Skip to main content

Theory and Modern Applications

Table 2 Variable separation solution, inhomogeneity terms, and decay rate of equivalent ILLG equation (27)

From: Energy decay rate of multidimensional inhomogeneous Landau–Lifshitz–Gilbert equation and Schrödinger map equation on the sphere

Solutions I–III

q(r) and decay rate

Solution I: \(A \exp [i \Theta^{'}_{1} ]\),

\({\frac {C_{{1}}{r}^{-2 n+2} ( C_{{2}}{r}^{n}+C_{{3}}n ) ^{2}{\beta}^{2} ( {A}^{2}-1 ) }{\alpha ( {A}^{2}+1 ) C_{{2}}^{2}{n}^{2}}}\)

\(\Theta^{'}_{1} = C_{1}t + {\frac{\alpha ( {A}^{2}+1 ) }{\beta ( {A}^{2}-1 ) }\ln ( {\frac{\beta ( {A}^{2}-1 ) ( C_{{2}}{r}^{n}+C_{{3}}n ) }{n\alpha ( {A}^{2}+1 ) }} ) }\)

and O(1)

Solution II: \({\frac{\sin ( B ) }{1+\cos ( B ) }} \exp [i \Theta_{2} ]\),

\(-{\frac{C_{{1}}\cos ( B ) {\beta}^{2} ( \overline{r} +K_{{n+1}} ) ^{2}}{\alpha ( \overrightarrow{K} \cdot \overrightarrow{K} ) }}\)

\(\Theta_{2} = C_{{1}}t -{\frac{\alpha\ln ( \overline{r} +K_{{n+1}} ) }{\cos ( B ) \beta}}+K_{{n+2}} \)

and O(1)