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1. Definitions and auxiliary results

Difference equations with continuous time are popular enough with researches [1–8].
Volterra equations are undoubtedly also very important for both theory and applications
[3, 8–12]. Sufficient conditions for mean square summability of solutions of linear sto-
chastic difference second-kind Volterra equations were obtained by authors in [10] (for
difference equations with discrete time) and [8] (for difference equations with continuous
time). Here the conditions from [8, 10] are generalized for nonlinear stochastic difference
second-kind Volterra equations with continuous time. All results are obtained by general
method of Lyapunov functionals construction proposed by Kolmanovskiı̆ and Shaikhet
[8, 13–21].

Let {Ω,F,P} be a probability space and let {Ft, t ≥ t0} be a nondecreasing family of
sub-σ-algebras of F, that is, Ft1 ⊂ Ft2 for t1 < t2, let H be a space of Ft-adapted functions
x with values x(t) in Rn for t ≥ t0 and the norm ‖x‖2 = supt≥t0 E|x(t)|2.

Consider the stochastic difference second-kind Volterra equation with continuous
time:

x
(
t+h0

)= η
(
t+h0

)
+F
(
t,x(t),x

(
t−h1

)
,x
(
t−h2

)
, . . .
)
, t > t0−h0, (1.1)
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and the initial condition for this equation:

x(θ)= φ(θ), θ ∈Θ=
[
t0−h0−max

j≥1
hj , t0

]
. (1.2)

Here η ∈H , h0,h1, . . . are positive constants, φ is an Ft0 -adapted function for θ ∈Θ, such
that ‖φ‖20 = supθ∈ΘE|φ(θ)|2 <∞, the functional F with values in Rn satisfies the condi-
tion

∣
∣F
(
t,x0,x1,x2, . . .

)∣∣2 ≤
∞∑

j=0
aj

∣
∣xj
∣
∣2, A=

∞∑

j=0
aj <∞. (1.3)

A solution x of problem (1.1)-(1.2) is an Ft-adapted process x(t)= x(t; t0,φ), which is
equal to the initial function φ from (1.2) for t ≤ t0 and with probability 1 defined by (1.1)
for t > t0.

Definition 1.1. A function x from H is called
(i) uniformly mean square bounded if ‖x‖2 <∞;
(ii) asymptotically mean square trivial if

lim
t→∞E

∣
∣x(t)

∣
∣2 = 0; (1.4)

(iii) asymptotically mean square quasitrivial if for each t ≥ t0,

lim
j→∞

E
∣
∣x
(
t+ jh0

)∣∣2 = 0; (1.5)

(iv) uniformly mean square summable if

sup
t≥t0

∞∑

j=0
E
∣
∣x
(
t+ jh0

)∣∣2 <∞; (1.6)

(v) mean square integrable if

∫∞

t0
E
∣
∣x(t)

∣
∣2dt <∞. (1.7)

Remark 1.2. It is easy to see that if the function x is uniformly mean square summable,
then it is uniformly mean square bounded and asymptotically mean square quasitrivial.

Remark 1.3. It is evidently that condition (1.5) follows from (1.4), but the inverse state-
tent is not true.
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Together with (1.1), we will consider the auxiliary difference equation

x
(
t+h0

)= F
(
t,x(t),x

(
t−h1

)
,x
(
t−h2

)
, . . .), t > t0−h0, (1.8)

with initial condition (1.2) and the functional F, satisfying condition (1.3).

Definition 1.4. The trivial solution of (1.8) is called
(i) mean square stable if for any ε > 0 and t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such

that ‖x(t)‖2 < ε for all t ≥ t0 if ‖φ‖20 < δ;
(ii) asymptotically mean square stable if it is mean square stable and for each initial

function φ, condition (1.4) holds;
(iii) asymptotically mean square quasistable if it is mean square stable and for each

initial function φ and each t ∈ [t0, t0 +h0), condition (1.5) holds.

Below some auxiliary results are cited from [8].

