Skip to main content

Theory and Modern Applications

Table 1 Some useful identities of the local fractional calculus are give below

From: Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets

 

Basic identities

1

\(\cos _{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }(-1)^{n}\frac{t^{(2n+1)\alpha }}{\varGamma (1+(2n+1)\alpha)}\), 0<α ≤ 1

2

\(\sin _{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }(-1)^{n}\frac{t^{2n\alpha }}{\varGamma (1+(2n+1)\alpha)}\), 0<α ≤ 1

3

\(E_{\alpha }(t^{\alpha })=\sum_{n=0}^{+\infty }\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}\), 0<α ≤ 1

4

\(\frac{d^{\alpha }}{dt^{\alpha }}\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}=\frac{t^{(n-1)\alpha }}{\varGamma (1+(n-1)\alpha)}\)

5

\({}_{0}I^{(\alpha)}_{t}\frac{t^{n\alpha }}{\varGamma (1+n\alpha)}=\frac{t^{(n+1)\alpha }}{\varGamma (1+(n+1)\alpha)}\)

6

\(\frac{d^{\alpha }}{dt^{\alpha }}\cos _{\alpha }(t^{\alpha })=-\sin _{\alpha }(t^{\alpha })\)

7

\(\frac{d^{\alpha }}{dt^{\alpha }}\sin _{\alpha }(t^{\alpha })=\cos _{\alpha }(t^{\alpha })\)

8

\(\frac{d^{\alpha }}{dt^{\alpha }}E_{\alpha }(t^{\alpha })=E_{\alpha }(t^{\alpha })\)