
Arfat et al. Advances in Difference Equations        (2021) 2021:364 
https://doi.org/10.1186/s13662-021-03518-2

R E S E A R C H Open Access

A parallel hybrid accelerated extragradient
algorithm for pseudomonotone equilibrium,
fixed point, and split null point problems
Yasir Arfat1 , Poom Kumam1,2,3* , Muhammad Aqeel Ahmad Khan4 , Parinya Sa Ngiamsunthorn2,5 and
Attapol Kaewkhao6

*Correspondence:
poom.kumam@mail.kmutt.ac.th
1KMUTT Fixed Point Research
Laboratory, KMUTT-Fixed Point
Theory and Applications Research
Group, Department of Mathematics,
Faculity of Science, King Mongkut’s
University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road,
Bang Mod, Thung Khru, 10140,
Bangkok, Thailand
2Center of Excellence in Theoretical
and Computational Science
(TaCS-CoE), Science Laboratory
Building, King Mongkut’s University
of Technology Thonburi (KMUTT),
126 Pracha-Uthit Road, Band Mod,
Thung Khru, 10140, Bangkok,
Thailand
Full list of author information is
available at the end of the article

Abstract
This paper provides iterative construction of a common solution associated with the
classes of equilibrium problems (EP) and split convex feasibility problems. In particular,
we are interested in the EP defined with respect to the pseudomonotone bifunction,
the fixed point problem (FPP) for a finite family of k-demicontractive operators, and
the split null point problem. From the numerical standpoint, combining various
classical iterative algorithms to study two or more abstract problems is a fascinating
field of research. We, therefore, propose an iterative algorithm that combines the
parallel hybrid extragradient algorithm with the inertial extrapolation technique. The
analysis of the proposed algorithm comprises theoretical results concerning strong
convergence under a suitable set of constraints and numerical results.
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1 Introduction
The class of convex feasibility problems (CFP) has been widely studied in the current lit-
erature as it encompasses a variety of problems arising in mathematical and physical sci-
ences. Numerous iterative algorithms have been studied to obtain an approximate solution
for the CFP in Hilbert spaces. However, the class of projection algorithms is prominent
among various iterative algorithms to solve the CFP. It is remarked that the class of CFP
is closely related to the theory of convex optimization and hence monotone operator the-
ory. As a consequence, CFP found valuable applications in the field of partial differential
equations, image recovery problem, approximation theory, signal and image processing
through projection algorithms, control problems, evolution equations and inclusions, see
for instance [6, 15, 16] and the references cited therein.

The class of CFP has been generalized in several ways. One of the elegant modifications
and generalizations of the CFP is the split convex feasibility problems (SCFP) proposed by
Censor and Elfving [12]. The mathematical formulation of the SCFP opens up an inter-
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esting framework to model the medical image reconstruction problem and the intensity-
modulated radiation therapy [8, 11]. As a consequence, the SCFP has been studied ex-
tensively in the current literature with possible real-world applications, see for example
[9, 11, 13, 14, 19] and the references cited therein. Recall that a SCFP deals with a model
aiming to find a point

x̄ ∈ C ⊆H1 (1)

such that

ȳ = �x̄ ∈ Q ⊆H2, (2)

where � : H1 →H2 is a bounded linear operator between two real Hilbert spaces H1 and
H2.

Since the introduction of SCFP, various important instances of SCFP have been intro-
duced and analyzed such as the split variational inequality problem [13], the split common
null point problem (SCNPP) [9], the split common FPP [14], and the split equilibrium
problem [7]. We are interested in studying the SCNPP, one of the important instances of
SCFP, defined as follows:

Given two multivalued operators A1 : H1 → 2H1 and A2 : H2 → 2H2 , the SCNPP prob-
lem deals with a model aiming to find a point

x̄ ∈H1 such that 0 ∈ A1(x̄) and 0 ∈ A2(�x̄). (3)

In 2012, Byrne et al. [9] suggested the following iterative schemes to solve the SCNPP (3)
associated with two maximal monotone operators A1 and A2:

xk+1 = JA1
m

(
xk + δ�

(
JA2
m – Id

)
�xk

)
, k ∈N, (4)

and
⎧
⎨

⎩
x0, v ∈H1;

xk+1 = βkv + (1 – βk)JA1
m (xk + δ�∗(JA2

m – Id)�xk), k ∈N,
(5)

where �
∗ denotes the adjoint operator of �, Id denotes the identity operator and JA1

m , JA2
m

denote the corresponding resolvents of A1, A2, respectively. The set of solutions of the
SCNPP (3) is denoted by � := {x̄ ∈ A–1

1 (0) : �x̄ ∈ A–1
2 (0)}. It is remarked that the scheme

(4) exhibits weak convergence, while the scheme (5) exhibits strong convergence under
suitable sets of constraints.

In 1994, Blum and Oettli [7] proposed, in a mathematical formulation, an EP with re-
spect to a (monotone) bifunction g defined on a nonempty subset C of a real Hilbert space
H1 that aims to find a point x̄ ∈ C such that

g(x̄, ȳ) ≥ 0 for all ȳ ∈ C. (6)

The set of equilibrium points or solutions of the problem (6) is denoted by EP(g).
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In 2006, Tada and Takahashi [29] suggested a hybrid algorithm for the analysis of mono-
tone EP and FPP in Hilbert spaces. Nevertheless, the iterative algorithm proposed in [29]
fails for the case of pseudomonotone EP. In order to address this issue, Anh [2] suggested
a hybrid extragradient method, based on the seminal work of Korpelevich [23], in Hilbert
spaces. Inspired by the work of Anh [2], Hieu et al. [20] suggested a parallel hybrid ex-
tragradient framework to address pseudomonotone EP together with the FPP. In 2015,
Takahashi et al. [30] constructed a common solution of the zero point problem and FPP.
Therefore, it is natural to study the pseudomonotone EP and the SCNPP with the FPP
associated with a more general class of demicontractive operators.

