Skip to main content

Theory and Modern Applications

Hermite and poly-Bernoulli mixed-type polynomials

Abstract

In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Stirling numbers, Bernoulli and Frobenius-Euler polynomials of higher order.

1 Introduction

For r∈ Z ≥ 0 , as is well known, the Bernoulli polynomials of order r are defined by the generating function to be

∑ n = 0 ∞ B n ( r ) ( x ) n ! t n = ( t e t − 1 ) r e x t (see [1–16]).
(1.1)

For k∈Z, the polylogarithm is defined by

Li k (x)= ∑ n = 1 ∞ x n n k .
(1.2)

Note that Li 1 (x)=−log(1−x).

The poly-Bernoulli polynomials are defined by the generating function to be

Li k ( 1 − e − t ) 1 − e − t e x t = ∑ n = 0 ∞ B n ( k ) (x) t n n ! (see [5, 8]).
(1.3)

When x=0, B n ( k ) = B n ( k ) (0) are called the poly-Bernoulli numbers (of index k).

For ν(≠0)∈R, the Hermite polynomials of order ν are given by the generating function to be

e − ν t 2 2 e x t = ∑ n = 0 ∞ H n ( ν ) (x) t n n ! (see [6, 12, 13]).
(1.4)

When x=0, H n ( ν ) = H n ( ν ) (0) are called the Hermite numbers of order ν.

In this paper, we consider the Hermite and poly-Bernoulli mixed-type polynomials H B n ( ν , k ) (x) which are defined by the generating function to be

e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t e x t = ∑ n = 0 ∞ H B n ( ν , k ) (x) t n n ! ,
(1.5)

where k∈Z and ν(≠0)∈R.

When x=0, H B n ( ν , k ) =H B n ( ν , k ) (0) are called the Hermite and poly-Bernoulli mixed-type numbers.

Let ℱ be the set of all formal power series in the variable t over ℂ as follows:

F= { f ( t ) = ∑ k = 0 ∞ a k t k k ! | a k ∈ C } .
(1.6)

Let P=C[x] and P ∗ denote the vector space of all linear functionals on ℙ.

〈L|p(x)〉 denotes the action of the linear functional L on the polynomial p(x), and we recall that the vector space operations on P ∗ are defined by 〈L+M|p(x)〉=〈L|p(x)〉+〈M|p(x)〉, 〈cL|p(x)〉=c〈L|p(x)〉, where c is a complex constant in ℂ. For f(t)∈F, let us define the linear functional on ℙ by setting

〈 f ( t ) | x n 〉 = a n (n≥0).
(1.7)

Then, by (1.6) and (1.7), we get

〈 t k | x n 〉 =n! δ n , k (n,k≥0),
(1.8)

where δ n , k is the Kronecker symbol.

For f L (t)= ∑ k = 0 ∞ 〈 L | x k 〉 k ! t k , we have 〈 f L (t)| x n 〉=〈L| x n 〉. That is, L= f L (t). The map L↦ f L (t) is a vector space isomorphism from P ∗ onto ℱ. Henceforth, ℱ denotes both the algebra of formal power series in t and the vector space of all linear functionals on ℙ, and so an element f(t) of ℱ will be thought of as both a formal power series and a linear functional. We call ℱ the umbral algebra and the umbral calculus is the study of umbral algebra. The order O(f) of the power series f(t)≠0 is the smallest integer for which a k does not vanish. If O(f)=0, then f(t) is called an invertible series. If O(f)=1, then f(t) is called a delta series. For f(t),g(t)∈F, we have

〈 f ( t ) g ( t ) | p ( x ) 〉 = 〈 f ( t ) | g ( t ) p ( x ) 〉 = 〈 g ( t ) | f ( t ) p ( x ) 〉 .
(1.9)

Let f(t)∈F and p(x)∈P. Then we have

f(t)= ∑ k = 0 ∞ 〈 f ( t ) | x k 〉 k ! t k ,p(x)= ∑ k = 0 ∞ 〈 t k | p ( x ) 〉 k ! x k (see [8, 9, 11, 13, 14]).
(1.10)

By (1.10), we get

p ( k ) (0)= 〈 t k | p ( x ) 〉 = 〈 1 | p ( k ) ( x ) 〉 ,
(1.11)

where p ( k ) (0)= d k p ( x ) d x k | x = 0 .