Theorem 1.5. Let the process η in (1.1) be uniformly mean square summable and there exist
a nonnegative functional V(t)= V(t,x(t),x(t− h1),x(t− h2), . . .), positive numbers c1, c2,
and nonnegative function γ : [t0,∞)→R, such that

γ̂ = sup
s∈[t0,t0+h0)

∞∑

j=0
γ
(
s+ jh0

)
<∞, (1.9)

EV(t)≤ c1 sup
s≤t

E
∣
∣x(s)

∣
∣2, t ∈ [t0, t0 +h0

)
, (1.10)

EΔV(t)≤−c2E
∣
∣x(t)

∣
∣2 + γ(t), t ≥ t0, (1.11)

where ΔV(t)=V(t+h0)−V(t). Then the solution of (1.1)-(1.2) is uniformly mean square
summable.

Remark 1.6. Replace condition (1.9) in Theorem 1.5 by condition

∫∞

t0
γ(t)dt <∞. (1.12)

Then the solution of (1.1) for each initial function (1.2) is mean square integrable.

Remark 1.7. If for (1.8) there exist a nonnegative functional V(t) = V(t,x(t),x(t− h1),
x(t− h2), . . .), and positive numbers c1, c2 such that conditions (1.10) and (1.11) (with
γ(t)≡ 0) hold, then the trivial solution of (1.8) is asymptotically mean square quasistable.

2. Nonlinear Volterra equation with small nonlinearity:
conditions of mean square summability

Consider scalar nonlinear stochastic difference Volterra equation in the form

x(t+1)= η(t+1)+
[t]+r∑

j=0
ajg
(
x(t− j)

)
, t >−1,

x(s)= φ(s), s∈ [− (r +1),0
]
.

(2.1)
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Here r ≥ 0 is a given integer, aj are known constants, the process η is uniformly mean
square summable, the function g :R→R satisfies the condition

∣
∣g(x)− x

∣
∣≤ ν|x|, ν≥ 0. (2.2)

Below in Theorems 2.1, 2.7, new sufficient conditions for uniform mean square
summability of solution of (2.1) are obtained. Similar results for linear equations of type
(2.1) were obtained by authors in [8, 10].

2.1. First summability condition. To get condition of mean square summability for
(2.1), consider the matrices

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...

0 0 0 ··· 0 1
ak ak−1 ak−2 ··· a1 a0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ··· 0 0
0 ··· 0 0
...

...
...

...

0 ··· 0 0
0 ··· 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.3)

of dimension of k+1, k ≥ 0, and the matrix equation

A′DA−D =−U , (2.4)

with the solution D that is a symmetric matrix of dimension k+1 with the elements di j .
Put also

αl =
∞∑

j=l

∣
∣aj

∣
∣, l = 0, . . . ,k+1, βk =

∣
∣ak
∣
∣+

k−1∑

m=0

∣
∣
∣
∣am +

dk−m,k+1

dk+1,k+1

∣
∣
∣
∣,

Ak = βk +
1
2
αk+1, Sk = d−1k+1,k+1−α2k+1− 2βkαk+1.

(2.5)

Theorem 2.1. Suppose that for some k ≥ 0, the solution D of (2.4) is a positive semidefinite
symmetric matrix such that the condition dk+1,k+1 > 0 holds. If besides of that

α2k+1 + 2βkαk+1 < d−1k+1,k+1, (2.6)

ν <
1
α0

(√
A2
k + Sk −Ak

)
, (2.7)

then the solution of (2.1) is uniformly mean square summable.

(For the proof of Theorem 2.1, see Appendix A.)
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Remark 2.2. Condition (2.6) can be represented also in the form

αk+1 <
√
β2k +d−1k+1,k+1−βk. (2.8)

Remark 2.3. Suppose that in (2.1), aj = 0 for j > k. Then αk+1 = 0. So, if matrix equation
(2.4) has a positive semidefinite solution D with dk+1,k+1 > 0 and ν is small enough to
satisfy the inequality

ν <
1
α0

(√
β2k +d−1k+1,k+1−βk

)
, (2.9)

then the solution of (2.1) is uniformly mean square summable.