It is remarked that the computational performance of an iterative algorithm can be en-
hanced by employing different techniques. The parallel architecture of an iterative algo-
rithm reduces the computational cost, whereas the inertial extrapolation technique [26]
provides fast convergence characteristics of the algorithm. The latter technique has suc-
cessfully been combined with different classical iterative algorithms, see for example [1, 3–
5, 10, 18, 21, 22, 25, 32] and the references cited therein. We, therefore, study the conver-
gence analysis of a variant of parallel hybrid extragradient iterative algorithm embedded
with the inertial extrapolation technique in Hilbert spaces.

The rest of the paper is organized as follows: Sect. 2 contains some relevant prelimi-
nary concepts and results for (split) monotone operator theory, EP theory, and fixed point
theory. Section 3 comprises strong convergence results, whereas Sect. 4 provides numer-
ical results concerning the viability of the proposed algorithm with respect to various real
world applications.

2 Preliminaries
We first define some necessary notions from fixed point theory. Let T : C → C be an op-
erator defined on a nonempty subset C of a real Hilbert space H1, then T is known as
nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. Further, T is known as firmly nonex-
pansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(Id – T)x – (Id – T)y

∥∥2 for all x, y ∈ C.

Moreover, the operator T is defined as k-demicontractive if Fix(T) 	= ∅, and there exists
k ∈ [0, 1) such that

‖Tx – y‖2 ≤ ‖x – y‖2 + k‖x – Tx‖2, ∀x ∈ C, y ∈ Fix(T),

where Fix(T) = {x ∈ C : x – Tx = 0} denotes the set of all fixed points of the operator T .
Note that the operator Id – T is said to be demiclosed at the origin if for any sequence
(xk) in a nonempty closed and convex subset C of H1 converges weakly to some x and
if ((Id – T)xk) converges strongly to 0, then (Id – T)(x) = 0. It is remarked that, for each
x ∈ H1, there exists unique PCx ∈ C satisfying ‖x – PCx‖ ≤ ‖x – z‖ for all z ∈ C. Such an
operator PC : H1 → C is coined as metric projection and satisfies 〈x – PCx, PCx – y〉 ≥
0, for all x ∈H1 and y ∈ C.

We now state a brief introductory material covering monotone operator theory from
the celebrated monograph of Bauschke and Combettes [6].

For a set-valued operator A1 : H1 → 2H1 , the following sets dom(A1) = {x ∈H1|A1x 	= ∅},
ran(A1) = {u ∈ H1|(∃x ∈ H1)u ∈ A1x}, gra(A1) = {(x, u) ∈ H1 ×H1|u ∈ A1x}, and zer(A1) =
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{x ∈H1|0 ∈ A1x} define and denote the domain, range, graph, and zeros of A1, respectively.
The inverse operator A–1

1 of A1 can be defined as

x ∈ A–1
1 (y) if and only if y ∈ A1(x).

The set-valued operator A1 is said to be monotone if 〈x – y, u – v〉 ≥ 0 for all (x, u), (y, v) ∈
gra(A1). A monotone operator A1 is coined as maximal monotone operator if there is no
proper monotone extension of A1, equivalently if ran(Id + mA1) = H1 for all m > 0. An
important notion associated with the monotone operator A1 is the well-defined resolvent
operator JA1

m = (Id + mA1)–1. Such an operator is single-valued and satisfies nonexpansive-
ness as well as Fix(JA1

m ) = A–1
1 (0) for all m > 0.

The rest of this section is organized with celebrated results required in the sequel.

Assumption 2.1 Let g : C × C → R ∪ {+∞} be a bifunction satisfying the following as-
sumptions:

(A1): g is pseudomonotone, i.e., g(x, y) ≤ 0 ⇒ g(x, y) ≥ 0 for all x, y ∈ C;
(A2): g is Lipschitz-type continuous, i.e., there exist two nonnegative constants d1, d2

such that

g(x, y) + g(y, z) ≥ g(x, z) – d1‖x – y‖2 – d2‖y – z‖2 for all x, y, z ∈ C;

(A3): g is weakly continuous on C × C implies that, if x, y ∈ C and (xk), (yk) are two se-
quences in C converging weakly to x and y, respectively, then g(xk , yk) converges to g(x, y);

(A4): For each fixed x ∈ C, g(x, .) is convex and subdifferentiable on C.

It is remarked that the monotonicity of g , i.e., g(x, y) + g(y, x) ≤ 0, for all x, y ∈ C implies
the pseudomonotonicity but the converse is not true in general. The following lemmas are
helpful in proving the strong convergence results in the next section.

Lemma 2.2 Let x, y ∈H1 and β ∈ R, then
1. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
2. ‖x – y‖2 ≤ ‖x‖2 – ‖y‖2 – 2〈x – y, y〉;
3. ‖βx + (1 – β)y‖2 = β‖x‖2 + (1 – β)‖y‖2 – β(1 – β)‖x – y‖2.

Lemma 2.3 ([24]) Let C be a nonempty closed and convex subset of a real Hilbert space
H1. For every x, y, z ∈H1 and γ ∈R, the set

D =
{

v ∈ C : ‖y – v‖2 ≤ ‖x – v‖2 + 〈z, v〉 + γ
}

is closed and convex.

Lemma 2.4 ([31]) Let C be a nonempty closed and convex subset of a real Hilbert spaceH1,
and let h : C →R be a convex and subdifferentiable function on C. Then x̄ is the solution of
convex problem min{h(x) : x ∈ C} if and only if 0 ∈ ∂h(x̄) + NC(x̄), where ∂h(·) denotes the
subdifferential of h and NC(x̄) is the normal cone of C at x̄.
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Algorithm 1 Accelerated projection based parallel hybrid extragradient algorithm (Alg. 1)
Initialization: Choose arbitrarily x0, x1 ∈ C, set k ≥ 1 and nonincreasing sequence
αk ,βk ⊂ (0, 1), 0 < γ < min( 1

2d1
, 1

2d2
), �k ⊂ [0, 1), mk , nk ∈ (0,∞), and δ ∈ (0, 2

‖�‖2 ) such
that ‖�‖2 = L is the spectral radius of �∗

�.
Iterative Steps: Given xk ∈H1, calculate bk , v̄k , w̄k , and yk as follows:

Step 1. Compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

ui
k = arg min{γ gi(bk , y) + 1

2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

vi
k = arg min{γ gi(ui

k , y) + 1
2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

ik = arg max{‖vi
k – xk‖ : i = 1, 2, . . . , M}, v̄k = vik

k ;

wj
k = (1 – αk)v̄k + αkSjv̄k ;

jk = arg max{‖wj
k – xk‖ : j = 1, 2, . . . , N}, w̄k = wjk

k ;

yk = (1 – βk)w̄k + βk(JA1
mk (w̄k + δ�∗(JA2

nk – Id)�w̄k));

If yk = w̄k = v̄k = bk = xk then stop and xk is the solution of problem 	. Otherwise,
Step 2. Compute

Ck+1 =
{

z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – z‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – z, xk – xk–1〉

}
,

xk+1 = PCk+1 x1, ∀k ≥ 1,

Set k =: k + 1 and go back to Step 1.

