Skip to main content

Theory and Modern Applications

Table 2 Corresponding Green functions and their maximums

From: Existence results for infinite systems of the Hilfer fractional boundary value problems in Banach sequence spaces

α,β

\(\mathcal{G}(t,s)\)

\(\max \mathcal{G}(t,s)\)

β: = 1

\(\frac{1}{\Gamma (\alpha )} \begin{cases} (\frac{t-a}{b-a} )(b-s)^{\alpha -1}-(t-s)^{\alpha -1};& a\leq s\leq t\leq b,\\ (\frac{t-a}{b-a} )(b-s)^{\alpha -1};& a\leq t\leq s\leq b. \end{cases}\)

\(\frac{{(b-a)^{\alpha -1}(\alpha -1)^{\alpha -1}}}{{\Gamma (\alpha )\alpha ^{\alpha }}}\)

β: = 0

\(\frac{1}{\Gamma (\alpha )}\begin{cases} (\frac{t-a}{b-a} )^{\alpha -1}(b-s)^{\alpha -1}-(t-s)^{\alpha -1}; & a\leq s\leq t\leq b,\\ (\frac{t-a}{b-a} )^{\alpha -1}(b-s)^{\alpha -1};& a\leq t\leq s\leq b. \end{cases}\)

\(\frac{(b-a)^{\alpha -1}}{\Gamma (\alpha )4^{\alpha -1}}\)

α: = 2

\(\begin{cases} (\frac{s-a}{b-a} )(b-t); & a\leq s\leq t\leq b,\\ (\frac{t-a}{b-a} )(b-s);& a\leq t\leq s\leq b. \end{cases}\)

\(\frac{b-a}{4}\)