From (1.11), we have

t k p(x)= p ( k ) (x)= d k p ( x ) d x k (see [8, 9, 13]).
(1.12)

By (1.12), we easily get

e y t p(x)=p(x+y), 〈 e y t | p ( x ) 〉 =p(y).
(1.13)

For O(f(t))=1, O(g(t))=0, there exists a unique sequence s n (x) of polynomials such that 〈g(t)f ( t ) k | x n 〉=n! δ n , k (n,k≥0).

The sequence s n (x) is called the Sheffer sequence for (g(t),f(t)) which is denoted by s n (x)∼(g(t),f(t)).

Let p(x)∈P, f(t)∈F. Then we see that

〈 f ( t ) | x p ( x ) 〉 = 〈 ∂ t f ( t ) | p ( x ) 〉 = 〈 d f ( t ) d t | p ( x ) 〉 .
(1.14)

For s n (x)∼(g(t),f(t)), we have the following equations:

h(t)= ∑ k = 0 ∞ 〈 h ( t ) | s k ( x ) 〉 k ! g(t)f ( t ) k ,p(x)= ∑ k = 0 ∞ 〈 g ( t ) f ( t ) k | p ( x ) 〉 k ! s k (x),
(1.15)

where h(t)∈F, p(x)∈P,

1 g ( f ¯ ( t ) ) e y f ¯ ( t ) = ∑ n = 0 ∞ s n (y) t n n ! ,
(1.16)

where f ¯ (t) is the compositional inverse for f(t) with f( f ¯ (t))=t,

s n (x+y)= ∑ k = 0 n ( n k ) s k (y) p n − k (x),where  p n (x)=g(t) s n (x),
(1.17)
f(t) s n (x)=n s n − 1 (x), s n + 1 (x)= ( x − g ′ ( t ) g ( t ) ) 1 f ′ ( t ) s n (x),
(1.18)

and the conjugate representation is given by

s n (x)= ∑ j = 0 n 1 j ! 〈 g ( f ¯ ( t ) ) − 1 f ¯ ( t ) j | x n 〉 x j .
(1.19)

For s n (x)∼(g(t),f(t)), r n (x)∼(h(t),l(t)), we have

s n (x)= ∑ m = 0 n C n , m r m (x),
(1.20)

where

C n , m = 1 m ! 〈 h ( f ¯ ( t ) ) g ( f ¯ ( t ) ) l ( f ¯ ( t ) ) m | x n 〉 (see [8, 9, 13]).
(1.21)

In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Bernoulli and Frobenius-Euler polynomials of higher order.

2 Hermite and poly-Bernoulli mixed-type polynomials

From (1.5) and (1.16), we note that

H B n ( ν , k ) (x)∼ ( e ν t 2 2 1 − e − t Li k ( 1 − e − t ) , t ) ,
(2.1)

and, by (1.3), (1.4) and (1.16), we get

B n ( k ) (x)∼ ( 1 − e − t Li k ( 1 − e − t ) , t ) ,
(2.2)
H n ( ν ) (x)∼ ( e ν t 2 2 , t ) ,where n≥0.
(2.3)

From (1.18), (2.1), (2.2) and (2.3), we have

t B n ( k ) (x)=n B n − 1 ( k ) (x),t H n ( ν ) (x)=n H n − 1 ( ν ) (x),tH B n ( ν , k ) (x)=nH B n − 1 ( ν , k ) (x).
(2.4)

By (1.5), (1.8) and (2.1), we get

H B n ( ν , k ) ( x ) = e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t x n = e − ν t 2 2 B n ( k ) ( x ) = ∑ m = 0 [ n 2 ] 1 m ! ( − ν 2 ) m ( n ) 2 m B n − 2 m ( k ) ( x ) = ∑ m = 0 [ n 2 ] ( n 2 m ) ( 2 m ) ! m ! ( − ν 2 ) m B n − 2 m ( k ) ( x ) .
(2.5)

Therefore, by (2.5), we obtain the following proposition.

Proposition 1 For n≥0, we have

H B n ( ν , k ) (x)= ∑ m = 0 [ n 2 ] ( n 2 m ) ( 2 m ) ! m ! ( − ν 2 ) m B n − 2 m ( k ) (x).