3 Algorithm and convergence analysis
We enlist standard necessary hypotheses for the main result of this section. Note that,
for a finite family of pseudomonotone bifunctions gi, we can compute the same Lipschitz
coefficients (d1, d2) by employing Assumption 2.1(A2) as follows:

gi(x, z) – gi(x, y) – gi(y, z) ≤ d1,i‖x – y‖2 + d2,i‖y – z‖2 ≤ d1‖x – y‖2 + d2‖y – z‖2,

where d1 = max1≤i≤M{d1,i} and d2 = max1≤i≤M{d2,i}. Therefore, gi(x, y) + gi(y, z) ≥ gi(x, z) –
d1‖x – y‖2 – d2‖y – z‖2.

LetH1,H2 be two real Hilbert spaces, and let C ⊆H1 be a nonempty, closed, and convex
subset. Then

(H1) Let A1 : H1 → 2H1 , A2 : H2 → 2H2 be two maximal monotone operators, and for
m, n > 0, let JA1

m , JA2
n be the resolvents of A1 and A2, respectively;

(H2) Let � : H1 →H2 be a bounded linear operator such that �∗ is the adjoint operator
of �;

(H3) Let gi : C × C → R∪ {+∞} be a finite family of bifunctions satisfying
Assumption 2.1;

(H4) Let Sj : H1 →H1 be a finite family of k-demicontractive operators;
(H5) Assume that 	 := � ∩ (

⋂M
i=1 EP(gi)) ∩ (

⋂N
j=1 Fix(Sj)) 	= ∅.
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Theorem 3.1 If 	 	= ∅, then the sequence (xk) generated by Algorithm 1 converges strongly
to an element in 	, provided the following conditions hold:

(C1)
∑∞

k=1 �k‖xk – xk–1‖ < ∞;
(C2) 0 < a∗ < lim infk→∞ αk ≤ lim supk→∞ αk ≤ b∗ < 1 and αk ∈ (0, 1 – k);
(C3) lim infk→∞ βk > 0;
(C4) lim infk→∞ mk > 0, lim infk→∞ nk > 0.

Remark 3.2 We remark here that the condition (C1) is easily implementable in a numerical
computation since the values of ‖xk – xk–1‖ are known before choosing �k . The parameter
�k can be taken as 0 ≤ �k ≤ �̂k ,

�̂k =

⎧
⎨

⎩
min{ νk

‖xk –xk–1‖ ,�} if xk 	= xk–1;

� otherwise,

where {νk} is a positive sequence such that
∑∞

k=1 νk < ∞ and � ∈ [0, 1).

We use the following result for the analysis of Algorithm 1.

Lemma 3.3 ([27]) Suppose that x̄ ∈ EP(gi), and xk , bk , ui
k , wi

k , i ∈ {1, 2, . . . , M} are defined
in Step 1 of Algorithm 1. Then we have

∥∥vi
k – x̄

∥∥2 ≤ ‖bk – x̄‖2 – (1 – 2γ d1)
∥∥ui

k – bk
∥∥2 – (1 – 2γ d2)

∥∥ui
k – vi

k
∥∥2.

Proof of Theorem 3.1 The proof is divided into the following steps.
Step 1. We show that the sequence (xk) defined in Algorithm 1 is well defined.
We know that 	 is closed and convex. Moreover, from Lemma 2.3 we have that Ck+1 is

closed and convex for each k ≥ 1. Hence the projection PCk+1 x1 is well defined. For any
x̄ ∈ 	, observe that

‖bk – x̄‖2 =
∥∥(xk – x̄) + �k(xk – xk–1)

∥∥2

≤ ‖xk – x̄‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̄, xk – xk–1〉. (7)

Further

‖w̄k – x̄‖2 =
∥
∥(1 – αk)v̄k + αkSjv̄k – x̄

∥
∥2

≤ (1 – αk)‖v̄k – x̄‖2 + αk‖Sjv̄k – x̄‖2 – αk(1 – αk)
∥
∥(Id – Sj)v̄k

∥
∥2

≤ (1 – αk)‖v̄k – x̄‖2 + αk‖v̄k – x̄‖2 + αkk‖Sjv̄k – v̄k‖2

– αk(1 – αk)
∥
∥(Id – Sj)v̄k

∥
∥2

≤ ‖v̄k – x̄‖2 – αk(1 – k – αk)
∥
∥(Id – Sj)v̄k

∥
∥2

≤ ‖xk – x̄‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̄, xk – xk–1〉. (8)

Furthermore,

‖yk – x̄‖2 =
∥∥(1 – βk)(w̄k – x̄) + βk

(
JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– x̄

)∥∥2
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≤ (1 – βk)‖w̄k – x̄‖2

+ βk
∥∥JA1

mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– x̄

∥∥2. (9)

Since JA1
mk is nonexpansive, therefore the expression ‖JA1

mk (w̄k + δ�∗(JA2
nk – Id)�w̄k) – x̄‖2 sim-

plifies as follows:

