Skip to main content

Theory and Modern Applications

Table 1 Some new and known special polynomials

From: Identities involving 3-variable Hermite polynomials arising from umbral method

S. No.

Parameters

Polynomials

Umbral definition

Generating function

Series definition

I.

q = 1

\(H_{n}(x,y,z|\beta ,\alpha ;p,1)\)

\({\hat{b}_{y}}^{\beta }{\hat{c}_{z}}^{p}(x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}}e_{(\alpha ,\beta )}(y^{\frac{\alpha }{2}}t)z^{\frac{p}{3}}\mathcal{E}_{p,1}(z^{\frac{1}{3}}t)\)

\(n!\sum_{r=0}^{n}\frac{\Gamma {(p+r+1)}z^{\frac{p+r}{3}}H_{n-r}(x,y|\beta ,\alpha )}{\Gamma (\frac{p+r}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+r)\pi }{3} \vert - \vert \cos (p+r)\pi \vert )\)

II.

α = 1

\(H_{n}(x,y,z|\beta ,1;p,q)\)

\({\hat{b}_{y}}^{\beta }{\hat{c}_{z}}^{p}(x+\hat{b}_{y}+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}}e_{(1,\beta )}(y^{\frac{1}{2}}t)z^{\frac{p}{3}}\mathcal{E}_{p,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n}\frac{\Gamma {(p+qr+1)}z^{\frac{p+qr}{3}}H_{n-r}(x,y|\beta ,1)}{\Gamma (\frac{p+qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+qr)\pi }{3} \vert - \vert \cos (p+qr)\pi \vert )\)

III.

α = 1; q = 1

\(H_{n}(x,y,z|\beta ,1;p,1)\)

\({\hat{b}_{y}}^{\beta }{\hat{c}_{z}}^{p}(x+\hat{b}_{y}+\hat{c}_{z})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}} e_{(1,\beta )}(y^{\frac{1}{2}}t)z^{\frac{p}{3}}\mathcal{E}_{p,1}(z^{\frac{1}{3}}t)\)

\(n!\sum_{r=0}^{n}\frac{\Gamma {(p+r+1)}z^{\frac{p+r}{3}}H_{n-r}(x,y|\beta ,1)}{\Gamma (\frac{p+r}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+r)\pi }{3} \vert - \vert \cos (p+r)\pi \vert )\)

IV.

p = 0

\(H_{n}(x,y,z|\beta ,\alpha ;-,q)\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}} e_{(\alpha ,\beta )}(y^{\frac{\alpha }{2}}t)\mathcal{E}_{0,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(qr+1)}z^{\frac{qr}{3}}H_{n-r}(x,y|\beta ,\alpha )}{\Gamma (\frac{qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(qr)\pi }{3} \vert - \vert \cos (qr)\pi \vert )\)

V.

p = 0; q = 1

\(H_{n}(x,y,z|\beta ,\alpha ;-,1)\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}} e_{(\alpha ,\beta )}(y^{\frac{\alpha }{2}}t)e^{zt^{3}}\)

\(n!\sum_{r=0}^{\frac{n}{3}} \frac{z^{r}H_{n-3r}(x,y|\beta ,\alpha )}{r!(n-3r)!}\)

VI.

α = 1; p = 0

\(H_{n}(x,y,z|\beta ,1;-,q)\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y}+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}} e_{(1,\beta )}(y^{\frac{1}{2}}t)\mathcal{E}_{0,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(qr+1)}z^{\frac{qr}{3}}H_{n-r}(x,y|\beta ,1)}{\Gamma (\frac{qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(qr)\pi }{3} \vert - \vert \cos (qr)\pi \vert )\)

VII.

α = 1; p = 0; q = 1

\(H_{n}(x,y,z|\beta ,1;-,1)\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y}+{\hat{c}_{z}})^{n}\phi _{0}\psi _{0}\)

\(e^{xt}y^{\frac{\beta }{2}}e_{(1,\beta )}(y^{\frac{1}{2}}t) e^{zt^{3}}\)

\(n!\sum_{r=0}^{[\frac{n}{3}]} \frac{z^{r}H_{n-3r}(x,y|\beta ;1)}{r!(n-3r)!}\)

VIII.

β = 0

\(H_{n}(x,y,z|-,\alpha ;p,q)\)

\({\hat{c}_{z}}^{p}(x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt} e_{(\alpha ,0)}(y^{\frac{\alpha }{2}}t)z^{\frac{p}{3}}\mathcal{E}_{p,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(p+qr+1)}z^{\frac{p+qr}{3}}H_{n-r}(x,y|-,\alpha )}{\Gamma (\frac{p+qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+qr)\pi }{3} \vert - \vert \cos (p+qr)\pi \vert )\)

IX.

β = 0; q = 1

\(H_{n}(x,y,z|-,\alpha ;p,1)\)

\({\hat{c}_{z}}^{p}(x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}})^{n}\phi _{0}\psi _{0}\)

\(e^{xt} e_{(\alpha ,0)}(y^{\frac{\alpha }{2}}t)z^{\frac{p}{3}}\mathcal{E}_{p,1}(z^{\frac{1}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(p+r+1)}z^{\frac{p+r}{3}}H_{n-r}(x,y|-,\alpha )}{\Gamma (\frac{p+r}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+r)\pi }{3} \vert - \vert \cos (p+r)\pi \vert )\)

X.

