r2

)
, M4 = –

h
24r3

(
1 + r2),

∑
G =

h2

12

[
12G00 + h2(G20 + G02) +

h2

r
G10

]
.

Next, we consider the two dimensional Poisson equation in the r–w plane,

zrr +
1
r

zr + zww = G(r, w), 0 < r, w < 1. (6.7)

Replacing the variables x, y by r, w, respectively, we get the required difference scheme for
the solution of the differential equation (6.7) and the coefficients are given by

L1 = 1, L2 = 1, L3 = 0, L4 =
1
6

,

M1 =
h2

12r2 , M2 = 0, M3 = –
h
2r

(
1 +

h2

12r2

)
, M4 = –

h
12r

,

∑
G =

h2

12

[
12G00 + h2(G20 + G02) +

h2

r
G10

]
.

Note that the scheme (6.3) along with the approximations (6.4a)–(6.4c) are of O(h4) and
free from the terms 1/(p±1) and 1/(q±1), hence it is very easily solved for p, q = 1, 2, . . . , N
in the region 0 < r, θ < 1 and 0 < r, w < 1. In a similar manner, we can discuss the numerical
schemes for nonlinear elliptic equations in polar coordinates.

7 Application to nonlinear bi- and triharmonic problems
7.1 Nonlinear biharmonic equation
We consider the 2D nonlinear biharmonic elliptic partial differential equation with a forc-
ing function of the form

∇4z(x, y) = f
(
x, y, z,∇2z, zx,∇2zx, zy,∇2zy

)
, Γ : 0 < x, y < 1, (7.1)

where the Laplacian operator ∇2 is defined by ∇2z ≡ ∂2z
∂x2 + ∂2z

∂y2 .
The boundary conditions of second kind z and (∂2z/∂n2) are prescribed on the boundary.
The values of z, zyy are prescribed on the boundary y = 0, y = 1; and the values of z, zxx

are prescribed on the boundary x = 0, x = 1. As the grid lines are parallel to the coordinate
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axes and the values of zare exactly known on the boundary, this implies that the successive
tangential partial derivatives of z are known exactly on the boundary. For example, on the
line y = 0, the values of z(x, 0) and zyy(x, 0) are known, i.e. the values of zx(x, 0), zxx(x, 0),
etc. are known on the line y = 0. This implies the values of z(x, 0) and ∇2z(x, 0) ≡ zxx(x, 0) +
zyy(x, 0) are known on the line y = 0. Similarly, the values of z and ∇2z are known on all
sides of the square region.

Let us denote ∇2z = v. Then we can rewrite Eq. (7.1) in a coupled manner as

∇2z = v(x, y), (x, y) ∈ Γ , (7.2a)

∇2v = f (x, y, z, v, zx, vx, zy, vy), (x, y) ∈ Γ . (7.2b)

In this case, the values of z and vare exactly known on the boundary of Γ .
Applying the method (5.12) to the system of equations (7.2a)–(7.2b), a numerical

method of order four for the solution of the biharmonic equation (7.1) can be written
as

[
δ2

x + δ2
y +

1
6
(
δ2

xδ
2
y
)]

Zp,q

= h2Vp,q exp

(
Vp+1,q + Vp–1,q + Vp,q+1 + Vp,q–1 – 4Vp,q

12Vp,q

)
+ O

(
h6),

1 ≤ p, q ≤ N , (7.3a)
[
δ2

x + δ2
y +

1
6
(
δ2

xδ
2
y
)]

Vp,q

= h2Fp,q exp

(
Fp+1,q + Fp–1,q + Fp,q+1 + Fp,q–1 – 4 ˆ̂Fp,q

12Fp,q

)
+ O

(
h6),

1 ≤ p, q ≤ N , (7.3b)

where

Fp±1,q = f (xp±1, yq,zp±1,q, vp±1,q, z̄xp±1,q , v̄xp±1,q , z̄yp±1,q , v̄yp±1,q ), (7.4a)