∥∥JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– JA1

mk
x̄
∥∥2

≤ ∥∥w̄k + δ�∗(JA2
nk

– Id
)
�w̄k – x̄

∥∥2

≤ ‖w̄k – x̄‖2 + δ2∥∥�∗(JA2
nk

– Id
)
�w̄k

∥∥2 + 2δ
〈
w̄k – x̄,�∗(JA2

nk
– Id

)
�w̄k

〉

≤ ‖w̄k – x̄‖2 + δ2‖�‖2∥∥(
JA2
nk

– Id
)
�w̄k

∥∥2 + 2δ
〈
�w̄k – �x̄,

(
JA2
nk

– Id
)
�w̄k)

〉
. (10)

Using JA2
nk as firmly nonexpansive, we simplify the expression λk = 2δ〈�w̄k – �x̄, (JA2

nk –
Id)�w̄k〉 as follows:

λk = 2δ
〈
�w̄k – �x̄ +

(
JA2
nk

(�w̄k) – �w̄k
)

–
(
JA2
nk

(�w̄k) – �w̄k
)
, JA2

nk
(�w̄k) – �w̄k

〉

= 2δ
(〈

JA2
nk

(�w̄k) – �x̄, JA2
nk

(�w̄k) – �w̄k
〉
–

∥∥(
JA2
nk

– Id
)
�w̄k

∥∥2)

≤ –2δ‖(JA2
nk

– Id
)
�w̄k)‖2. (11)

Utilizing (10), (11), and Lemma 3.3, we then obtain from (9) that

‖yk – x̄‖2 ≤ (1 – βk)‖w̄k – x̄‖2 + βk
(‖w̄k – x̄‖2 + δ2‖�‖2∥∥(

JA2
nk

– Id
)
�w̄k

)∥∥2

– 2δ
∥∥(

JA2
nk

– Id
)
�w̄k

∥∥2),

≤ (1 – βk)‖w̄k – x̄‖2 + βk
(‖w̄k – x̄‖2 – δ

(
2 – δ‖�‖2)∥∥(

JA2
nk

– Id
)
�w̄k

∥∥2)

≤ ‖w̄k – x̄‖2

≤ ‖xk – x̄‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̄, xk – xk–1〉. (12)

It follows from (12) that

‖yk – x̄‖ ≤ ‖xk – x̄‖2 + �2
k‖xk – xk–1‖2 + 2�k‖xk – x̄‖‖xk – xk–1‖. (13)

The above estimate (13) infers that 	 ⊂ Ck+1. Hence, we conclude that Algorithm 1 is well
defined.

Step 2. We show that the limit limk→∞ ‖xk – x1‖ exists.
Note that, for xk+1 = PCk+1 x1, we have ‖xk+1 – x1‖ ≤ ‖x∗ – x1‖ for all x∗ ∈ Ck+1. In partic-

ular ‖xk+1 – x1‖ ≤ ‖x̄ – x1‖ for all x̄ ∈ 	 ⊂ Ck+1 This proves that the sequence (‖xk – x1‖)
is bounded. On the other hand, from xk = PCk x1 and xk+1 = PCk+1 x1 ∈ Ck+1, we have

‖xk – x1‖ ≤ ‖xk+1 – x1‖.

This implies that (‖xk – x1‖) is nondecreasing, and hence

lim
k→∞

‖xk – x1‖ exists. (14)
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Step 3. We show that x̄∗ ∈ 	.
First, observe that

‖xk+1 – xk‖2 = ‖xk+1 – x1 + x1 – xk‖2

= ‖xk+1 – x1‖2 + ‖xk – x1‖2 – 2〈xk – x1, xk+1 – x1〉
= ‖xk+1 – x1‖2 + ‖xk – x1‖2 – 2〈xk – x1, xk+1 – xk + xk – x1〉
= ‖xk+1 – x1‖2 – ‖xk – x1‖2 – 2〈xk – x1, xk+1 – xk〉
≤ ‖xk+1 – x1‖2 – ‖xk – x1‖2.

Taking lim sup on both sides of the above estimate and utilizing (14), we have
lim supk→∞ ‖xk+1 – xk‖2 = 0. That is,

lim
k→∞

‖xk+1 – xk‖ = 0. (15)

By the definition of (bk) and (C1), we have

lim
k→∞

‖bk – xk‖ = lim
k→∞

�k‖xk – xk–1‖ = 0. (16)

Consider the following triangular inequality:

‖bk – xk+1‖ ≤ ‖bk – xk‖ + ‖xk – xk+1‖.

From (15) and (16), we have

lim
k→∞

‖bk – xk+1‖ = 0. (17)

Since xk+1 ∈ Ck+1, therefore, we have

‖yk – xk+1‖ ≤ ‖xk – xk+1‖ + 2�k‖xk – xk–1‖ + 2〈xk – xk+1, xk – xk–1〉.

Utilizing (15) and (C1), the above estimate implies that

lim
k→∞

‖yk – xk+1‖ = 0. (18)

From (15), (18), and the following triangular inequality

‖yk – xk‖ ≤ ‖yk – xk+1‖ + ‖xk+1 – xk‖,

we get

lim
k→∞

‖yk – xk‖ = 0. (19)

Consider the following re-arranged variant of the estimate (12) by applying Lemma 3.3:

(1 – 2γ d1)
∥∥ui

k – bk
∥∥2 – (1 – 2γ d2)

∥∥ui
k – vi

k
∥∥2
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≤ (‖xk – x̄‖ + ‖yk – x̄‖)‖xk – yk‖ + �2
k‖xk – xk–1‖2 + 2�k‖xk – x̄‖‖xk – xk–1‖.

Letting k → ∞, using (C1) and (19), we have

(1 – 2γ d1) lim
k→∞

∥∥ui
k – bk

∥∥2 – (1 – 2γ d2) lim
k→∞

∥∥ui
k – vi

k
∥∥2 = 0. (20)

This implies that

lim
k→∞

∥∥ui
k – bk

∥∥2 = lim
k→∞

∥∥ui
k – vi

k
∥∥2 = 0. (21)

Again, consider the following re-arranged variant of the estimate (13):

a∗(1 – b∗)∥∥(Id – Sj)v̄k
∥∥2 ≤ (‖xk – x̄‖ + ‖yk – x̄‖)‖xk – yk‖ + �2

k‖xk – xk–1‖2

+ 2�k‖xk – x̄‖‖xk – xk–1‖.