Remark 2.4. Suppose that the function g in (2.1) satisfies the condition

∣
∣g(x)− cx

∣
∣≤ ν|x|, (2.10)

where c is an arbitrary real number. Despite the fact that condition (2.10) is a more gen-
eral one than (2.2), it can be used in Theorem 2.1 instead of (2.2). Really, if in (2.10)
c �= 0, then instead of aj and g in (2.1), one can use â j = ajc and ĝ = c−1g. The function
ĝ satisfies condition (2.2) with ν̂= |c−1|ν, that is, |ĝ(x)− x| ≤ ν̂|x|. In the case c = 0, the
proof of Theorem 2.1 can be corrected by evident way (see Appendix A).

Remark 2.5. If inequalities (2.7), (2.8) hold and process η in (2.1) satisfies condition
(1.12), then the solution of (2.1) is mean square integrable.

Remark 2.6. From Remark 1.7, it follows that if inequalities (2.7), (2.8) hold, then the
trivial solution of (2.1) with η(t)≡ 0 is asymptotically mean square quasistable.

2.2. Second summability condition. Put

α=
∞∑

j=1

∣
∣
∣
∣
∣

∞∑

m=0
am

∣
∣
∣
∣
∣, β =

∞∑

j=0
aj , (2.11)

A= α+
1
2
|β|, B = α

(|β|−β
)
, S= (1−β)(1+β− 2α) > 0. (2.12)

Theorem 2.7. Suppose that

β2 + 2α(1−β) < 1, (2.13)

ν <
1

2|β|A
(√

(A+B)2 + 2|β|AS− (A+B)
)
. (2.14)

Then the solution of (2.1) is uniformly mean square summable.

(For the proof of Theorem 2.7, see Appendix B.)

Remark 2.8. Condition (2.13) can be written also in the form |β| < 1, 1+β > 2α.



6 Advances in Difference Equations

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 a

−2.5

−2

−1.5

−1

−0.5

0.5

1

1.5

2

2.5

b

1
2

3

Figure 3.1. Regions of uniformly mean square summability for (3.1).

3. Examples

Example 3.1. Consider the difference equation

x(t+1)= η(t+1)+ ag
(
x(t)

)
+ bg

(
x(t− 1)

)
, t >−1,

x(θ)= φ(θ), θ ∈ [−2,0], (3.1)

with the function g defined as follows: g(x)= c1x+ c2 sinx, c1 �= 0, c2 �= 0. It is easy to see
that the function g satisfies condition (2.10) with c = c1 and ν= |c2|. Via Remark 2.4 and
(2.5), (2.6) for (3.1) in the case k = 0, we have α0 = |c1|(|a|+ |b|), α1 = |c1b|, β0 = |c1a|.
Matrix equation (2.4) by the condition |c1a| < 1 gives d−111 = 1− c21a

2 > 0.
So, conditions (2.7), (2.8) via ν̂= |c−11 c2| take the form

|a|+ |b| < 1
∣
∣c1
∣
∣ ,

∣
∣c2
∣
∣ <

∣
∣c1
∣
∣

√
c−21 −|ab|− (3/4)b2−|a|− (1/2)|b|

|a|+ |b| . (3.2)

In the case k = 1, we have α0 = |c1|(|a|+ |b|), α1 = |c1b|, α2 = 0. Besides (see [19]),

β1 =
∣
∣c1
∣
∣
(
|b|+ |a|

1− c1b

)
, d−122 = 1− c21b

2− c21a
2 1+ c1b

1− c1b
(3.3)

and d22 is a positive one by the conditions |c1b| < 1, |c1a| < 1− c1b.
Condition (2.8) trivially holds and condition (2.7) via ν̂= |c−11 c2| takes the form

∣
∣c2
∣
∣ <

(
1−∣∣c1b

∣
∣)(1−∣∣c1a

∣
∣/1− c1b

)

|a|+ |b| . (3.4)

On Figure 3.1, the regions of uniformly mean square summability for (3.1) are shown,
obtained by virtue of conditions (3.2) (the green curves) and (3.4) (the red curves) for
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c1 = 0.5 and different values of c2: (1) c2 = 0, (2) c2 = 0.2, (3) c2 = 0.4. On the figure,
one can see that for c2 = 0, condition (3.4) is better than (3.2) but for positive c2, both
conditions add to each other. Note also that for negative c1, condition (3.4) gives a region
that is symmetric about the axis a.