From (1.5), we can also derive

H B n ( ν , k ) ( x ) = Li k ( 1 − e − t ) 1 − e − t e − ν t 2 2 x n = Li k ( 1 − e − t ) 1 − e − t H n ( ν ) ( x ) = ∑ m = 0 ∞ ( 1 − e − t ) m ( m + 1 ) k H n ( ν ) ( x ) = ∑ m = 0 n 1 ( m + 1 ) k ∑ j = 0 m ( m j ) ( − 1 ) j e − j t H n ( ν ) ( x ) = ∑ m = 0 n 1 ( m + 1 ) k ∑ j = 0 m ( m j ) ( − 1 ) j H n ( ν ) ( x − j ) .
(2.6)

Therefore, by (2.6), we obtain the following theorem.

Theorem 2 For n≥0, we have

H B n ( ν , k ) (x)= ∑ m = 0 n 1 ( m + 1 ) k ∑ j = 0 m ( m j ) ( − 1 ) j H n ( ν ) (x−j).

By (1.5), we get

H B n ( ν , k ) ( x ) = e − ν t 2 2 B n ( k ) ( x ) = ∑ l = 0 ∞ 1 l ! ( − ν 2 ) l t 2 l B n ( k ) ( x ) = ∑ l = 0 [ n 2 ] 1 l ! ( − ν 2 ) l ∑ m = 0 n 1 ( m + 1 ) k ∑ j = 0 m ( − 1 ) j ( m j ) t 2 l ( x − j ) n = ∑ l = 0 [ n 2 ] ∑ j = 0 n { ∑ m = j n ( n 2 l ) ( 2 l ) ! l ! ( − ν 2 ) l ( − 1 ) j ( m j ) ( m + 1 ) k } ( x − j ) n − 2 l .
(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 3 For n≥0, we have

H B n ( ν , k ) (x)= ∑ l = 0 [ n 2 ] ∑ j = 0 n { ∑ m = j n ( n 2 l ) ( 2 l ) ! l ! ( − ν 2 ) l ( − 1 ) j ( m j ) ( m + 1 ) k } ( x − j ) n − 2 l .

By (2.6), we get

H B n ( ν , k ) ( x ) = ∑ m = 0 n ( 1 − e − t ) m ( m + 1 ) k H n ( ν ) ( x ) = ∑ m = 0 n 1 ( m + 1 ) k ∑ a = 0 n − m m ! ( a + m ) ! ( − 1 ) a S 2 ( a + m , m ) ( n ) a + m H n − a − m ( ν ) ( x ) = ∑ m = 0 n ∑ a = 0 n − m ( − 1 ) n − a − m m ! ( m + 1 ) k ( n n − a ) S 2 ( n − a , m ) H a ( ν ) ( x ) = ( − 1 ) n ∑ a = 0 n { ∑ m = 0 n − a ( − 1 ) m + a m ! ( m + 1 ) k ( n a ) S 2 ( n − a , m ) } H a ( ν ) ( x ) ,
(2.8)

where S 2 (n,m) is the Stirling number of the second kind.

Therefore, by (2.8), we obtain the following theorem.

Theorem 4 For n≥0, we have

H B n ( ν , k ) (x)= ( − 1 ) n ∑ a = 0 n { ∑ m = 0 n − a ( − 1 ) a + m m ! ( m + 1 ) k ( n a ) S 2 ( n − a , m ) } H a ( ν ) (x).

From (1.19) and (2.1), we have

H B n ( ν , k ) ( x ) = ∑ j = 0 n ( n j ) 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t | x n − j 〉 x j = ∑ j = 0 n ( n j ) 〈 e − ν t 2 2 | B n − j ( k ) ( x ) 〉 x j = ∑ j = 0 n ( n j ) ∑ l = 0 [ n − j 2 ] ( − ν 2 ) l l ! ( n − j ) 2 l 〈 1 | B n − j − 2 l ( k ) ( x ) 〉 x j = ∑ j = 0 n ( n j ) ∑ l = 0 [ n − j 2 ] 1 l ! ( − ν 2 ) l ( n − j ) 2 l B n − j − 2 l ( k ) x j = ∑ j = 0 n { ∑ l = 0 [ n − j 2 ] ( n j ) ( n − j 2 l ) ( 2 l ) ! l ! ( − ν 2 ) l B n − j − 2 l ( k ) } x j .
(2.9)

Therefore, by (2.9), we obtain the following theorem.