Letting k → ∞ and utilizing (C1), (C2), and (19), we have

lim
k→∞

∥∥(Id – Sj)v̄k
∥∥ = 0. (22)

This implies that

lim
k→∞

‖w̄k – v̄k‖ = lim
k→∞

a∗∥∥(Id – Sj)v̄k
∥
∥ = 0. (23)

Utilizing (16), (21), (23), and the following triangle inequalities, we have
(i) ‖v̄k – bk‖ ≤ ‖v̄k – ūk‖ + ‖ūk – bk‖ → 0;

(ii) ‖v̄k – xk‖ ≤ ‖v̄k – bk‖ + ‖bk – xk‖ → 0;
(iii) ‖w̄k – bk‖ ≤ ‖w̄k – v̄k‖ + ‖v̄k – bk‖ → 0;
(iv) ‖w̄k – xk‖ ≤ ‖w̄k – bk‖ + ‖bk – xk‖ → 0.

From (10), (11), and Lemma 2.2, we have

‖yk – x̄‖2 = ‖(1 – βk)w̄k + βk
(
JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

))
– x̄)‖2

≤ (1 – βk)‖w̄k – x̄‖2 + βk
(‖w̄k – x̄‖2 – δ

(
2 – δ‖�‖2)∥∥(

JA2
nk

– Id
)
�w̄k

∥∥2)

≤ ‖w̄k – x̄‖2 – βkδ
(
2 – δ‖�‖2)∥∥(

JA2
nk

– Id
)
�w̄k

∥∥2

≤ ‖xk – x̄‖2 + 2�k〈xk – xk–1, bk – x̄〉
– βkδ

(
2 – δ‖�‖2)∥∥(

JA2
nk

– Id
)
�w̄k

∥
∥2. (24)

Rearranging the above estimate, we have

βkδ
(
2 – δ‖�‖2)∥∥(

JA2
nk

– Id
)
�w̄k

∥
∥2

≤ (‖xk – x̄‖ + ‖yk – x̄‖)‖xk – yk‖ + 2�k〈xk – xk–1, bk – x̄〉. (25)

By using (C1), (C3), (19), and δ ∈ (0, 2
‖�‖2 ), estimate (25) implies that

lim
k→∞

∥
∥(

JA2
nk

– Id
)
�w̄k

∥
∥ = 0. (26)
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Note that JA1
mk is firmly nonexpansive, it follows that

‖yk – x̄‖2 =
∥
∥(1 – βk)w̄k + βk

(
JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

))
– x̄

∥
∥2

≤ (1 – βk)‖w̄k – x̄‖2

+ βk
∥∥JA1

mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– x̄

∥∥2. (27)

Utilizing (10) and (11), the expression JA1
mk (w̄k + δ�∗(JA2

nk – Id)�w̄k) from the above estimate
simplifies as follows:

∥∥JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– JA1

mk
x̄
∥∥2 ≤ ∥∥w̄k + δ�∗(JA2

nk
– Id

)
�w̄k – x̄

∥∥2

≤ ‖w̄k – x̄‖2. (28)

Setting ξk = JA1
mk (w̄k + δ�∗(JA2

nk – Id)�w̄k) in (27), it follows that

‖ξk – x̄‖2 =
∥∥JA1

mk
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k) – JA1

mk
x̄
∥∥2

≤ 〈
JA1
mk

(
w̄k + δ�∗(JA2

nk
– Id

)
�w̄k

)
– JA1

mk
x̄, w̄k + δ�∗(JA2

nk
– Id

)
�w̄k – x̄

〉

=
〈
ξk – x̄, w̄k + δ�∗(JA2

nk
– Id

)
�w̄k – x̄

〉

=
1
2
(‖ξk – x̄‖2 +

∥∥w̄k + δ�∗(JA2
nk

– Id
)
�w̄k – x̄

∥∥2

–
∥∥ξk – w̄k – δ�∗(JA2

nk
– Id

)
�w̄k

∥∥2)

≤ 1
2
(‖ξk – x̄‖2 + ‖w̄k – x̄‖2 –

∥∥ξk – w̄k – δ�∗(JA2
nk

– Id
)
�w̄k

∥∥2)

=
1
2
(‖ξk – x̄‖2 + ‖w̄k – x̄‖2 – ‖ξk – w̄k‖2 – δ2∥∥�∗(JA2

nk
– Id

)
�w̄k

∥∥2

+ 2δ
〈
ξk – w̄k ,�∗(JA2

nk
– Id

)
�w̄k

〉)

≤ 1
2
(‖ξk – x̄‖2 + ‖w̄k – x̄‖2 – ‖ξk – w̄k‖2 – δ2∥∥�∗(JA2

nk
– Id

)
�w̄k

∥
∥2

+ 2δ‖ξk – w̄k‖
∥∥�∗(JA2

nk
– Id

)
�w̄k

∥∥)
. (29)

This implies that

‖ξk – x̄‖2 ≤ ‖w̄k – x̄‖2 – ‖ξk – w̄k‖2 + 2δ‖ξk – w̄k‖
∥
∥�∗(JA2

nk
– Id

)
�w̄k

∥
∥. (30)

So, we have

‖yk – x̄‖2 ≤ (1 – βk)‖w̄k – x̄‖2 + βk‖ξk – x̄‖2

≤ (1 – βk)‖w̄k – x̄‖2 + βk
(‖w̄k – x̄‖2 – ‖ξk – w̄k‖2

+ 2δ‖ξk – w̄k‖
∥∥�∗(JA2

nk
– Id

)
�w̄k

∥∥)
. (31)

After simplification, we have

βk‖ξk – w̄k‖2 ≤ ‖w̄k – x̄‖2 – ‖yk – x̄‖2 – 2βkδ‖ξk – w̄k‖
∥∥�∗(JA2

nk
– Id

)
�w̄k

∥∥)
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≤ ‖xk – x̄‖2 – ‖yk – x̄‖2 – 2βkδ‖ξk – w̄k‖
∥∥�∗(JA2

nk
– Id

)
�w̄k

∥∥)

