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At the price of sacrificing all suspense, we can already announce that the answer to the question
of the title is “no.” It is indeed our belief that one may find counterexamples to all integrability
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criterion becomes tautological. This review is devoted to a critical analysis of the situation.
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1. Introduction

The study of integrable systems is intimately related to integrability criteria [1]. This is due
to the fact that integrable systems are very rare but also very interesting (which explains the
intense activity in this domain). The usefulness of integrability criteria is that they allow the
proposal of conjectures which serve for integrability prediction. The integrability detectors
thus elaborated to find their full usefulness in the nonconstructive approach to integrability.
The opposite, constructive, approach consists in deriving integrable systems starting from
the solution, or what is admittedly more customary, from an overdetermined linear system
(the Lax pair), the nonlinear integrable equation resulting from the compatibility of the linear
one. The nonconstructive approach starts from a nonlinear system resulting from some, often
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physical, usually realistic, model. It is then of the utmost importance to know whether this
system is integrable since integrability conditions the long-term behaviour of its solutions. A
reliable integrability detector is a most valuable tool.

In the domain of continuous systems, the use of complex analysis has made possible the
development of specific and efficient tools for integrability prediction, and actual integration
of systems expressed as (ordinary or partial) differential equations. According to Poincaré
[2], to integrate a differential equation is to find for the general solution an expression,
possibly multivalued, in terms of a finite number of functions. The word “finite” indicates that
integrability is related to a global rather than a local knowledge of the solution. However, this
definition is not very useful unless one defines more precisely what is meant by “function.”
By extending the solution of a given ordinary differential equation (ODE) into the complex
domain, one has the possibility, instead of asking for a global solution for an ODE, to look
for solutions locally and obtain a more global result by analytic continuation. If we wish to
define a function, we must find a way to treat branch points, that is, points around which
two (at least) determinations are exchanged. This can be done through various uniformization
procedures provided the branch points are fixed. Linear ODEs are such that all the singularities
of their solutions are fixed and are thus considered integrable. In the case of nonlinear ODEs,
the situation is not so simple due to the fact that the singular points in this case may depend
on the initial conditions: they are movable. The genius of Painlevé [3, 4] was to decide to
look for those of the nonlinear ODEs the solutions of which were free from movable branch
points. The success of this approach is well known: the Painlevé transcendents have been
discovered in that way and their importance in mathematical physics is ever growing. The
Painlevé property, that is absence of movable branch points, has been since used with great
success in the detection of integrability [5–8].

We must stress one important point here. The Painlevé property as introduced by
Painlevé is not just a predictor of integrability but practically a definition of integrability. As
such it becomes a tautology rather than a criterion. It is thus crucial to make the distinction
between the Painlevé property and the algorithm for its investigation. The latter can only
search for the absence of Painlevé property within certain assumptions. The search can thus lead
to a conclusion the validity of which is questionable: if we find that the system passes what is
usually referred to as the Painlevé test (in one of its several variants), this does not necessarily
mean that the system possesses the Painlevé property. Kruskal [9] has stressed this important
point on various occasions that, at least as far as its usual practical application is concerned, the
Painlevé test may not be sufficient for integrability. The situation becomes further complicated
if we consider systems that are integrable through quadratures or linearisation. If we extend
the notion of integrability in order to include such systems, it turns out that the connection
to the Painlevé property breaks down. As we have shown in [10], the integrable character
of linearisable systems is not associated to the Painlevé property. (As a matter of fact, no
linearisability detector appears to exist to date, to the authors knowledge.)

Discrete systems pose a greater challenge. A first integrability detector was proposed
based on the observation that mappings integrable through spectral methods have confined
singularities [11], that is, any singularity spontaneously appearing due to the choice of initial
conditions disappears after a few iteration steps. What is crucial is that a mapping may at some
point lose a degree of freedom. In the mapping of the form