Theorem 5 For n≥0, we have

H B n ( ν , k ) (x)= ∑ j = 0 n { ∑ l = 0 [ n − j 2 ] ( n j ) ( n − j 2 l ) ( 2 l ) ! l ! ( − ν 2 ) l B n − j − 2 l ( k ) } x j .

Remark By (1.17) and (2.1), we easily get

H B n ( ν , k ) (x+y)= ∑ j = 0 n ( n j ) H B j ( ν , k ) (x) y n − j .
(2.10)

We note that

H B n ( ν , k ) (x)∼ ( g ( t ) = e ν t 2 2 1 − e − t Li k ( 1 − e − t ) , f ( t ) = t ) .
(2.11)

From (1.18) and (2.11), we have

H B n + 1 ( ν , k ) (x)= ( x − g ′ ( t ) g ( t ) ) H B n ( ν , k ) (x).
(2.12)

Now, we observe that

g ′ ( t ) g ( t ) = ( log ( g ( t ) ) ) ′ = ( log e ν t 2 2 + log ( 1 − e − t ) − log ( Li k ( 1 − e − t ) ) ) ′ = ν t + e − t 1 − e − t ( 1 − Li k − 1 ( 1 − e − t ) Li k ( 1 − e − t ) ) .
(2.13)

By (2.12) and (2.13), we get

H B n + 1 ( ν , k ) ( x ) = x H B n ( ν , k ) ( x ) − g ′ ( t ) g ( t ) H B n ( ν , k ) ( x ) = x H B n ( ν , k ) ( x ) − ν n H B n − 1 ( ν , k ) ( x ) − e − ν t 2 2 t e t − 1 Li k ( 1 − e − t ) − Li k − 1 ( 1 − e − t ) t ( 1 − e − t ) x n .
(2.14)

It is easy to show that

Li k ( 1 − e − t ) − Li k − 1 ( 1 − e − t ) 1 − e − t = ∑ m = 2 ∞ ( 1 m k − 1 m k − 1 ) ( 1 − e − t ) m − 1 = ( 1 2 k − 1 2 k − 1 ) t + ⋯ .
(2.15)

Thus, by (2.15), we get

Li k ( 1 − e − t ) − Li k − 1 ( 1 − e − t ) t ( 1 − e − t ) x n = Li k ( 1 − e − t ) − Li k − 1 ( 1 − e − t ) 1 − e − t x n + 1 n + 1 .
(2.16)

From (2.16), we can derive

e − ν t 2 2 t e t − 1 Li k ( 1 − e − t ) − Li k − 1 ( 1 − e − t ) t ( 1 − e − t ) x n = 1 n + 1 ( ∑ l = 0 ∞ B l l ! t l ) ( H B n + 1 ( ν , k ) ( x ) − H B n + 1 ( ν , k − 1 ) ( x ) ) = 1 n + 1 ∑ l = 0 n + 1 B l l ! t l ( H B n + 1 ( ν , k ) ( x ) − H B n + 1 ( ν , k − 1 ) ( x ) ) = 1 n + 1 ∑ l = 0 n + 1 ( n + 1 l ) B l ( H B n + 1 − l ( ν , k ) ( x ) − H B n + 1 − l ( ν , k − 1 ) ( x ) ) .
(2.17)

Therefore, by (2.14) and (2.17), we obtain the following theorem.

Theorem 6 For n≥0, we have

H B n + 1 ( ν , k ) ( x ) = x H B n ( ν , k ) ( x ) − ν n H B n − 1 ( ν , k ) ( x ) − 1 n + 1 ∑ l = 0 n + 1 ( n + 1 l ) B l { H B n + 1 − l ( ν , k ) ( x ) − H B n + 1 − l ( ν , k − 1 ) ( x ) } .
(2.18)

Let us take t on the both sides of (2.18). Then we have

( n + 1 ) H B n ( ν , k ) ( x ) = ( x t + 1 ) H B n ( ν , k ) ( x ) − ν n ( n − 1 ) H B n − 2 ( ν , k ) ( x ) − 1 n + 1 ∑ l = 0 n + 1 ( n + 1 l ) ( n + 1 − l ) B l { H B n − l ( ν , k ) ( x ) − H B n − l ( ν , k − 1 ) ( x ) } = n x H B n − 1 ( ν , k ) ( x ) + H B n ( ν , k ) ( x ) − ν n ( n − 1 ) H B n − 2 ( ν , k ) ( x ) − ∑ l = 0 n ( n l ) B l ( H B n − l ( ν , k ) ( x ) − H B n − l ( ν , k − 1 ) ( x ) ) ,
(2.19)

where n≥3.