Fp,q±1 = f (xp, yq±1,zp,q±1, vp,q±1, z̄xp,q±1 , v̄xp,q±1 , z̄yp,q±1 , v̄yp,q±1 ), (7.4b)

¯̄Fp,q = f (xp, yq,zp,q, vp,q, ¯̄zxp,q , ¯̄vxp,q , ¯̄zyp,q , ¯̄vyp,q ), (7.4c)

ˆ̂Fp,q = f (xp, yq,zp,q, vp,q, ˆ̂zxp,q , ˆ̂vxp,q , ˆ̂zyp,q , ˆ̂vyp,q ). (7.4d)

The approximations associated with (7.4a)–(7.4d) are already defined in Sect. 5.

7.2 Nonlinear triharmonic equation
Next we consider the nonlinear triharmonic equation with a forcing function of the form

∇6z(x, y) = g
(
x, y, z,∇2z,∇4z, zx,∇2zx,∇4zx, zy,∇2zy,∇4zy

)
, Γ : 0 < x, y < 1. (7.5)

The values of z, (∂2z/∂n2) and (∂4z/∂n4) are known on the boundary.
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For Eq. (7.5), the boundary values of z, zyy, zyyyy are prescribed on the line y = 0, y = 1;
and the boundary values of z, zxx, zxxxx are prescribed on the line x = 0, x = 1. As discussed
in the biharmonic case, the values of z, ∇2z and ∇4z are known on all sides of the square
region Γ .

Let ∇2z = v and ∇2v = w. Then we rewrite Eq. (7.5) in a split form as

∇2z = v(x, y), (x, y) ∈ Γ , (7.6a)

∇2v = w(x, y), (x, y) ∈ Γ , (7.6b)

∇2w = g(x, y, z, v, w, zx, vx, wx, zy, vy, wy), (x, y) ∈ Γ . (7.6c)

Applying the method (5.12) to the system of equations (7.6a)–(7.6c), a numerical
method of order four for the solution of triharmonic equation (7.5) can be written as

[
δ2

x + δ2
y +

1
6
(
δ2

xδ
2
y
)
]

Zp,q

= h2Vp,q exp

(
Vp+1,q + Vp–1,q + Vp,q+1 + Vp,q–1 – 4Vp,q

12Vp,q

)
+ O

(
h6),

1 ≤ p, q ≤ N , (7.7a)
[
δ2

x + δ2
y +

1
6
(
δ2

xδ
2
y
)
]

Vp,q

= h2Wp,q exp

(
Wp+1,q + Wp–1,q + Wp,q+1 + Wp,q–1 – 4Wp,q

12Wp,q

)
+ O

(
h6),

1 ≤ p, q ≤ N , (7.7b)
[
δ2

x + δ2
y +

1
6
(
δ2

xδ
2
y
)]

Wp,q

= h2Gp,q exp

(
Gp+1,q + Gp–1,q + Gp,q+1 + Gp,q–1 – 4̂̂Gp,q

12Gp,q

)
+ O

(
h6),

1 ≤ p, q ≤ N , (7.7c)

where

Gp±1,q = g(xp±1, yq,zp±1,q, vp±1,q, wp±1,q, z̄xp±1,q , v̄xp±1,q ,

w̄xp±1,q , z̄yp±1,q , v̄yp±1,q , w̄yp±1,q ), (7.8a)

Gp,q±1 = g(xp, yq±1,zp,q±1, vp,q±1, wp,q±1, z̄xp,q±1 , v̄xp,q±1 ,

w̄xp,q±1 , z̄yp,q±1 , v̄yp,q±1 , w̄yp,q±1 ), (7.8b)

¯̄Gp,q = f (xp, yq,zp,q, vp,q, wp,q, ¯̄zxp,q , ¯̄vxp,q , ¯̄wxp,q , ¯̄zyp,q , ¯̄vyp,q , ¯̄wyp,q ), (7.8c)

ˆ̂Gp,q = g(xp, yq,zp,q, vp,q, wp,q ˆ̂zxp,q , ˆ̂vxp,q , ˆ̂wxp,q , ˆ̂zyp,q , ˆ̂vyp,q , ˆ̂wyp,q ). (7.8d)

The approximations associated with (7.8a)–(7.8d) are already defined in Sect. 5.
With the help of boundary values, writing all methods at every interior grid point, one

obtains sparse systems of linear algebraic equations for the solution of the multiharmonic
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equations (7.1), (7.5). A direct solution of these linear systems is impractical because of the
large size of the coefficient matrix and enormous storage requirements even for moderate
values of the grid size. Classical block iterative methods such as the Gauss–Seidel and
successive over relaxation methods are attractive for their low storage requirements as
long as convergence is guaranteed.