xn+1 = f
(
xn, xn−1

)
, (1.1)
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this simplymeans that ∂xn+1/∂xn−1 = 0 and thememory of the initial condition xn+1 disappears
from the iteration. What does the confinement mean in this case? Clearly, the mapping must
recover the lost degree of freedom and the only way to do this is by the appearance of
an indeterminate form 0/0, ∞ − ∞ in the subsequent iterations. As Kruskal points out, the
way to treat this difficulty is to use an argument of continuity with respect to the initial
conditions and to introduce a small parameter ε. For an explicit example, refer to [12].
While singularity confinement has been instrumental in discovering a host of integrable
discrete systems [13, 14], it turned out that the confinement property was not sufficient
in order to guarantee integrability [15]. We will not go into detailed explanations here. It
suffices to say that for discrete systems to be integrable, a proper local singularity structure
is not enough. The growth properties of the solutions at infinity enter into play and the
best way to qualify this is through the Nevanlinna approach [16]. To put it in a nutshell,
for a discrete system to be integrable the requirement is that the Nevanlinna order of the
solution be finite (which guarantees not too fast a growth). Just as in the continuous case,
the algorithm for the calculation of the Nevanlinna order is not precise enough. The conditions
obtained are sufficient but usually largely nonnecessary [17]. In this case, implementing the
singularity confinement requirement on top of the “Nevanlinna” constraints allows one to
reduce substantially the available parameter space. Linearisable discrete systems are a class
of their own. As we have shown in [10], linearisability does not require confined singularities
although the solutions must still have finite Nevanlinna order. The finiteness of the Nevanlinna
order is to be understood as a condition for mappings with constant coefficients. The case
of nonautonomous systems presents additional difficulties. An algorithm which calculates
the growth was proposed by Hietarinta and Viallet [15] and is commonly referred to as the
algebraic entropy technique.

Finally, there exist systems which are generalised cellular automata and are obtained
from discrete systems following the ultradiscretisation procedure [18]. We remind here that
the latter consists into introducing an ansatz x = eX/δ (where x is the solution of the discrete
system, which should obviously be positive definite) and obtain for X an equation by going
to the limit δ→ 0. The essential identity that allows to derive easily the ultradiscrete forms
is limδ→0δ log(eA/δ + eB/δ) = max(A,B). The ultradiscretisation procedure preserves any
integrable character of the initial system. The question of the existence of the ultradiscrete
analogue of integrability-related properties, like the singularity confinement, has been already
addressed by Joshi and Lafortune [19]. They proposed a singularity analysis approach which
is perceived as the ultradiscrete equivalent of singularity confinement. In [20], we have
critically examined this approach and have shown that, just as in the discrete case, there exist
integrable ultradiscrete systems with unconfined singularities but also nonintegrable systems
with confined singularities.

In what follows, we will present a review of these findings, illustrating all situations
through concrete examples.

2. Continuous systems

A first instance of integrability without the Painlevé property was the derivation of the inte-
grable system described by the Hamiltonian [21]:

H =
1
2
p2x +

1
2
p2y + y5 + y3x2 +

3
16

yx4 (2.1)
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which has the second (besides the energy) constant of motion

C = −yp2x + xpxpy +
1
2
y4x2 +

3
8
y2x4 +

1
32

x6. (2.2)

There are movable singularities where near some singular point t0, one has y ≈ α(t − t0)
−2/3,

x ≈ β(t − t0)
−1/3 with α3 = −2/9, β arbitrary. Taking the cube of the variables is not sufficient

to regularise them, however. Indeed, a detailed analysis of complex-time singularities shows
that their expansions contain all powers of (t − t0)

1/3. The fact that some multivaluedness was
compatible with integrability led to the introduction of the notion of “weak Painlevé” property
[21]. However, it was soon realised [22] that (2.1)was amember of a vaster family of integrable

Hamiltonian systems associated to the potential V = (F(ρ+y)+G(ρ−y))/ρwhere ρ =
√
x2 + y2.

Since the two functions F and G are free, one can easily show that the singularities of the
solutions of the equations of motion can be arbitrary. The Hamiltonians of this family are
integrable through quadratures and, in fact, the associated Hamilton-Jacobi equations are
separable. This leads to the conclusion that this type of integrability is not necessarily related
to the Painlevé property. (As a matter of fact, the same conclusion could have been reached
if we had simply considered one-dimensional Hamiltonian systems). One may justifiably
argue that in the case of Hamiltonian systems the term integrability is to be understood as
Liouville integrability which is not the one we refer to in relation to the Painlevé property.
Still, Liouville integrability, and the dynamical symmetries to which it is associated, may be of
utmost importance for physical applications and a systematic method for the detection would
have been most welcome.