Example 3.2. Consider the difference equation

x(t+1)= η(t+1)+ ag
(
x(t)

)
+

[t]+r∑

j=1
bjg
(
x(t− j)

)
, t >−1,

x(θ)= φ(θ), θ ∈ [−(r +1),0], r ≥ 0,

(3.5)

with the function g that satisfies the condition |g(x)− c1x| ≤ c2|x|, c1 �= 0, c2 > 0.
In accordance with Remark 2.4, we will consider the parameters c1a and c1bj instead

of a and bj . Via (2.11) by assumption |b| < 1, we obtain

α=
∞∑

j=1

∣
∣
∣
∣
∣

∞∑

m= j

c1b
m

∣
∣
∣
∣
∣=

∣
∣c1
∣
∣α̂, α̂= |b|

(1− b)
(
1−|b|) ,

β = c1β̂, β̂ = a+
b

1− b
.

(3.6)

Following (2.12), put also A = |c1|Â, Â = α̂ + (1/2)|β̂|, B = c21B̂, B̂ = α̂β̂(1− sign (β)),

S= (1− c1β̂)(1+ c1β̂− 2|c1|α̂). Then condition (2.14) takes the form

c2 <

√(
Â+

∣
∣c1
∣
∣B̂
)2
+ 2|β̂|ÂS− (Â+

∣
∣c1
∣
∣B̂
)

2|β̂|Â
. (3.7)

To obtain another condition for uniformly mean square summability of the solution
of (3.5), transform the sum from (3.5) for t > 0 in the following way:

[t]+r∑

j=1
bjg
(
x(t− j)

)= b
[t]+r∑

j=1
bj−1g

(
x(t− j)

)

= b

(

g
(
x(t− 1)

)
+

[t]−1+r∑

j=1
bjg
(
x(t− 1− j)

)
)

= b
[
(1− a)g

(
x(t− 1)

)
+ x(t)−η(t)

]
.

(3.8)

Substituting (3.8) into (3.5), we transform (3.5) to the equivalent form

x(t+1)= η(t+1)+ ag
(
φ(t)

)
+

r−1∑

j=1
bjg
(
φ(t− j)

)
, t ∈ (−1,0],

x(t+1)= η̂(t+1)+ ag
(
x(t)

)
+ bx(t) + b(1− a)g

(
x(t− 1)

)
, t > 0,

η̂(t+1)= η(t+1)− bη(t).

(3.9)
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Figure 3.2. Regions of uniformly mean square summability given by conditions (3.7) and (3.10).

Using representation (3.9) of (3.5) without the assumption |b| < 1, one can show (see
Appendix C) that by conditions |c1b(1− a)| < 1, |c1a+ b| < 1− c1b(1− a) and

c2 <

(
1−∣∣c1b(1− a)

∣
∣)(1−∣∣c1a+ b

∣
∣/
(
1− c1b(1− a)

))

|a|+∣∣b(1− a)
∣
∣ , (3.10)

the solution of (3.5) is uniformly mean square summable.

Regions of uniformly mean square summability given by conditions (3.7) (the green
curves), (3.10) (the red curves) are shown on Figure 3.2 for c1 = 1 and different values of
c2: (1) c2 = 0, (2) c2 = 0.2, (3) c2 = 0.6. On the figure, one can see that for c2 = 0, condition
(3.10) is better than (3.7), but for other values of c2, both conditions add to each other.
For negative c1, condition (3.10) gives a region that is symmetric about the axis a.