8 Numerical illustrations
We implement the proposed method on ten benchmark problems of 2D elliptic equations.
The exact solution of each problem is given. The right hand side function and Dirichlet
boundary conditions are determined from the exact solution in each problem. The sys-
tem of linear difference equations are solved using the Gauss–Seidel iteration method and
that of nonlinear difference equations by the Newton–Raphson iteration method [36, 37].
The iterations are terminated once the absolute error tolerance ≤10–12 is reached and the
initial guess made in each case is z = 0. All computations were performed using MATLAB
codes.

Problem 8.1 (Convection–diffusion equation)

zxx + zyy = βzx, 0 < x, y < 1. (8.1)

The exact solution is given by z(x, y) = eβx/2 sin(πy)
sinh(σ ) [2e–β/2 sinh(σx) + sinh(σ (1 – x))], σ =

√
π2 + β2

4 .
The maximum absolute errors (MAEs) in z are listed in Table 1. Figures 2(a) and (b) give

the plots of the exact and numerical solutions for h = 1/64 and β = 50.

Problem 8.2 (Poisson’s equation in r–θ plane)

zrr +
α

r
zr +

1
r2 zθθ = G(r, θ ), 0 < r, θ < 1. (8.2)

The exact solution is z(r, θ ) = r2 cos(πθ ). The MAEs in z are listed in Table 2 for α = 1 and
2. Figures 3(a) and (b) give the plots of the exact and numerical solutions for h = 1/32 and
α = 2.

Problem 8.3 (Poisson’s equation in r–w plane)

zrr +
α

r
zr + zww = G(r, w), 0 < r, w < 1. (8.3)

The exact solution is z(r, w) = cosh r cosh w. The MAEs in z are listed in Table 3 for α = 1
and 2. Figures 4(a) and (b) give the plots of the exact and numerical solutions for h = 1/64
and α = 2.

Table 1 Problem 8.1: The maximum absolute errors

h Proposed method (2.12) Method discussed in [21]

β = 10 β = 50 β = 10 β = 50

1/8 3.9130(–03) 1.8496(–01) 6.4316(–01) 9.0714(–01)
1/16 2.2523(–04) 3.7172(–02) 6.4286(–01) 9.0637(–01)
1/32 1.4489(–05) 3.8020(–03) 6.4284(–01) 9.0637(–01)
1/64 9.0056(–07) 2.3439(–04) 6.4284(–01) 9.0637(–01)
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(a)

(b)

Figure 2 (a) Exact solution of Problem 8.1 for h = 1/64 and β = 50. (b) Numerical solution of Problem 8.1 for
h = 1/64 and β = 50

Problem 8.4 (Burgers’ equation)

ε(zxx + zyy) = z(zx + zy) + g(x, y), 0 < x, y < 1. (8.4)

The exact solution is z(x, y) = ex sin( πy
2 ). The MAEs in z are listed in Table 4 for ε =

0.1, 0.01 and 0.001. Figures 5(a) and (b) give the plots of the exact and numerical solutions
for h = 1/32 and ε = 0.01.
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Table 2 Problem 8.2: The maximum absolute errors

h Proposed method (6.5) Method discussed in [21]

α = 1 α = 2 α = 1 α = 2

1/8 1.6725(–07) 7.8640(–07) 2.3294(–06) 4.6091(–06)
1/16 1.0634(–08) 5.0936(–08) 1.4731(–07) 2.9153(–07)
1/32 6.7900(–10) 3.2712(–09) 9.2898(–09) 1.8373(–08)
1/64 4.1975(–11) 1.9759(–10) 5.8207(–10) 1.1480(–09)