We turn now to a second case of integrability where the necessary character of the
Painlevé property can be critically examined: that of linearisable systems. The term linearisable
is used here to denote systems that can be reduced to linear equations through a local variable
transformation. The first family of such systems are the projective ones [23]. As can be easily
shown, the projective systems possess the Painlevé property by construction. However, there
exists another kind of linearisability for which the Painlevé property need not be satisfied. Let
us discuss the best-known second-order case. One of the equations of the Painlevé/Gambier
classification [24], bearing the number XXVII, is the equation proposed by Gambier. The
Gambier equation is given as a system of two Riccati equations in cascade. This means that
we start with a first Riccati for some variable y:

y′ = −y2 + c (2.3)

and then couple its solution to a second Riccati by making the coefficients of the latter depend
explicitly on y:

x′ = ax2 + nxy + σ. (2.4)

(In [25], we have shown that this form is the term linear in y in the right-hand side of (2.3)
can be put to zero without loss of generality). The precise form of the coupling introduced in
(2.4) is due to integrability requirements. In fact, the application of singularity analysis shows
that the Gambier system cannot be integrable unless the coefficient of the xy term in (2.4) is an
integer n. This is not the only integrability requirement. Depending on the value of n, one can
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find constraints on the a, c, σ (where the latter is traditionally taken to be 1 or 0, without loss of
generality) which are necessary for integrability. On the other hand, the integration of the two
Riccati equations in cascade can always be performed through reduction to linear second-order
equations, even when the Painlevé constraints are not satisfied.

Once the Painlevé property is deemed unnecessary for the linearisation of the Gambier
system, it is straightforward to extend the latter to the form

y′ = αy2 + βy + γ, (2.5a)

x′ = a(y, t)x2 + b(y, t)x + c(y, t), (2.5b)

where α, β, and γ are arbitrary functions of t while a, b, and c are arbitrary functions of y and
t. The integration in cascade of (2.5a) and (2.5b) can be obtained as previously. As a matter of
fact, an extension like (2.5a) and (2.5b) gives the handle to the (N + 1)-variables generalisation
of the Gambier system

x′
0 = a0(t)x2

0 + b0(t)x0 + c0(t),

x′
μ = aμ

(
x0, . . . , xμ−1, t

)
x2
μ + bμ

(
x0, . . . , xμ−1, t

)
xμ + cμ

(
x0, . . . , xμ−1, t

)
, μ = 1, . . . ,N,

(2.6)

where aμ, bμ, and cμ are arbitrary functions of their arguments. Again, system (2.6) does not
possess, generically, the Painlevé property while it can be linearised and integrated in cascade.

The Gambier systems above are rather straightforward generalisations of integrable
systems which violate the Painlevé property while preserving their linearisability. However,
there exist othermethods of linearisationwhich again lead to integrable systems not possessing
the Painlevé property [26]. The idea is the following: we start from a linear second-order
equation in the form

αx′′ + βx′ + γx + δ

εx′′ + ζx′ + ηx + θ
= K, (2.7)

where α, β, . . . , θ are functions of t with K a constant, and a nonlinear second-order equation of
the form

f
(
x′′, x′, x

)
= M, (2.8)

where f is a (possibly inhomogeneous) polynomial of degree two in x together with its
derivatives, but linear in x′′, and with M a constant. We then ask that the derivatives of
both equations with respect to the independent variable, that is the resulting third-order
equations, be identical up to an overall factor. This is a novel linearisation approach. The
explicit integration procedure is the following. We start from (2.8) with given M and initial
conditions x0, x

′
0 for some value t0 of the independent variable t. We use (2.8) to compute x′′

0 at
t0. Having these values, we can use (2.7) to compute the value ofK. Since the latter is assumed
to be a constant, we can integrate the linear equation (2.7) for all values of t. Since this solution
will satisfy the third-order equation mentioned above, it will also be a solution of (2.8).

In order to illustrate this approach, we derive one equation that can be integrated
through this linearisation. Our starting assumption is that (2.8) contains a term x′′x′. The more
general term x′′(x′ + cx + d) can always be reduced to this form, that is c = d = 0 through
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a rescaling and translation of x. It is then straightforward to obtain the full expression in the
homogeneous subcase δ = θ = 0. We thus find

tx′′ + (at − 1/2)x′ + btx

x′′ + ax′ + bx
= K (2.9)

for the linear equation, and

x′′x′ + 2ax′2 + 3bx′x +
(
2ab − b′

)
x2 = M (2.10)

for the nonlinear one, with b = a2 − a′/2 and a satisfying the equation

a′′′ = 6a′′a + 7a′ 2 − 16a′a2 + 4a4 (2.11)

which is equation XII in the Chazy classification [27]. Given a and the corresponding b, (2.10)
is integrable by linearisation through (2.9). On the other hand, (2.10) violates the Painlevé
property. Solving it for x′′, we find a term proportional to x2/x′ (or, for that matter, to 1/x′)
which is incompatible with it.