Thus, by (2.19), we obtain the following theorem.

Theorem 7 For n≥3, we have

∑ l = 0 n ( n l ) B l H B n − l ( ν , k − 1 ) ( x ) = ( n + 1 ) H B n ( ν , k ) ( x ) − n ( x + 1 2 ) H B n − 1 ( ν , k ) ( x ) + n ( n − 1 ) ( ν + 1 12 ) H B n − 2 ( ν , k ) ( x ) + ∑ l = 0 n − 3 ( n l ) B n − l H B l ( ν , k ) ( x ) .

By (1.5) and (1.8), we get

H B n ( ν , k ) ( y ) = 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t e y t | x n 〉 = 〈 ∂ t ( e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t e y t ) | x n − 1 〉 = 〈 ( ∂ t e − ν t 2 2 ) Li k ( 1 − e − t ) 1 − e − t e y t | x n − 1 〉 + 〈 e − ν t 2 2 ( ∂ t Li k ( 1 − e − t ) 1 − e − t ) e y t | x n − 1 〉 + 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t ( ∂ t e y t ) | x n − 1 〉 = − ν ( n − 1 ) 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t e y t | x n − 2 〉 + y 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t e y t | x n − 1 〉 + 〈 e − ν t 2 2 ( ∂ t Li k ( 1 − e − t ) 1 − e − t ) e y t | x n − 1 〉 = − ν ( n − 1 ) H B n − 2 ( ν , k ) ( y ) + y H B n − 1 ( ν , k ) ( y ) + 〈 e − ν t 2 2 ( ∂ t Li k ( 1 − e − t ) 1 − e − t ) e y t | x n − 1 〉 .
(2.20)

Now, we observe that

∂ t ( Li k ( 1 − e − t ) 1 − e − t ) = Li k − 1 ( 1 − e − t ) − Li k ( 1 − e − t ) ( 1 − e − t ) 2 e − t .
(2.21)

From (2.21), we have

〈 e − ν t 2 2 ( ∂ t Li k ( 1 − e − t ) 1 − e − t ) e y t | x n − 1 〉 = 〈 e − ν t 2 2 ( Li k − 1 ( 1 − e − t ) − Li k ( 1 − e − t ) ( 1 − e − t ) 2 ) e − t e y t | 1 n t x n 〉 = 1 n 〈 e − ν t 2 2 Li k − 1 ( 1 − e − t ) − Li k ( 1 − e − t ) 1 − e − t e y t | t e t − 1 x n 〉 = 1 n 〈 e − ν t 2 2 Li k − 1 ( 1 − e − t ) − Li k ( 1 − e − t ) 1 − e − t e y t | B n ( x ) 〉 = 1 n ∑ l = 0 n ( n l ) B l 〈 e − ν t 2 2 Li k − 1 ( 1 − e − t ) − Li k ( 1 − e − t ) 1 − e − t e y t | x n − l 〉 = 1 n ∑ l = 0 n ( n l ) B l { H B n − l ( ν , k − 1 ) ( y ) − H B n − l ( ν , k ) ( y ) } ,
(2.22)

where B n are the ordinary Bernoulli numbers which are defined by the generating function to be

t e t − 1 = ∑ n = 0 ∞ B n n ! t n .

Therefore, by (2.20) and (2.22), we obtain the following theorem.

Theorem 8 For n≥2, we have

H B n ( ν , k ) ( x ) = − ν ( n − 1 ) H B n − 2 ( ν , k ) ( x ) + x H B n − 1 ( ν , k ) ( x ) + 1 n ∑ l = 0 n ( n l ) B l ( H B n − l ( ν , k − 1 ) ( x ) − H B n − l ( ν , k ) ( x ) ) .

