Skip to main content

Theory and Modern Applications

Table 2 Index and argument duplication formulas

From: Identities involving 3-variable Hermite polynomials arising from umbral method

S. No.

Polynomials

Index duplication formula

Argument duplication formula

I.

\(H_{n}(x,y,z|\beta ,\alpha ;p,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s)+\beta ,\alpha ;p+n-r,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u)+\beta ,\alpha ;s-r+p,1 )\)

II.

\(H_{n}(x,y,z|\beta ,1;p,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s+\beta ,1;q(n-r)+p,q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u+\beta ,1; q(s-r)+p,q )\)

III.

\(H_{n}(x,y,z|\beta ,1;p,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s+\beta ,1;n-r+p,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u+\beta ,1; s-r+p,1 )\)

IV.

\(H_{n}(x,y,z|\beta ,\alpha ;-,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s)+\beta ,\alpha ;q(n-r),q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u)+\beta ,\alpha ;q(s-r),q )\)

V.

\(H_{n}(x,y,z|\beta ,\alpha ;-,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s)+\beta ,\alpha ;n-r,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{s-r-u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u)+\beta ,\alpha ; s-r,1 )\)

VI.

\(H_{n}(x,y,z|\beta ,1;-,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s+\beta ,1;q(n-r),q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u+\beta ,1; q(s-r),q )\)

VII

\(H_{n}(x,y,z|\beta ,1;-,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s+\beta ,1;n-r,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u+\beta ,1;s-r,1 )\)

VIII.

\(H_{n}(x,y,z|-,\alpha ;p,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s),\alpha ;q(n-r)+p,q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u),\alpha ; q(s-r)+p,q )\)

IX.

\(H_{n}(x,y,z|-,\alpha ;p,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s),\alpha ;n-r+p,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u),\alpha ; s-r+p,1 )\)

X.

\(H_{n}(x,y,z|-,1;p,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s,1;q(n-r)+p,q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u,1;q(s-r)+p,q )\)

XI.

\(H_{n}(x,y,z|-,1;p,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s,1;n-r+p,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u,1; s-r+p,1 )\)

XII.

\(H_{n}(x,y,z|-,\alpha ;-,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s),\alpha ;q(n-r),q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u),\alpha ;q(s-r),q )\)

XIII.

\(H_{n}(x,y,z|-,\alpha ;-,1)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|\alpha (r-s),\alpha ;n-r,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|\alpha (r-u),\alpha ;s-r,1 )\)

XIV.

\(H_{n}(x,y,z|-,1;-,q)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s,1;q(n-r),q)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u,1;q(s-r),q )\)

XV.

\(H_{n}(x,y,z)\)

\(\sum_{r=0}^{n}\sum_{s=0}^{r}\binom{n}{r}\binom{r}{s}x^{s}H_{n}(x,y,z|r-s,1;n-r,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\sum_{u=0}^{r}\binom{n}{s}\binom{s}{r}\binom{r}{u}x^{u}\frac{1}{2^{s-u}}\times H_{n-s} (x,\frac{y}{2},\frac{z}{2}|r-u,1;s-r,1 )\)

XVI.

\(H_{n}(x,y|\beta ,\alpha )\)

\(\sum_{r=0}^{n}\binom{n}{r}x^{r}H_{n}(x,y|\alpha (n-r)+\beta ,\alpha )\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\binom{n}{s}\binom{s}{r}x^{r}\frac{1}{2^{s-r}}\times H_{n-s} (x,\frac{y}{2}|\alpha (s-r)+\beta ,\alpha )\)

XVII.

\(H_{n}(x,y|\beta ,1)\)

\(\sum_{r=0}^{n}\binom{n}{r}x^{r}H_{n}(x,y|n-r+\beta ,1)\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\binom{n}{s}\binom{s}{r}x^{r}\frac{1}{2^{s-r}}\times H_{n-s} (x,\frac{y}{2}|s-r+\beta ,1 )\)

XVIII.

\(H_{n}(x,y|-,\alpha )\)

\(\sum_{r=0}^{n}\binom{n}{r}x^{r}H_{n}(x,y|\alpha (n-r),\alpha )\)

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\binom{n}{s}\binom{s}{r}x^{r}\frac{1}{2^{s-r}}\times H_{n-s} (x,\frac{y}{2}|\alpha (s-r),\alpha )\)

XIX.

\(H_{n}(x,y)\)

\(\sum_{r=0}^{n}\binom{n}{r}x^{n-r}H_{n}(x,y|r)\) [8]

\(\sum_{s=0}^{n}\sum_{r=0}^{s}\binom{n}{s}\binom{s}{r}x^{r}\frac{1}{2^{s-r}}\times H_{n-s} (x,\frac{y}{2}|s-r )\) [8]