It is thus natural, given the results presented above on linearisable ODEs, to wonder
whether linearisable PDEs without the Painlevé property may exist. Calogero [28] has stressed
the importance of the existence of PDEs integrable by methods different from the spectral
ones. He has dubbed the members of this class C-integrable systems. One large class of the
C-integrable systems of Calogero comprises equations which are obtained from some other
integrable (sometimes linear) equations through hodograph transformations. The prototypical
equation of this class is the Dym equation [29]

ut = u3uxxx (2.12)

which is related to the KdV equation. Equations of this class quite often possess the “weak”
Painlevé property. This is the case for the Dym equation. The expansion around a singularity
manifold φ(x, t) is u0φ(x, t)

2/3 +
∑∞

p=1upφ(x, t)
(p+2)/3. Moreover, there exist equations in the

Calogero list of C-integrable PDEs belonging to the class of solvable through hodograph
transformations which do not satisfy the Painlevé property at all. An example of such an
equation is ut = f(ux)/uxx + g(ux) + uh(ux), where f, g, and h are arbitrary functions.

We turn now to the question whether linearisable PDEs without the Painlevé property
do exist. The answer to this question is an unqualified “yes” [30]. Let us construct a specific
example. We will adopt the construction we follow for the derivation of the Burgers’ equation.
For the latter, we start from a linear equation vt + vxx = 0 and obtain a nonlinear one through a
Cole-Hopf relation vx + uv = 0. In order to derive the equation we are seeking, we start from
a nonlinear, linearisable (Riccati) equation in one variable vt + v2 = 0 and couple it through a
Cole-Hopf-like relation to another variable in a new direction ux + uv = 0. Eliminating v, we
obtain a nonlinear equation for u:

uuxt − uxut − u2
x = 0. (2.13)

This is obviously a linearisable equation since its solution proceeds through the solution of a
linearisable equation and a linear one, in cascade. The solution of this equation does not possess
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the Painlevé property. Instead of performing a standard Painlevé analysis, let us profit from the
fact that the solution of (2.13) can be explicitly constructed. Solving the equation for v, we find
v = (t − φ(x))−1. Next we integrate for u and obtain logu = − ∫

(t − φ(x))−1dx. A singularity
will appear in the expansion of u whenever we have x = ξ such that φ(ξ) = t. We solve for ξ
and find ξ = ψ(t) (where ψ is the inverse function of φ). Expanding φ(x) around ξ, we have
φ(x) = φ(ξ) + (x − ξ)φ′(ξ) + · · · and the integration for u can be performed order by order. We
find u ∝ (x − ψ(t))ψ

′(t) + · · · . Thus, since the exponent ψ ′(t) ≡ 1/φ′(ψ(t)) is arbitrary, the solution
does not possess the Painlevé property.

Equation (2.13) may be easily generalised. The principle remains the same. One starts
from a linearisable equation in one independent and one dependent variable, say v(t). If, for
instance, we take for v a higher-order projective equation, we are guaranteed that the solution
for v will satisfy the Painlevé property. Next we couple this equation to a linear PDE of the
form f(v)ux + g(v)ut + h(v)u = 0, where f, g, and h can be taken as inhomogeneous linear
functions of v. Eliminating v, one obtains an equation for u which is linearisable and can be
shown to violate the Painlevé property, the exponent of the leading singular term being again
an arbitrary function of t.

3. Discrete systems

In the case of discrete systems, a difficulty appears from the outset in the sense that the dis-
crete analogue of the Painlevé property, namely singularity confinement, does not guarantee
integrability. There exist mappings which have only confined singularities and which are not
integrable [15]. In [31], we have presented such an example. The mapping

xn+1

xn−1
= xn +

1
xn

(3.1)

has a confined singularity pattern {1, 0,∞, 1} but it is not integrable. This can be established by
studying the growth properties of the iterates of some initial condition following the approach
of [15]. Indeed starting from initial data x0, x1, we introduce homogeneous variables through
x0 = p, x1 = q/r and compute the homogeneity degree of the iterates of the mapping in
q, r, to which we assign the same degree 1, while p is assigned the degree 0. For a generic,
nonintegrable mapping, the degree growth of the iterates is exponential. In the case of (3.1)
we obtain the following sequence: 0, 1, 2, 4, 8, 14, 24, 40, 66, 108, 176, 286, . . . which, for n large
enough, obeys the recursion relation δn+1 − 2δn +δn−2 = 0. Thus we have indeed an exponential
growth of the degree, the asymptotic ratio of two consecutive x being (1 +