Now, we compute

〈 e − ν t 2 2 Li k ( 1 − e − t ) | x n + 1 〉

in two different ways.

On the one hand,

〈 e − ν t 2 2 Li k ( 1 − e − t ) | x n + 1 〉 = 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t ( 1 − e − t ) | x n + 1 〉 = 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t | ( 1 − e − t ) x n + 1 〉 = 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t | x n + 1 − ( x − 1 ) n + 1 〉 = ∑ m = 0 n ( − 1 ) n − m ( n + 1 m ) 〈 e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t | x m 〉 = ∑ m = 0 n ( − 1 ) n − m ( n + 1 m ) H B m ( ν , k ) .
(2.23)

On the other hand,

〈 e − ν t 2 2 Li k ( 1 − e − t ) | x n + 1 〉 = 〈 Li k ( 1 − e − t ) | e − ν t 2 2 x n + 1 〉 = 〈 ∫ 0 t ( Li k ( 1 − e − s ) ) ′ d s | e − ν t 2 2 x n + 1 〉 = 〈 ∫ 0 t e − s Li k − 1 ( 1 − e − s ) 1 − e − s d s | e − ν t 2 2 x n + 1 〉 = 〈 ∑ l = 0 ∞ ( ∑ m = 0 l ( − 1 ) l − m ( l m ) B m ( k − 1 ) t l + 1 ( l + 1 ) ! ) | H n + 1 ( ν ) ( x ) 〉 = ∑ l = 0 n ∑ m = 0 l ( − 1 ) l − m ( l m ) B m ( k − 1 ) 1 ( l + 1 ) ! 〈 t l + 1 | H n + 1 ( ν ) ( x ) 〉 = ∑ l = 0 n ∑ m = 0 l ( − 1 ) l − m ( l m ) ( n + 1 l + 1 ) B m ( k − 1 ) H n − l ( ν ) .
(2.24)

Therefore, by (2.23) and (2.24), we obtain the following theorem.

Theorem 9 For n≥0, we have

∑ m = 0 n ( − 1 ) n − m ( n + 1 m ) H B m ( ν , k ) = ∑ m = 0 n ∑ l = m n ( − 1 ) l − m ( l m ) ( n + 1 l + 1 ) B m ( k − 1 ) H n − l ( ν ) .

Let us consider the following two Sheffer sequences:

H B n ( ν , k ) (x)∼ ( e ν t 2 2 1 − e − t Li k ( 1 − e − t ) , t )
(2.25)

and

B n ( r ) (x)∼ ( ( e t − 1 t ) r , t ) (r∈ Z ≥ 0 ).
(2.26)

Let us assume that

H B n ( ν , k ) (x)= ∑ m = 0 n C n , m B m ( r ) (x).
(2.27)

Then, by (1.20) and (1.21), we get

C n , m = 1 m ! 〈 ( e t − 1 t ) r t m | e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t x n 〉 = 1 m ! 〈 ( e t − 1 t ) r | t m H B n ( ν , k ) ( x ) 〉 = 1 m ! ( n ) m 〈 ( e t − 1 t ) r | H B n − m ( ν , k ) ( x ) 〉 = ( n m ) ∑ l = 0 ∞ r ! ( l + r ) ! S 2 ( l + r , r ) 〈 t l | H B n − m ( ν , k ) ( x ) 〉 = ( n m ) ∑ l = 0 n − m ( n − m ) l r ! ( l + r ) ! S 2 ( l + r , r ) H B n − m − l ( ν , k ) = ( n m ) ∑ l = 0 n − m ( n − m l ) ( l + r r ) S 2 ( l + r , r ) H B n − m − l ( ν , k ) .
(2.28)

Therefore, by (2.27) and (2.28), we obtain the following theorem.

Theorem 10 For n,r∈ Z ≥ 0 , we have

H B n ( ν , k ) (x)= ∑ m = 0 n { ( n m ) ∑ l = 0 n − m ( n − m l ) ( l + r r ) S 2 ( l + r , r ) H B n − m − l ( ν , k ) } B m ( r ) (x).