≤ (‖xk – x̄‖ + ‖yk – x̄‖)‖xk – yk‖
– 2βkδ‖ξk – w̄k‖

∥
∥�∗(JA2

nk
– Id

)
�w̄k

∥
∥). (32)

Making use of (19), (26), and (C3), we have the following estimate:

lim
k→∞

‖ξk – w̄k‖ = 0. (33)

This implies that

lim
k→∞

‖ξk – v̄k‖ = 0. (34)

Reasoning as above, we get from the definition of (bk), (C1), and (34), that

lim
k→∞

‖ξk – xk‖ = 0. (35)

Since (xk) is bounded, then there exists a subsequence (xkt ) of (xk) such that xkt ⇀ x̄∗ ∈H1

as t → ∞. Therefore ξkt ⇀ x̄∗ and w̄kt ⇀ x̄∗ as t → ∞. In order to show that x̄∗ ∈ �, we
assume that (r, s) ∈ gra(A1). Since ξkt = JA1

mkt
(w̄kt + δ�∗(JA2

nkt
– Id)�w̄kt ), we have

w̄kt + δ�∗(JA2
nkt

– Id
)
�w̄kt ∈ ξkt + mkt A1(ξkt ).

This implies that

1
mkt

(w̄kt – ξkt ) +
1

mkt
δ�∗(JA2

nkt
– Id

)
�w̄kt ∈ A1(ξkt ).

From the monotonicity of A1, we have

〈
r – ξkt , s –

(
1

mkt
(w̄kt – ξkt ) +

1
mkt

(
δ�∗(JA2

nkt
– Id

)
�w̄kt

)
)〉

≥ 0.

From the above estimate, we also have

〈r – ξkt , s〉 ≥
〈
r – ξkt ,

1
mkt

(w̄kt – ξkt ) +
1

mkt

(
δ�∗(JA2

nkt
– Id

)
�w̄kt

)
〉

=
〈
r – ξkt ,

1
mkt

(w̄kt – ξkt )
〉

+
〈
r – ξkt ,

1
mkt

(
δ�∗(JA2

nkt
– Id

)
�w̄kt

)〉
. (36)

Since ξkt ⇀ x̄∗, we obtain

lim
t→∞〈r – ξkt , v〉 = 〈r – x̄∗, s〉.

By making use of (33), (34), and (36), it follows that

〈r – x̄∗, s〉 ≥ 0.
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This implies that 0 ∈ A1(x̄∗). Since � is a bounded linear operator, we have �w̄kt ⇀ �x̄∗
as t → ∞. Moreover, from (26) it then follows from the demiclosedness principle that
0 ∈ A2(x̄∗), and hence x̄∗ ∈ �.

Step 4. We show that x̄∗ ∈ ⋂M
i=1 EP(gi).

Observe that the following relation

ui
k = arg min

{
γ gi(bk , y) +

1
2
‖bk – y‖2 : y ∈ C

}

implies via Lemma 2.4 that

0 ∈ ∂2

{
γ gi(bk , y) +

1
2
‖bk – y‖2

}(
ui

k
)

+ NC
(
ui

k
)
.

This infers the existence of x̄∗ ∈ ∂2gi(bk , ui
k) and p̄ ∈ NC(ui

k) such that

γ x̄∗ + bk – ui
k + p̄. (37)

Since p̄ ∈ NC(ui
k) and 〈p̄, u – ui

k〉 ≤ 0 for all u ∈ C, by using (37), we have

γ
〈
x̄∗, u – ui

k
〉 ≥ 〈

ui
k – bk , u – ui

k
〉
, ∀u ∈ C. (38)

Since x̄∗ ∈ ∂2gi(bk , ui
k),

gi(bk , y) – gi
(
bk , ui

k
) ≥ 〈

x̄∗, u – ui
k
〉
, ∀u ∈ C. (39)

Utilizing (38) and (39), we obtain

γ
(
gi(bk , y) – gi

(
bk , ui

k
)) ≥ 〈

ui
k – bk , u – ui

k
〉
, ∀u ∈ C. (40)

Since bk ⇀ x̄∗ and ‖bk – ui
k‖ → 0 as k → ∞, this implies ui

k ⇀ x̄∗. By using (A3) and (40),
letting k → ∞, we deduce that gi(x̄∗, u) ≥ 0 for all u ∈ C and i ∈ {1, 2, . . . , M}. Therefore,
x̄∗ ∈ ⋂M

i=1 EP(gi).
Step 5. We show that x̄∗ =

⋂N
j=1 Fix(Tj).

Since xkt ⇀ x̄∗ and ‖v̄k – xk‖ → 0 as t → ∞, this implies v̄k ⇀ x̄∗. Therefore, utilizing
the demiclosedness principle along with estimate (22), we have x̄∗ ∈ ⋂N

j=1 Fix(Tj). Hence
x̄∗ ∈ 	.

Step 6. We show that xk → x̄ = P	x1.
Note that x̄ = P	x1 and x̄∗ ∈ 	 implies that xk+1 = P	x1 and x̄ ∈ 	 ∈ Ck+1. This infers that

‖xk+1 – x1‖ ≤ ‖x̄ – x1‖. On the other hand, we have

‖x̄ – x1‖ ≤ ‖x̄∗ – x1‖ ≤ lim inf
k→∞

‖xk – x1‖ ≤ lim sup
k→∞

‖xk – x1‖ ≤ ‖x̄ – x1‖.

That is,

‖x̄∗ – x1‖ = lim
k→∞

‖xk – x1‖ = ‖x̄ – x1‖.

Therefore, we conclude that limk→∞ xk = x̄∗ = P	x1. This completes the proof. �
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If we take A2 = 0 in hypothesis (H1), then we have the following results.