√
5)/2, that is, the

same as that of the Fibonacci sequence.
For integrable mappings, the growth is just polynomial. Moreover, a detailed analysis

of discrete Painlevé equations [32] and linearisable mappings [33] has shown that the latter
have even slower growth properties (which can be used not only as a detector of integrability
but as an indicator of the integration method). In what follows, we will examine the results of
the application of the two methods to integrable discrete systems. We will not present in any
detail the case of projective mappings [23]. It suffices to say that any singularity appearing in
projective systems is confined in one step. Moreover, the study of the degree of the iterates [34]
shows that there is no growth at all: the degree is constant. Thus both criteria are satisfied in
this case.
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However, there exist linearisable mappings which are not projective. One such example
is

xn+1 = axn−1
xn − a

xn − 1
. (3.2)

As shown in [31], two singularities exist when either x = 1 or x = a. The first singularity is
confined leading to a finite singularity pattern {1,∞, a}. The second singularity never confines
unless a = 1 (in which case the mapping is trivial) or a is a cubic root of unity (with the
resulting mapping being periodic with period six). On the other hand, (3.2) is linearisable.
Indeed, introducing yn = xnxn−1 − xn − axn−1 we reduce (3.2) to the linear mapping

yn+1 = ayn. (3.3)

It goes without saying that the degree growth of the iterates of (3.2) is linear as expected from
algebraic entropy arguments.

Next we turn now to the case of the Gambier mapping [35]. The latter is, in perfect
analogy to the continuous case, a system of two (discrete) Riccati equations in cascade:

yn+1 =
αyn + β

γyn + δ
, (3.4a)

xn+1 =
aynxn + bxn + cyn + d

fynxn + gxn + hyn + k
, (3.4b)

where α, . . . , δ and a, . . . , k are all functions of the independent discrete variable n. In [35], it
was shown that system (3.4a) and (3.4b) is not confining unless the coefficients entering in the
equation satisfy certain conditions. On the other hand, the same argument presented in the
continuous case can be transposed here: the integration of the two Riccati equations in cascade
can always be performed through reduction to linear second-order mappings. The study of the
degree growth of the iterates of (3.4a) and (3.4b) was performed in [33] where it was found
that the growth is always linear, independently of the conditions we referred to above.

This result leads naturally to the following generalisation of the discrete Gambier system,
the singularities of which are, in general, not confined:

yn+1 =
αyn + β

γyn + δ
, (3.5a)

xn+1 =
a
(
yn

)
xn + b

(
yn

)

c
(
yn

)
xn + d

(
yn

) , (3.5b)

where a, . . . , d are polynomials in y the coefficients of which may depend on the independent
variable n. The study of the degree growth of the iterates of (3.5a) and (3.5b) is straightforward.
We find that the degree growth of x is linear. Again, system (3.5a) and (3.5b) can be integrated
in cascade. On the other hand, (3.5a) and (3.5b) cannot be written as a three-point mapping for
x. Indeed, if we eliminate yn, yn+1 between (3.5a), (3.5b) and the upshift of the latter, we obtain
an equation relating xn, xn+1 and xn+2 which is polynomial in all three variables, generically not
linear in xn+2. This does not define a mapping but rather a correspondence which in general
leads to exponential proliferation of the number of images and preimages. This correspondence
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is not integrable but this is not in contradiction with the integrability of (3.5a) and (3.5b). The
two systems are not equivalent.

Another point concerns the discrete analogues of the linearisable systems we have
presented at the end of Section 2. The procedure can be transposed to a discrete setting in a
pretty straightforward way [26]. We have a linear equation

αxn+1 + βxn + γxn−1 + δ

εxn+1 + ζxn + ηxn−1 + θ
= K, (3.6)

where α, . . . , θ are all functions of n with K a constant, and a nonlinear mapping

f
(
xn−1, xn, xn+1;n

)
= M, (3.7)

where f is globally polynomial of degree two in all the x’s but not more than linear separately
in each of xn−1 and xn+1. Writing that the left-hand side of (3.6) is the same as that of its upshift,
we get an equation relating xn−1, xn, xn+1, and xn+2. For appropriate choices of α, . . . , θ, this four-
point equation can be identical (up to unimportant factors) to the four-point equation obtained
from (3.7) by writing f(xn−1, xn, xn+1;n) = f(xn, xn+1, xn+2;n + 1). The integration method is
quite similar to that described in the continuous case. Given M, and starting with xn−1, x at
some n, one gets xn+1 from (3.7). Implementing (3.6), this fixes the value of K. From now
on, one integrates the linear equation (3.6) for all n. Since the four-point equation is always
satisfied, this means that f computed at any n has a constant value, which is justM, so (3.7) is
satisfied.