(a)

(b)

Figure 3 (a) Exact solution of Problem 8.2 for h = 1/32 and α = 2. (b) Numerical solution of Problem 8.2 for
h = 1/32 and α = 2
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Table 3 Problem 8.3: The maximum absolute errors

h Proposed method (6.5) Method discussed in [21]

α = 1 α = 2 α = 1 α = 2

1/8 8.7756(–07) 4.5043(–07) 1.6604(–06) 2.8030(–06)
1/16 4.1258(–08) 3.4516(–08) 1.0530(–07) 1.7649(–07)
1/32 1.8296(–09) 2.4751(–09) 6.6915(–09) 1.1082(–08)
1/64 1.1482(–10) 1.4936(–10) 4.2259(–10) 6.9292(–10)

(a)

(b)

Figure 4 (a) Exact solution of Problem 8.3 for h = 1/64 and α = 2. (b) Numerical solution of Problem 8.3 for
h = 1/64 and α = 2
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Table 4 Problem 8.4: The maximum absolute errors

h Proposed method (2.12) Method discussed in [21]

ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.1 ε = 0.01 ε = 0.001

1/16 1.0393(–05) 1.2348(–04) 6.7181(–04) 2.0616(–05) 2.4785(–04) 2.5130(–03)
1/32 6.4951(–07) 8.8062(–06) 6.5912(–05) 1.2695(–06) 1.7462(–05) 1.4391(–04)
1/64 4.0560(–08) 5.6947(–07) 5.2653(–06) 7.9012(–08) 1.1296(–06) 1.0375(–05)

(a)

(b)

Figure 5 (a) Exact solution of Problem 8.4 for h = 1/32 and ε = 0.01. (b) Numerical solution of Problem 8.4 for
h = 1/32 and ε = 0.01
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Table 5 Problem 8.5: The maximum absolute errors

h Proposed method (5.12) Method discussed in [21]

Re = 10 Re = 102 Re = 10 Re = 102

1/16 z 1.2914(–06) 1.0250(–05) 3.8170(–05) 7.9117(–04)
v 1.5074(–06) 4.9247(–05) 2.0205(–05) 8.1179(–04)

1/32 z 8.1723(–08) 5.7969(–06) 2.4148(–06) 4.4070(–05)
v 9.2739(–08) 3.0772(–06) 1.2680(–06) 4.6982(–05)

1/64 z 5.1144(–09) 3.5421(–07) 1.5149(–07) 2.6562(–06)
v 5.7879(–09) 1.9343(–07) 7.9504(–08) 3.0175(–06)

Problem 8.5 (2D steady-state Navier–Stokes model equations in rectangular coordinates)

1
Re

(zxx + zyy) = zzx + vzy + f (x, y), 0 < x, y < 1, (8.5a)

1
Re

(vxx + vyy) = zvx + vvy + g(x, y), 0 < x, y < 1. (8.5b)

The exact solutions are z(x, y) = sin(πx) sin(πy), v(x, y) = cos(πx) cos(πy).
The MAEs in z, v are tabulated in Table 5 for various values of the Reynolds number Re.

Figures 6(a) and (b) give the plots of the exact and numerical solutions of z and Figs. 6(c)
and (d) give the plots of the exact and numerical solutions of v for h = 1/64, Re = 10.

Problem 8.6 (2D steady-state Navier–Stokes model equations in cylindrical polar coor-
dinates in r–w plane)

1
Re

(
zrr +

1
r

zr + zww –
1
r2 z

)
= zzr + vzw + H(r, w), 0 < r, w < 1, (8.6a)

1
Re

(
vrr +

1
r

vr + vzz

)
= zvr + vvw + I(r, w), 0 < r, w < 1. (8.6b)

The exact solutions are given by z(r, w) = r3 sinh w, v(r, w) = –4r2 cosh w. The MAEs in z, v
are listed in Table 6 for various values Re. Figures 7(a) and (b) give the plots of the exact
and numerical solutions of z, and Figs. 7(c) and (d) give the plot of the exact and numerical
solutions of v for h = 1/32 and Re = 10.