Corollary 3.4 Assume that 	 := {x ∈ A–1
1 (0) ∩ (

⋂M
i=1 EP(gi)) ∩ (

⋂N
j=1 Fix(Si)}) 	= ∅. Then the

sequence (xk) defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

ui
k = arg min{γ gi(bk , y) + 1

2‖bk – u‖2 : u ∈ C}, i = 1, 2, . . . , M;

vi
k = arg min{γ gi(ui

k , y) + 1
2‖bk – u‖2 : u ∈ C}, i = 1, 2, . . . , M;

ik = arg max{‖vi
k – xk‖ : i = 1, 2, . . . , M}, v̄k = vik

k ;

wj
k = (1 – αk)v̄k + αkSjv̄k ;

jk = arg max{‖wj
k – xk‖ : j = 1, 2, . . . , N}, w̄k = wjk

k ;

yk = (1 – βk)w̄k + βkJA1
mk w̄k ;

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – z‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – z, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(41)

converges strongly to an element in 	 provided that conditions (C1)–(C4) hold.

4 Numerical experiment and results
This section shows the effectiveness of our algorithm by the following example and nu-
merical results.

Example 4.1 Let H1 = H2 = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈R

and induced usual norm | · |. We define three operators �, A1, A2 : R → R as �(x) = 3x,
A1x = 2x, and A2x = 3x for all x ∈ R. It is clear that � is a bounded linear operator and
A1, A2 are maximal monotone operators such that � := {x̂ ∈ A–1

1 0 : �x̂ ∈ A–1
2 0} = 0. For

each i ∈ {1, 2, . . . , M}, let the family of pseudomonotone bifunctions gi(x, y) : C × C → R

on C = [0, 1] ⊂ R be defined by gi(x, y) = Ti(x)(y – x), where

Ti(x) =

⎧
⎨

⎩
0 0 ≤ x ≤ μi;

sin(x – μi) + exp(x – μi) – 1, μi ≤ x ≤ 1,

where 0 < μ1 < μ2 < · · · < μM < 1. Note that EP(gi) = [0,μi] if and only if 0 ≤ x ≤ μi and
y ∈ [0, 1]. Consequently,

⋂M
i=1 EP(gi) = [0,μ1]. For each j ∈ {1, 2, . . . , N}, let the family of

operators Sj : R→R be defined by

Sj(x) =

⎧
⎨

⎩
– x

j if x ∈ [0,∞);

x if x ∈ (–∞, 0).

It is also clear that Sj defines a finite family of 1–j2
(1+j)2 -demicontractive operators with

⋂N
j=1 Fix(Sj) = {0}. Hence 	 = � ∩ (

⋂M
i=1 EP(gi)) ∩ (

⋂N
j=1 Fix(Sj)) = 0. In order to compute

the numerical values of (xk+1), we choose: � = 0.5, γ = 1
8 , αk = 1

100k+1 , βk = 1
100k+1 , δ = 1

9 ,
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Table 1 Numerical results for Example 4.1

No. of Iter. �k = 0 Alg. 1, �k 	= 0 CPU (Sec) �k = 0 Alg. 1, �k 	= 0

Choice 1. x0 = (5), x1 = (2) and
N = 20

91 78 0.088136 0.059103

Choice 1. x0 = (5), x1 = (2) and
N = 5

95 83 0.088177 0.067473

Choice 2. x0 = (4.7), x1 = (1.7)
and N = 20

104 90 0.098793 0.091790

Choice 2. x0 = (4.7), x1 = (1.7)
and N = 5

110 94 0.099405 0.092703

Choice 3. x0 = (–7), x1 = (4) and
N = 20

95 81 0.074912 0.069149

Choice 3. x0 = (–7), x1 = (4) and
N = 5

108 89 0.078510 0.071038

Figure 1 Comparison of Alg. 1, �k 	= 0 and �k = 0 for N = 20

L = 3, and m = 0.01. Since
⎧
⎨

⎩
min{ 1

k2‖xk –xk–1‖ , 0.5} if xk 	= xk–1;

0.5 otherwise.

Observe that the expression

ui
k = arg min

{
γ Ti(bk)(y – bk) +

1
2

(y – xk)2,∀y ∈ [0, 1]
}

in Algorithm 1 is equivalent to the following relation ui
k = bk – γ Ti(bk) for all i ∈ {1, 2, . . . ,

M}. Similarly, vi
k = bk – γ Ti(ui

k) for all i ∈ {1, 2, . . . , M}. Hence, we can compute the inter-
mediate approximation v̄k which is farthest from bk among vi

k for all i ∈ {1, 2, . . . , M}.
We compare the parallel hybrid accelerated extragradient algorithm defined in Algo-
rithm 1 (i.e., �k 	= 0) and its variant with �k = 0. The stopping criteria are defined as
Error =Ek = ‖xk – xk–1‖ < 10–5. The values of Algorithm 1 and its variant are listed in
Table 1.

The error plotting Ek and (xk) of Algorithm 1 with �k 	= 0 and �k = 0 for each choice in
Table 1 is illustrated in Fig. 1.

We can see from Table 1 and Fig. 1 that Algorithm 1 performs faster and better in view
of the error analysis, time consumption, and the number of iterations required for the
convergence towards the desired solution in comparison with the variant of Algorithm 1
with �k = 0.



Arfat et al. Advances in Difference Equations        (2021) 2021:364 Page 15 of 19

5 Applications
In this section, we discuss some important instances of the main result in Sect. 3 as appli-
cations.

5.1 Split feasibility problems
Let H1 and H2 be two real Hilbert spaces and � : H1 →H2 be a bounded linear operator.
Let C and Q be nonempty, closed, and convex subsets of H1 and H2, respectively. The split
feasibility problem (SFP) is the problem of finding x̄ ∈ C such that �x̄ ∈ Q. We represent
the solution set by ω := C ∩ �

–1(Q) = {x̄ ∈ C : �x̄ ∈ Q}. This problem is essentially due to
Censor and Elfving [12] to solve the inverse problems and their application to medical im-
age reconstruction, radiation therapy, and modeling and simulation in a finite dimensional
Hilbert space. Recall the indicator function of C

bC(x̄) :=

⎧
⎨

⎩
0, x̄ ∈ C;

∞, otherwise.

The proximal operator of bC is the metric projection on C

proxbC
= arg min

p̄∈C
‖p̄ – x̄‖

= PC(x̄).

Let PQ be the projection of H2 onto a nonempty, closed, and convex subset Q. Take f (x̄) =
1
2‖�x̄ – PQ�x̄‖2 and g(x̄) = bC(x̄). Then we have the following result.