Several mappings derived in [26] as special limits of discrete Painlevé equations can be
linearised in this way. For instance, the nonlinear equation

(
xn+1 + xn − a

zn+1
− xn

ζn

)(
xn−1 + xn − a

zn
− xn

ζn

)
− x2

n

ζ2n
= M (3.8)

with a a constant, where z and ζ are defined from a single arbitrary function g of n through
zn = gn+1 + gn−1, ζn = gn+1 + gn, can be solved through the linear equation:

Anxn+1 + Bn

(
xn − a

)
+An+1xn−1

znxn+1 +
(
zn+1 + zn

)(
xn − a

)
+ zn+1xn−1

= K, (3.9)

where An = g2
n(gn+1 + gn−1) and Bn = −(gn+1 + gn)gn+2gn−1 − (gn+2 + gn−1)gn+1gn. Mapping (3.8)

is generically nonconfining unless g is a constant.
A question that can be asked at this point is whether there exist integrable systems which

violate the algebraic entropy criterion. (We remind that following the approach of Hietarinta
and Viallet the algebraic entropy of a rational mapping is defined from the degree dn of the nth
iterate as ε = limn→∞ log(dn)/n.) Families of mappings with exponential growth of the degree
of the iterates, that is with positive algebraic entropy, have been proposed in [36]. It all hinges
on what we mean by linearisability. We start from a linear equation:

ωn+1 +ωn−1 = kωn. (3.10)
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The solution of (3.10) is straightforward: ωn = aρn1 + bρn2 where ρ1,2 = (k ±
√
k2 − 4)/2. Putting

xn = tanωn, we find

xn+1 + xn−1
1 − xn+1xn−1

= fk
(
xn

)
, (3.11)

where, when k is an integer, fk is a rational function of xn. It is in fact the expression of tan kωn

in terms of tan ωn ≡ xn. For the first few values of k, we have f1(xn) = xn, f2(xn) = 2xn/(1−x2
n),

f3(xn) = (3xn − x3
n)/(1 − 3x2

n) and so forth. The cases k = 1 and k = 2 are trivially integrable.
The case k = 3 is more interesting. Indeed, the mapping

xn+1 =
3xn − x3

n − xn−1
(
1 − 3x2

n

)

1 − 3x2
n +

(
3xn − x3

n

)
xn−1

(3.12)

is both chaotic and integrable (since it is linearisable). The value of the algebraic entropy
is log((3 +

√
5)/2). The same would apply to all cases k ≥ 3: they all have a positive

algebraic entropy and are also linearisable. The main difference of this mapping compared
to the previous example is that while (3.12) is rational the transformation leading to the linear
equation (3.10) is transcendental.

We conclude this section with the case of lattice linearisable equations [30]. We start with
a simple homographic mapping (the index m is dummy at this level):

vm,n+1 + 1 +
1

vm,n
= 0 (3.13)

and couple it to a linear equation

um+1,n − um,nvm,n = 0. (3.14)

Eliminating v, we find for u the equation

um+1,n+1um+1,n + um,n+1um+1,n + um,num,n+1 = 0. (3.15)

While this equation is linearisable, it does not have confined singularities. Indeed, if at some
lattice position we have um,n = 0 (which is perfectly possible given the appropriate initial
conditions), iterating (3.15) we find that uk,n = 0 for all k ≥ m. On the other hand, since
(3.15) is linearisable, we expect the growth of the sequence of its iterates to be linear. This
turns out to be indeed the case. Taking initial conditions u0,0 = const., u0,n = a(n) + b(n)p/q,
um,0 = c(m) + f(m)r/s (with a, b, c, f arbitrary functions of their argument) and computing
the global homogeneous degree dm,n in p, q, r, s, we find that dm,n = m + 2 form > 0.