Problem 8.7 (Nonlinear elliptic equation)

(
1 + x2)zxx +

(
1 + y2)zyy = αz(zx + zy) + f (x, y), 0 < x, y < 1. (8.7)

The exact solution is z(x, y) = ex cos(πy). The MAEs in z are tabulated in Table 7 for various
values of α. Figures 8(a) and (b) give the plot of the exact and numerical solutions of z for
the values of h = 1/64 and α = 1.

Problem 8.8 (Quasilinear elliptic equation)

zxx +
(
1 + z2)zyy = αz(zx + zy) + f (x, y), 0 < x, y < 1. (8.8)
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(a)

(b)

Figure 6 (a) Exact solution of Problem 8.5 for z(x, y) for h = 1/64 and Re = 10. (b) Numerical solution of
Problem 8.5 for z(x, y) for h = 1/64 and Re = 10. (c) Exact solution of Problem 8.5 for v(x, y) for h = 1/64 and
Re = 10. (d) Numerical solution of Problem 8.5 for v(x, y) for h = 1/64 and Re = 10

The exact solution is z(x, y) = ex cos(πy). The MAEs in z are tabulated in Table 8 for various
values of α. Figures 9(a) and (b) give the plots of the exact and numerical solutions of z for
h = 1/64 and α = 1.

Problem 8.9 (Nonlinear biharmonic equation)

∇4z = αz
(
zx + zy + ∇2zx + ∇2zy

)
+ f (x, y), 0 < x, y < 1. (8.9)
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(c)

(d)

Figure 6 Continued

The exact solution is z(x, y) = sin(πx) cos(πy). The MAEs in z are tabulated in Table 9 for
various values of α. Figures 10(a) and (b) give the plots of the exact and numerical solutions
of z for h = 1/64 and α = 1.

Problem 8.10 (Nonlinear triharmonic Equation)

∇6z = αz
(
zx + zy + ∇2zx + ∇2zy + ∇4zx + ∇4zy

)
+ f (x, y), 0 < x, y < 1. (8.10)
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Table 6 Problem 8.6: The maximum absolute errors

h Proposed method (5.12) Method discussed in [21]

Re = 10 Re = 102 Re = 10 Re = 102

1/8 z 2.4506(–03) 5.8523(–03) 6.6056(–03) 7.5996(–03)
v 1.2759(–03) 4.2671(–03) 9.8564(–03) 2.0399(–02)

1/16 z 1.5568(–04) 3.7093(–04) 8.6235(–04) 1.9389(–03)
v 8.4150(–05) 2.6707(–04) 8.9744(–04) 3.6708(–03)

1/32 z 9.8510(–06) 2.3438(–05) 6.3020(–05) 3.8183(–04)
v 5.2923(–06) 1.6697(–05) 5.7202(–05) 4.9547(–04)

(a)

(b)

Figure 7 (a) Exact solution of Problem 8.6 for z(x, y) for h = 1/32 and Re = 10. (b) Numerical solution of
Problem 8.6 for z(x, y) for h = 1/32 and Re = 10. (c) Exact solution of Problem 8.6 for v(x, y) for h = 1/32 and
Re = 10. (d) Numerical solution of Problem 8.6 for v(x, y) for h = 1/32 and Re = 10
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(c)

(d)

Figure 7 Continued

Table 7 Problem 8.7: The maximum absolute errors

h Proposed method (2.12) Method discussed in [21]

α = 10 α = 25 α = 10 α = 25

1/16 3.8618(–05) 2.6193(–04) 1.4642(–04) 4.8477(–04)
1/32 2.4173(–06) 1.4481(–05) 9.1279(–06) 2.9675(–05)
1/64 1.5114(–07) 8.7080(–07) 5.6914(–07) 1.8430(–06)