Corollary 5.1 Assume that 	 = ω∩ (
⋂M

i=1 EP(gi))∩ (
⋂N

i=1 Fix(Sj)) 	= ∅ via hypotheses (H1)–
(H5). For given x0, x1 ∈H1, let the iterative sequence (xk) be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

ui
k = arg min{γ gi(bk , y) + 1

2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

vi
k = arg min{γ gi(ui

k , y) + 1
2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

ik = arg max{‖vi
k – xk‖ : i = 1, 2, . . . , M}, v̄k = vik

k ;

wj
k = (1 – αk)v̄k + αkSjv̄k ;

jk = arg max{‖wj
k – xk‖ : j = 1, 2, . . . , N}, w̄k = wjk

k ;

yk = (1 – βk)w̄k + βk(PC(w̄k + δ�∗(PQ – Id)�w̄k));

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – z‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – z, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(42)

where 0 < γ < min( 1
2d1

, 1
2d2

). Assume that conditions (C1)–(C4) hold, then the sequence (xk)
generated by (42) converges strongly to an element in 	.

5.2 Split variational inequality problems
Let A : C → H be a nonlinear monotone operator defined on a nonempty, closed, and
convex subset C of a real Hilbert space H. The classical variational inequality problem
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aims to find a point x̄ ∈ C such that

〈Ax̄, ȳ – x̄〉 ≥ 0 ∀ȳ ∈ C.

The solution set of the above problem is denoted by VI(C, A). Let the operator �A ⊂H×
H be defined by

�Ax̄ =

⎧
⎨

⎩
A(x̄) + NC(x̄) if x̄ ∈ C,

∅ if x̄ /∈ C,

where NC(x̄) := {z ∈ H : 〈ȳ – x̄, z〉 ≤ 0 for all ȳ ∈ C}. It follows from [28] that �A is a max-
imal monotone such that 0 ∈ �A(x̄) ⇐⇒ x̄ ∈ VI(C, A) ⇐⇒ x̄ = PC(x̄ – λA(x̄)). As an
application, we have the following result.

Corollary 5.2 Let {Hn}2
n=1 be real Hilbert spaces, and let {Cn}2

n=1 be nonempty, closed, and
convex subsets of Hn, respectively. Let An : Cn →Hn for n = 1, 2 be single-valued monotone
and hemicontinuous operators, and let � : H1 → H2 be a bounded linear operator such
that 	 = VI(C1, A1) ∩ �

–1(VI(C2, A2)) ∩ (
⋂M

i=1 EP(gi)) ∩ (
⋂N

j=1 Fix(Sj)) 	= ∅ via hypotheses
(H1)–(H5). For given x0, x1 ∈H1, let the iterative sequences (xk) be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

ui
k = arg min{γ gi(bk , y) + 1

2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

vi
k = arg min{γ gi(ui

k , y) + 1
2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

ik = arg max{‖vi
k – xk‖ : i = 1, 2, . . . , M}, v̄k = vik

k ;

wj
k = (1 – αk)v̄k + αkSjv̄k ;

jk = arg max{‖wj
k – xk‖ : j = 1, 2, . . . , N}, w̄k = wjk

k ;

yk = (1 – βk)w̄k + βk(P(A1,λ)
C1

(w̄k + δ�∗(P(A2,λ)
C2

– Id)�w̄k));

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – z‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – z, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(43)

where 0 < γ < min( 1
2d1

, 1
2d2

) and P(A1,λ)
C1

, P(A2,λ)
C2

denote PC(Id – λA). Assume that conditions
(C1)–(C4) hold, then the sequence (xk) generated by (43) converges strongly to an element
in 	.

5.3 Split optimization problems
Let φ : H1 → (–∞,∞] be a proper, convex, and lower semicontinuous (pcls) function,
then the set of minimizers associated with φ is defined as

argminφ :=
{

x∗ ∈H1 : φ
(
x∗) ≤ φ(z̄) for all z̄ ∈H1

}
.

Recall that ∂φ of the pcls function φ is a maximal monotone operator and the correspond-
ing resolvent operator of ∂φ is called the proximity operator (see [17]). Hence argmin
φ = (∂φ)–1(0). Hence, we have the following application.
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Corollary 5.3 Let H1, H2 be two Hilbert spaces, and let C ⊆H1 be nonempty, closed, and
convex subset of H1. Let φ1 and φ2 be pcls functions on H1 and H2, respectively. Assume
that 	 = {x ∈ arg minφ1 : �x ∈ arg minφ2}∩ (

⋂M
i=1 EP(gi))∩ (

⋂N
i=1 Fix(Sj)) 	= ∅ via hypotheses

(H1)–(H5). For given x0, x1 ∈H1, let the iterative sequence (xk) be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

ui
k = arg min{γ gi(bk , y) + 1

2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

vi
k = arg min{γ gi(ui

k , y) + 1
2‖bk – y‖2 : u ∈ C}, i = 1, 2, . . . , M;

ik = arg max{‖vi
k – xk‖ : i = 1, 2, . . . , M}, v̄k = vik

k ;

wj
k = (1 – αk)v̄k + αkSjv̄k ;

jk = arg max{‖wj
k – xk‖ : j = 1, 2, . . . , N}, w̄k = wjk

k ;

yk = (1 – βk)bk + βk(J∂g1
mk (bk + δ�∗(J∂g2

nk – Id)�bk));

Ck+1 = {z ∈ Ck : ‖ȳk – z‖2 ≤ ‖xk – z‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – z, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(44)

where 0 < γ < min( 1
2d1

, 1
2d2

). Assume that conditions (C1)–(C4) hold, then the sequence (xk)
generated by (44) converges strongly to an element in 	.

6 Conclusions
In this paper, we have analyzed an accelerated projection based parallel hybrid extragradi-
ent algorithm for pseudomonotone equilibrium, fixed point, and split null point problems
in Hilbert spaces. The convergence analysis of the algorithm is established under the suit-
able set of conditions. A suitable numerical example has been incorporated to exhibit the
effectiveness of the algorithm. Moreover, some well-known instances, as applications, of
the main result that can pave a way for an important future research direction are also
discussed.
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