Generalising (3.15) is quite straightforward. It suffices to start from a linearisable
equation for v of higher order (of which several examples do exist). Next, we couple v to a
linear equation of the form f(vm,n)um+1,n + g(vm,n)um,n+1 + h(vm,n)um,n = 0 where f, g, h are
first degree in v, and using the first equation we eliminate v. We surmise that the equation for
uwill in general have unconfined singularities. However, this has to be examined on a per-case
basis since there does not seem to exist a general argument for the singularity structure of the
final equation.
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4. Ultradiscrete systems

Before proceeding to the analysis of ultradiscrete systems, it is interesting to spend a few lines
again on their discrete counterparts focusing on the notion of singularity. Given a mapping of
the form xn+1 = f(xn, xn−1), we are in the presence of a singularity whenever ∂xn+1/∂xn−1 =
0, that is xn+1 “loses” its dependence on xn−1. When this is due to a particular choice of
initial conditions, we are referring to this singularity as a movable one. Movable singularities
may be bad, for integrability, because they may lead, after a few mapping iterations, to an
indeterminate form (0/0,∞−∞, . . .) or propagate indefinitely. In the former case, provided we
can lift the indeterminacy while recovering the lost degree of freedom (using an argument of
continuity with respect to the initial conditions), we are talking about a confined singularity.
The typical singularity pattern in the case of confined singularities is the following: the solution
is regular for all values of the index n up to some value ns, then a singularity appears and
propagates up to nc whereupon it disappears and the solution is again regular for all values
of the index larger than nc. In some cases, we are in presence of the reciprocal situation.
The solution is singular for all values of n < ns, becomes regular between ns and nc, and is
again singular for n > nc. This singularity is called weakly confined by Takenawa [37] and is
considered to be compatible with integrability. At the limit where there exists no interval where
the solution may be regular, and the solution is singular throughout, we are in the presence of
what we call a “fixed” singularity (which again does not hinder integrability).

Joshi and Lafortune [19] have transposed these notions to the ultradiscrete case and
proposed an analogue to the singularity confinement property. In the ultradiscrete systems,
the nonlinearity is mediated by terms involving the max operator. Typically one is in presence
of terms like max(Xn, 0). When, depending on the initial conditions, the value of Xn crosses
zero, the result of the max(Xn, 0) operation becomes discontinuous: when X is slightly smaller
than 0 the result is zero, while for X > 0 the result is X. It is this discontinuity that
plays the role of the singularity since it leads nonanalyticity. Typically, if we put X = ε,
a term μ = max(ε, 0) propagates with the iterations of the mapping and perpetuates the
discontinuity unless by some coincidence it disappears. This disappearance is the equivalent
of the singularity confinement for ultradiscrete systems. Joshi and Lafortune have introduced
an algorithmic method for testing the confinement property for ultradiscrete systems, linked
it to integrability, and reproduced results on ultradiscrete Painlevé equations by initially
deautonomising ultradiscrete mappings.

However and in analogy to the discrete case, there exist nonintegrable systems with
confined singularities and integrable systems with unconfined singularities. In [31], we
obtained a mapping which did pass the confinement test while having a positive algebraic
entropy:

xn+1 = xn−1

(
xn +

1
xn

)
. (4.1)

The main advantage of this mapping over the examples of [15] is that it is multiplicative and
by choosing the appropriate initial data one can restrict the solution to positive values. In that
case, the ultradiscretisation of (4.1) is straightforward. We find

Xn+1 = Xn−1 +
∣
∣Xn

∣
∣, (4.2)
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where we have preferred to introduce the absolute value of X instead of its equivalent
max(X, 0)+max(−X, 0). We will examine the behaviour of a singularity appearing at, say, n = 1
where X1 = ε, while X0 is regular. We again use the identity μ ≡ max(ε, 0) = (|ε| + ε)/2 and
distinguish two different sectors X0 < 0 and X0 > 0. In the first case (X0 < 0), we find the
sequence

...

X−3 = 3X0,

X−2 = 2X0 − ε,

X−1 = X0 + ε,

X0,

X1 = ε,

X2 = X0 − ε + 2μ,

X3 = −X0 + 2ε − 2μ,

X4 = ε,

X5 = −X0 + ε,

...

(4.3)

We can see readily that the singularity, indicated by the presence of μ, is confined (to X2 and
X3 only). Turning to the case X0 > 0, we find the sequence

...

X−4 = −X0 + 2μ + ε,

X−3 = −X0 + 2μ,

X−2 = ε,

X−1 = −X0 + ε,

X0,

X1 = ε,

X2 = X0 + 2μ − ε,

X3 = −X0 + 2μ,

X4 = 2X0 + 4μ − ε,

...