α = 1; β = 0

\(H_{n}(x,y,z|-,1;p,q)\)

\({\hat{c}_{z}}^{p}(x+\hat{b}_{y}+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt+yt^{2}}z^{\frac{p}{3}} \mathcal{E}_{p,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(p+qr+1)}z^{\frac{p+qr}{3}}H_{n-r}(x,y)}{\Gamma (\frac{p+qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+qr)\pi }{3} \vert - \vert \cos (p+qr)\pi \vert )\)

XI.

α = 1; β = 0; q = 1

\(H_{n}(x,y,z|-,1;p,1)\)

\({\hat{c}_{z}}^{p}(x+\hat{b}_{y}+\hat{c}_{z})^{n}\phi _{0}\psi _{0}\)

\(e^{xt+yt^{2}}z^{\frac{p}{3}}\mathcal{E}_{p,1}(z^{\frac{1}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(p+r+1)}z^{\frac{p+r}{3}}H_{n-r}(x,y)}{\Gamma (\frac{p+r}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(p+r)\pi }{3} \vert - \vert \cos (p+r)\pi \vert )\)

XII.

β = 0; p = 0

\(H_{n}(x,y,z|-,\alpha ;-,q)\)

\((x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt} e_{(\alpha ,0)}(y^{\frac{\alpha }{2}}t)\mathcal{E}_{0,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(qr+1)}z^{\frac{qr}{3}}H_{n-r}(x,y|-,\alpha )}{\Gamma (\frac{qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(qr)\pi }{3} \vert - \vert \cos (qr)\pi \vert )\)

XIII.

β = 0; p = 0; q = 1

\(H_{n}(x,y,z|-,\alpha ;-,1)\)

\((x+\hat{b}_{y}^{\alpha }+{\hat{c}_{z}})^{n}\phi _{0}\psi _{0}\)

\(e^{xt} e_{(\alpha ,0)}(y^{\frac{\alpha }{2}}t)e^{zt^{3}}\)

\(n!\sum_{r=0}^{[\frac{n}{3}]} \frac{z^{r}H_{n-3r}(x,y|-,\alpha )}{r!(n-3r)!}\)

XIV.

α = 1; β = 0; p = 0

\(H_{n}(x,y,z|-,1;-,q)\)

\((x+\hat{b}_{y}+{\hat{c}_{z}}^{q})^{n}\phi _{0}\psi _{0}\)

\(e^{xt+yt^{2}} \mathcal{E}_{0,q}(z^{\frac{q}{3}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(qr+1)}z^{\frac{qr}{3}}H_{n-r}(x,y)}{\Gamma (\frac{qr}{3}+1)r!(n-r)!}\times ( \vert 2\cos \frac{(qr)\pi }{3} \vert - \vert \cos (qr)\pi \vert )\)

XV.

α = 1; β = 0; p = 0; q = 1

\(H_{n}(x,y,z)\)

\((x+\hat{b}_{y}+\hat{c}_{z})^{n}\phi _{0}\psi _{0}\)

\(e^{(xt+yt^{2}+zt^{3})}\) [6]

\(n!\sum_{r=0}^{[\frac{n}{3}]}\frac{z^{r} H_{n-3r}(x,y)}{r!(n-3r)!}\) [6]

XVI.

p = 0; q = 0; z = 0

\(H_{n}(x,y|\beta ,\alpha )\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y}^{\alpha })^{n}\phi _{0}\) [8]

\(e^{xt} y^{\frac{\beta }{2}}e_{(\alpha ,\beta )}(y^{\frac{\alpha }{2}}t)\) [8]

\(n!\sum_{r=0}^{n} \frac{\Gamma {(\alpha r+\beta +1)}x^{n-r}y^{\frac{\alpha r+\beta }{2}}}{\Gamma {(\frac{\alpha r+\beta }{2}+1)}r!(n-r)!}\times \vert (\cos \frac{\alpha r+\beta }{2}\pi ) \vert \)

XVII.

p = 0; q = 0; α = 1; z = 0

\(H_{n}(x,y|\beta ,1)\)

\({\hat{b}_{y}}^{\beta }(x+\hat{b}_{y})^{n}\phi _{0}\)

\(e^{xt} y^{\frac{\beta }{2}}e_{(1,\beta )}(y^{\frac{1}{2}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {( r+\beta +1)}x^{n-r}y^{\frac{r+\beta }{2}}}{\Gamma {(\frac{ r+\beta }{2}+1)}r!(n-r)!}\times \vert (\cos \frac{r+\beta }{2}\pi ) \vert \)

XVIII.

β = 0; p = 0; q = 0; z = 0

\(H_{n}(x,y|-,\alpha )\)

\((x+\hat{b}_{y}^{\alpha })^{n}\phi _{0}\)

\(e^{xt} e_{(\alpha ,0)}(y^{\frac{\alpha }{2}}t)\)

\(n!\sum_{r=0}^{n} \frac{\Gamma {(\alpha r+1)}x^{n-r}y^{\frac{\alpha r}{2}}}{\Gamma {(\frac{\alpha r}{2}+1)}r!(n-r)!}\times \vert (\cos \frac{\alpha r}{2}\pi ) \vert \)

XIX.

β = 0; p = 0; α = 1; q = 0; z = 0

\(H_{n}(x,y)\)

\((x+\hat{b}_{y})^{n}\phi _{0}\) [8]

\(e^{xt+yt^{2}}\) [2]

\(n!\sum_{r=0}^{\frac{n}{2}} \frac{x^{n-2r}y^{r}}{r!(n-2r)!}\) [2]