Appendices

A. Proof of Theorem 2.1

In the linear case (g(x)= x), this result is obtained in [19]. So, here we will stress only the
features of nonlinear case.

Suppose that for some k ≥ 0, the solutionD of (2.4) is a positive semidefinite symmet-
ric matrix of dimension k + 1 with the elements di j such that the condition dk+1,k+1 > 0
holds. Following the general method of Lyapunov functionals construction (GMLFC)
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[8, 13–21] represents (2.1) in the form

x(t+1)= η(t+1)+F1(t) +F2(t), (A.1)

where

F1(t)=
k∑

j=0
ajx(t− j), F2(t)=

[t]+r∑

j=k+1
ajx(t− j) +

[t]+r∑

j=0
aj
[
g
(
x(t− j)

)− x(t− j)
]
.

(A.2)

We will construct the Lyapunov functional V for (A.1) in the form V = V1 +V2, where
V1(t)= X ′(t)DX(t), X(t)= (x(t− k), . . . ,x(t− 1),x(t))′.

Calculating and estimating EΔV1(t) for (A.1) in the form X(t + 1) = AX(t) + B(t),
where A is defined by (2.3), B(t)= (0, . . . ,0,b(t))′, b(t)= η(t+1)+F2(t), similar to [19],
one can show that

EΔV1(t)≤−Ex2(t) +dk+1,k+1

[
(
1+μ

(
1+βk

))
Eη2(t+1)

+
(
βk +

(
1+μ−1

)(
να0 +αk+1

)) [t]+r∑

j=0
f ν
k jEx

2(t− j)

+
(
μ−1 + να0 +αk+1

) k∑

m=0

∣
∣Qkm

∣
∣Ex2(t−m)

]

,

(A.3)

where μ > 0,

f ν
k j =

⎧
⎨

⎩
ν
∣
∣aj

∣
∣, 0≤ j ≤ k,

(1+ ν)
∣
∣aj

∣
∣, j > k,

Qkm = am +
dk−m,k+1

dk+1,k+1
, m= 0, . . . ,k− 1, Qkk = ak.

(A.4)

Put now γ(t)= dk+1,k+1(1+μ(1+βk))Eη2(t+1),

Rkm =
⎧
⎨

⎩

(
μ−1 + να0 +αk+1

)∣∣Qkm

∣
∣+ ν

(
βk +

(
1+μ−1

)(
να0 +αk+1

))∣∣am
∣
∣, 0≤m≤ k,

(1+ ν)
(
βk +

(
1+μ−1

)(
να0 +αk+1

))∣∣am
∣
∣, m> k.

(A.5)

Then (A.3) takes the form

EΔV1(t)≤−Ex2(t) + γ(t) +dk+1,k+1

[t]+r∑

m=0
RkmEx2(t−m). (A.6)
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Following GMLFC, choose the functional V2 as follows:

V2(t)= dk+1,k+1

[t]+r∑

m=1
qmx

2(t−m), qm =
∞∑

j=m
Rk j , m= 0,1, . . . , (A.7)

and for the functional V =V1 +V2, we obtain

EΔV(t)≤−(1− q0dk+1,k+1
)
Ex2(t) + γ(t). (A.8)

Since the process η is uniformly mean square summable, then the function γ satisfies
condition (1.9). So if

q0dk+1,k+1 < 1, (A.9)

then the functional V satisfies condition (1.11) of Theorem 1.5. It is easy to check that
condition (1.10) holds too. So if condition (A.9) holds, then the solution of (2.1) is uni-
formly mean square summable.

Via (A.7), (A.5), (2.5), we have

q0 = α2k+1 + 2βkαk+1 + ν2α20 +
(
2βk +αk+1

)
να0 +μ−1

(
βk +

(
να0 +αk+1

)2)
. (A.10)

Thus, if

α2k+1 + 2βkαk+1 + ν2α20 +
(
2βk +αk+1

)
να0 < d−1k+1,k+1, (A.11)

then there exists a big μ > 0 so that condition (A.9) holds, and therefore the solution of
(2.1) is uniformly mean square summable. It is easy to see that (A.11) is equivalent to
conditions of Theorem 2.1.