(4.4)

In this case, we are in presence of a weakly confined solution: a regular part around n = 0 is
surrounded by unconfined singularities both for large positive and large negative n’s. Thus,
the ultradiscrete mapping (4.2) has confined singularities and is not integrable.

The converse situation of amapping, which is while integrable does not possess confined
singularities, does also exist. As expected, an example is to be sought among linearisable
systems. In [31], we discovered the “multiplicative” linearisable mapping

xn+1

xn−1
= a

xn + a

xn + 1
. (4.5)
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Without loss of generality, the parameter a can be always taken larger than unity. (Indeed it
suffices to reverse the direction of the evolution in which case a goes to 1/a.) We can now
ultradiscretise (4.5) to

Xn+1 = Xn−1 +A +max(Xn,A) −max(Xn, 0), (4.6)

whereA > 0. The complete description of the solution would require examining several sectors
that exist, but in order to show that there exist unconfined singularities, it suffices to exhibit
such a situation in one sector. It turns out that the case where X0 has a large negative value is
one leading to unconfined singularities

...

X−4 = −X0 − 4A,

X−3 = −4A + ε,

X−2 = X0 − 2A,

X−1 = −2A + ε,

X0,

X1 = ε,

X2 = X0 + 2A − μ,

X3 = 2A + ε,

X4 = X0 + 3A − μ,

X5 = 4A + ε,

X6 = X0 + 4A − μ,

X7 = 6A + ε,

...

(4.7)

We remark readily that while for negative indices the solution is regular, a singularity, mediated
by μ, appears for positive n’s and is never confined.

While some progress towards a Nevanlinna-like theory for ultradiscrete systems has
been recently accomplished [38], it is clear that more work is necessary before we can be sure
where we stand concerning ultradiscrete integrability.

5. Conclusion

In the light of the examples analysed in the previous section, we can now present our ideas and
beliefs on integrability and its detection. A perfect criterion of integrability would in theory be
both necessary and sufficient. However, no real-life integrability criterion meets these stringent
requirements. This has also to do with the loose definition of “integrability” which in some
cases is used in lieu of “linearisability” or even “solvability.”

In the continuous domain, the “Painlevé” criterion is of unmatched success. Systems
integrable through spectral methods have the Painlevé property and its rigorous detection
constitutes a reliable integrability predictor. (It goes without saying that the practical
implementations of singularity analysis [39], known as the “Painlevé test,” offer no such
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guarantees: they may miss some critical singularities to say nothing of the complexity
of the task which sometimes leads to incomplete applications of the test and erroneous
conclusions.) If one extends the notion of integrability so as to include systems integrable
through linearisation or quadratures, then the relation to the Painlevé property is lost and the
Painlevé criterion is violated by these systems.

In the case of discrete systems, the situation is more complicated. Integrability is not
conditioned by the local singularity behaviour which explains why the singularity confinement
test is not sufficient and one must consider the growth properties of the solution. While
the algebraic entropy techniques furnish a successful test, the ideal discrete analogue of the
Painlevé property is still lacking. Perhaps something along the lines of the Sakai approach
[40] for the derivation of the discrete Painlevé equations could provide the answer. Just as
in the continuous case, systems which are integrable through spectral method possess the
singularity confinement property while the linearisable systems do not. The main difference
here is that the algebraic entropy techniques constitute a reliable linearisability detector (with
a few precautions as to the class of transformations allowed).

Finally, the ultradiscrete case is even less well understood. As we have shown here, there
exist ultradiscrete systems with confined singularities (in the sense of Joshi and Lafortune)
and which are nonintegrable. Conversely, some systems integrable through linearisation do
not have confined singularities, in perfect parallel to the discrete situation. What is more
worrisome here is that there exists at least one example [20] of a linearisable system which
possesses an explicit invariant and still has unconfined singularities. In the ultradiscrete case,
the notion of integrability through spectral methods is not yet well established. Thus we cannot
make any claims concerning the confinement properties of such systems. Another difficulty has
to do with the linearisable character which is assessed through the relation of the ultradiscrete
system to its discrete parent and not in an intrinsic way. Moreover, the study of the growth
properties of ultradiscrete systems (in particular through the equivalent of Nevanlinna theory)
is at its initial phase. We hope that all these open questions will find some answers in the next
few years.
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