For λ(≠1)∈C, r∈ Z ≥ 0 , the Frobenius-Euler polynomials of order r are defined by the generating function to be

( 1 − λ e t − λ ) r e x t = ∑ n = 0 ∞ H n ( r ) (x|λ) t n n ! (see [1, 4, 7, 9, 10]).
(2.29)

From (1.16) and (2.29), we note that

H n ( r ) (x|λ)∼ ( ( e t − λ 1 − λ ) r , t ) .
(2.30)

Let us assume that

H B n ( ν , k ) (x)= ∑ m = 0 n C n , m H m ( r ) (x|λ).
(2.31)

By (1.21), we get

C n , m = 1 m ! 〈 ( e t − λ 1 − λ ) r t m | e − ν t 2 2 Li k ( 1 − e − t ) 1 − e − t x n 〉 = ( n ) m m ! ( 1 − λ ) r 〈 ∑ l = 0 r ( r l ) ( − λ ) r − l e l t | H B n − m ( ν , k ) ( x ) 〉 = ( n m ) 1 ( 1 − λ ) r ∑ l = 0 r ( r l ) ( − λ ) r − l 〈 1 | e l t H B n − m ( ν , k ) ( x ) 〉 = ( n m ) ( 1 − λ ) r ∑ l = 0 r ( r l ) ( − λ ) r − l H B n − m ( ν , k ) ( l ) .
(2.32)

Therefore, by (2.31) and (2.32), we obtain the following theorem.

Theorem 11 For n,r∈ Z ≥ 0 , we have

H B n ( ν , k ) (x)= 1 ( 1 − λ ) r ∑ m = 0 n ( n m ) { ∑ l = 0 r ( r l ) ( − λ ) r − l H B n − m ( ν , k ) ( l ) } H m ( r ) (x|λ).

References

  1. Araci S, Acikgoz M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 2012, 22(3):399-406.

    MathSciNet  Google Scholar 

  2. Dere R, Simsek Y: Application of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 2012, 22(3):433-438.

    MathSciNet  Google Scholar 

  3. Ding D, Yang J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 2010, 20(1):7-21.

    MathSciNet  Google Scholar 

  4. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 2009, 18(1):41-48.

    MathSciNet  Google Scholar 

  5. Kaneko M: Poly-Bernoulli numbers. J. Théor. Nr. Bordx. 1997, 9(1):221-228. 10.5802/jtnb.197

    Article  Google Scholar 

  6. Kim DS, Kim T, Dolgy DV, Rim SH: Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus. Adv. Differ. Equ. 2013., 2013(2013): Article ID 73

    Google Scholar 

  7. Kim DS, Kim T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012., 2012: Article ID 196

    Google Scholar 

  8. Kim DS, Kim T, Lee SH: A note on poly-Bernoulli polynomials arising from umbral calculus. Adv. Stud. Theor. Phys. 2013, 7(15):731-744.

    Google Scholar 

  9. Kim DS, Kim T, Lee SH: Poly-Cauchy numbers and polynomials with umbral calculus viewpoint. Int. J. Math. Anal. 2013, 7: 2235-2253.

    Google Scholar 

  10. Kim DS, Kim T, Lee SH: Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials. Adv. Stud. Contemp. Math. 2013, 23: 543-554.

    Google Scholar 

  11. Kim DS, Kim T: Some identities of Bernoulli and Euler polynomials arising from umbral calculus. Adv. Stud. Contemp. Math. 2013, 23(1):159-171.

    MathSciNet  Google Scholar 

  12. Kurt B, Simsek Y: On Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math. 2013, 23(1):13-17.

    MathSciNet  Google Scholar 

  13. Roman S Pure and Applied Mathematics 111. In The Umbral Calculus. Academic Press, New York; 1984.

    Google Scholar 

  14. Roman S, Rota G-C: The umbral calculus. Adv. Math. 1978, 27(2):95-188. 10.1016/0001-8708(78)90087-7

    Article  MathSciNet  Google Scholar 

  15. Rim SH, Jeong J: On the modified q -Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 2012, 22(1):93-98.

    MathSciNet  Google Scholar 

  16. Simsek Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 2008, 16(2):251-278.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2003786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, D.S., Kim, T. Hermite and poly-Bernoulli mixed-type polynomials. Adv Differ Equ 2013, 343 (2013). https://doi.org/10.1186/1687-1847-2013-343

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-343

Keywords