B. Proof of Theorem 2.7

Represent now (2.1) as follows:

x(t+1)= η(t+1)+F1(t) +F2(t) +ΔF3(t), (B.1)

where F1(t)= βx(t), F2 = β(g(x)− x), β is defined by (2.11),

F3(t)=−
[t]+r∑

m=1
Bmg

(
x(t−m)

)
, Bm =

∞∑

j=m
aj , m= 0,1, . . . . (B.2)

Following GMLFC, we will construct the Lyapunov functional V for (2.1) in the form
V = V1 +V2, where V1(t)= (x(t)−F3(t))2. Calculating and estimating EΔV1(t) via rep-
resentation (B.1), similar to [8] we obtain

EΔV1(t)≤
[
1+μ(1+ ν)

(
α+ |β|)]Eη2(t+1)+ λν

[t]+r∑

m=1

∣
∣Bm

∣
∣Ex2(t−m)

+
[
β2− 1+α(1+ ν)

(|β− 1|+ (ν+μ−1
)|β|)+ ν|β|+ ν2β2

]
Ex2(t),

(B.3)
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where μ > 0, α is defined by (2.11), λν = (1+ ν)(|β− 1|+ ν|β|+ μ−1). Choosing V2 in the
form

V2(t)= λν

[t]+r∑

m=1
αmx

2(t−m), αm =
∞∑

j=m

∣
∣Bj

∣
∣, m= 1,2, . . . , (B.4)

for the functional V =V1 +V2, similar to [8] we have

EΔV(t)≤ [1+μ(1+ ν)
(
α+ |β|)]Eη2(t+1)

+
[
β2− 1+2α(1+ ν)

(|β− 1|+ ν|β|)

+ ν|β|+ ν2β2 +μ−1α(1+ ν)
(
1+ |β|)]Ex2(t).

(B.5)

Thus, if

β2 + 2α(1+ ν)
(|β− 1|+ ν|β|)+ ν|β|+ ν2β2 < 1, (B.6)

then there exists a big μ > 0 so that the functional V satisfies the conditions of Theorem
1.5, and therefore, the solution of (2.1) is uniformly mean square summable. It is easy to
check that (B.6) is equivalent to conditions of Theorem 2.7.

C. Proof of condition (3.10)

Following GMLFC, represent (3.9) in the form

x(t+1)= η̂(t+1)+ F̂1(t) + F̂2(t), (C.1)

where F̂1(t)= â0x(t) + â1x(t− 1), F̂2(t)= a0ĝ(x(t)) + a1ĝ(x(t− 1)), a0 = a, a1 = b(1− a),
â0 = c1a+ b, â1 = c1a1, ĝ(x)= g(x)− c1x. Using system (C.1) as X(t +1)= ÂX(t) + B̂(t),
where

X(t)=
(
x(t− 1)
x(t)

)

, Â=
(
0 1
â1 â0

)

, B̂ =
(

0
η̂(t+1)+ F̂2(t)

)

, (C.2)

one has to repeat the proof of Theorem 2.1. Equation (2.4) with the matrix A= Â by the
conditions |â1| < 1, |â0| < 1− â1 has a positive semidefinite solution D̂ such that

d̂−122 = 1− â21− â20
1+ â1
1− â1

> 0. (C.3)

Since for (3.9) α2 = 0, then similar to (A.11) we obtain c22α
2
0 + 2β̂1c2α0 < d̂−122 , where

α0 =
∣
∣a0
∣
∣+

∣
∣a1
∣
∣= |a|+∣∣b(1− a)

∣
∣, β̂1 =

∣
∣â1
∣
∣+

∣
∣â0
∣
∣

1− â1
=∣∣c1b(1− a)

∣
∣+

∣
∣c1a+ b

∣
∣

c1b(1− a)
.

(C.4)

Via (2.9) and Remark 2.3, this condition is equivalent to (3.10).
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