The exact solution is z(x, y) = cos(πx) sin(πy). The MAEs in z are tabulated in Table 10
for various values of α. Figures 11(a) and (b) give the plots of the exact and numerical
solutions of z for h = 1/64 and α = 1.
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(a)

(b)

Figure 8 (a) Exact solution of Problem 8.7 for h = 1/64 and α = 1. (b) Numerical solution of Problem 8.7 for
h = 1/64 and α = 1

Table 8 Problem 8.8: The maximum absolute errors

h Proposed method (2.12) Method discussed in [21]

α = 1 α = 5 α = 10 α = 1 α = 5 α = 10

1/16 2.2420(–06) 2.8725(–06) 2.6025(–05) 2.5631(–05) 3.8351(–05) 3.0062(–04)
1/32 1.4784(–07) 1.9884(–07) 1.6322(–06) 1.7057(–06) 2.2772(–06) 1.8240(–05)
1/64 9.8422(–09) 1.2414(–08) 1.0205(–07) 1.0974(–07) 1.4068(–07) 1.1322(–06)

9 Conclusions
We have derived a new 9-point compact fourth order numerical method in exponen-
tial form for the numerical solution of the system of 2D quasilinear elliptic partial dif-
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(a)

(b)

Figure 9 (a) Exact solution of Problem 8.8 for h = 1/32 and Re = 10. (b) Numerical solution of Problem 8.8 for
h = 1/64 and α = 1

Table 9 Problem 8.9: The maximum absolute errors

h Proposed method (7.3a)–(7.3b) Method discussed in [25]

α = 1 α = 5 α = 10 α = 1 α = 5 α = 10

1/16 2.5145(–06) 5.2636(–06) 9.8678(–06) 7.4745(–05) 5.5647(–05) 3.6038(–05)
1/32 1.5722(–07) 3.3169(–07) 6.1875(–07) 5.1113(–06) 3.6668(–06) 2.4504(–06)
1/64 9.7708(–09) 2.0628(–08) 3.9183(–08) 3.3505(–07) 2.3238(–07) 1.5557(–07)

ferential equations. The advantage of the exponential method is that it gives higher ac-
curacy results than existing methods in the literature. The theoretical convergence of el-
liptic equations with constant coefficients has been established. Many benchmark prob-
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(a)

(b)

Figure 10 (a) Exact solution of Problem 8.9 for h = 1/32 and α = 10. (b) Numerical solution of Problem 8.9 for
h = 1/32 and α = 10

Table 10 Problem 8.10: The maximum absolute errors

h Proposed method (7.7a)–(7.7c) Method discussed in [27]

α = 1 α = 5 α = 10 α = 1 α = 5 α = 10

1/16 2.3858(–06) 3.2640(–06) 4.4844(–06) 8.6722(–05) 6.5269(–05) 4.2669(–05)
1/32 1.4986(–07) 2.0592(–07) 2.8234(–07) 5.1941(–06) 4.1014(–06) 2.6692(–06)
1/64 9.1825(–09) 1.2267(–08) 1.6584(–08) 3.1737(–07) 2.5784(–07) 1.6686(–07)

lems like the diffusion–convection equation, Poisson’s equation in polar coordinates, the
Navier–Stokes equations of motion both in rectangular and polar coordinates, nonlin-
ear bi- and triharmonic equations, and quasilinear elliptic equations have been solved
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(a)

(b)

Figure 11 (a) Exact solution of Problem 8.10 for h = 1/64 and α = 10. (b) Numerical solution of Problem 8.10
for h = 1/64 and α = 10

and compared with the results of existing methods. The theoretical rate of convergence
was corroborated by the experimentally observed rate of convergence using the formula
ρ = log(eh1 /eh2 )/ log(h1/h2), where eh1 and eh2 are the maximum absolute errors for two
mesh sizes h1 and h2 respectively. Computational results exhibit that the proposed meth-
ods avoid spurious oscillation and give stable results for high Reynolds number even in
the vicinity of the singularity. From the results we conclude that the proposed method is
competitive in solving the two-dimensional problems and it can be extended to solving
three-dimensional problems.
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