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We study the following third-order p-Laplacian m-point boundary value problems on time scales
(φp(uΔ∇))∇ + a(t)f(t, u(t)) = 0, t ∈ [0, T]Tκ , u(0) =

∑m−2
i=1 biu(ξi), uΔ(T) = 0, φp(uΔ∇(0)) =

∑m−2
i=1 ciφp(uΔ∇(ξi)), where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φ−1

p =
φq, 1/p + 1/q = 1, 0 < ξ1 < · · · < ξm−2 < ρ(T). We obtain the existence of positive solutions by
using fixed-point theorem in cones. In particular, the nonlinear term f(t, u) is allowed to change
sign. The conclusions in this paper essentially extend and improve the known results.
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1. Introduction

The theory of time scales was initiated by Hilger [1] as a mean of unifying and extending
theories from differential and difference equations. The study of time scales has lead to
several important applications in the study of insect population models, neural networks,
heat transfer, and epidemic models, see, for example [2–6]. Recently, the boundary value
problems with p-Laplacian operator have also been discussed extensively in literature; for
example, see [7–18]. However, to the best of our knowledge, there are not many results
concerning the higher-order p-Laplacian mutilpoint boundary value problem on time scales.

A time scale T is a nonempty closed subset of R. We make the blanket assumption that
0, T are points in T. By an interval (0, T)T, we always mean the intersection of the real interval
(0, T)with the given time scale; that is (0, T) ∩ T.

In [19], Anderson considered the following third-order nonlinear boundary value
problem (BVP):

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3,

x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0.
(1.1)
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author studied the existence of solutions for the nonlinear boundary value problem by
using Krasnoselskii’s fixed point theorem and Leggett and Williams fixed point theorem,
respectively.

In [9, 10], He considered the existence of positive solutions of the p-Laplacian dynamic
equations on time scales

(
φp(uΔ)

)∇
+ a(t)f(u(t)) = 0, t ∈ [0, T]T, (1.2)

satisfying the boundary conditions

u(0) − B0

(
uΔ(η

))
= 0, uΔ(T) = 0, (1.3)

or

uΔ(0) = 0, u(T) − B1

(
uΔ(η

))
= 0, (1.4)

where η ∈ (0, ρ(T)). He obtained the existence of at least double and triple positive solutions
of the problems by using a new double fixed point theorem and triple fixed point theorem,
respectively.

In [18], Zhou andMa firstly studied the existence and iteration of positive solutions for
the following third-order generalized right-focal boundary value problem with p-Laplacian
operator

(
φp

(
u′′))′(t) = q(t)f(t, u(t)), 0 ≤ t ≤ 1,

u(0) =
m∑

i=1

αiu(ξi), u′(n) = 0, u′′(1) =
n∑

i=1

βiu
′′(θi).

(1.5)

They established a corresponding iterative scheme for the problem by using the monotone
iterative technique.

All the above works were done under the assumption that the nonlinear term is
nonnegative. The key conditions used in the above papers ensure that positive solution
is concave down. If the nonlinearity is negative somewhere, then the solution needs no
longer to be concave down. As a result, it is difficult to find positive solutions of the p-
Laplacian equation when the nonlinearity changes sign. In particular, little work has been
done on the existence of positive solutions for higher order p-Laplacian m-point boundary
value problems with nonlinearity f being nonnegative on time scales. Therefore, it is a
natural problem to consider the existence of positive solution for higher order p-Laplacian
equations with sign changing nonlinearity on time scales. This paper attempts to fill this gap
in literature.
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In this paper, by using different method, we are concerned with the existence
of positive solutions for the following third-order p-Laplacian m-point boundary value
problems on time scales:

(
φp(uΔ∇)

)∇
+ a(t)f(t, u(t)) = 0, t ∈ [0, T]Tκ ,

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0, φp

(
uΔ∇(0)

)
=

m−2∑

i=1

ciφp

(
uΔ∇(ξi)

)
,

(1.6)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φ−1
p = φq, 1/p + 1/q = 1,

and bi, ci, a, f satisfy

(H1) bi, ci ∈ [0,+∞), 0 < ξ1 < · · · < ξm−2 < ρ(T), 0 <
∑m−2

i=1 bi < 1, 0 <
∑m−2

i=1 ci < 1;

(H2) f : [0, T]Tκ × [0,+∞) → (−∞,+∞) is continuous, a ∈ Cld([0, T]Tκ , [0,+∞)), and
there exists t0 ∈ [0, T)Tκ such that a(t0) > 0.

2. Preliminaries and Lemmas

For convenience, we list the following definitions which can be found in [1–5].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R. For t < supT and
r > inf T, define the forward jump operator σ and backward jump operator ρ, respectively,
by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, if ρ(r) < r, r is said to be left scattered;
if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said to be left dense. If T has a right
scattered minimum m, define Tk = T − {m}; otherwise set Tk = T. If T has a left scattered
maximum M, define Tk = T − {M}; otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the point t is defined to
be the number fΔ(t) (provided that it exists), with the property that for each ε > 0, there is a
neighborhood U of t such that

∣
∣
∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s| (2.2)

for all s ∈ U.
For f : T → R and t ∈ Tk, the nabla derivative of f at t, denoted by f∇(t) (provided it

exists) with the property that for each ε > 0, there is a neighborhood U of t such that

∣
∣
∣f
(
ρ(t)

) − f(s) − f∇(t)
(
ρ(t) − s

)∣∣
∣ ≤ ε

∣
∣ρ(t) − s

∣
∣ (2.3)

for all s ∈ U.
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Definition 2.3. A function f is left-dense continuous (i.e., ld-continuous), if f is continuous at
each left-dense point in T and its right-sided limit exists at each right-dense point in T.

Definition 2.4. If φΔ(t) = f(t), then we define the delta integral by

∫b

a

f(t)Δt = φ(b) − φ(a). (2.4)

If F∇(t) = f(t), then we define the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.5)

Lemma 2.5. If condition (H1) holds, then for h ∈ Cld[0, T]Tκ , the boundary value problem (BVP)

uΔ∇ + h(t) = 0, t ∈ [0, T]Tκ ,

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0
(2.6)

has the unique solution

u(t) =
∫ t

0
(T − s)h(s)∇s +

∑m−2
i=1 bi

∫ ξi
0 (T − s)h(s)∇s

1 −∑m−2
i=1 bi

. (2.7)

Proof. By caculating, we can easily get (2.7). So we omit it.

Lemma 2.6. If condition (H1) holds, then for h ∈ Cld[0, T]Tκ , the boundary value problem (BVP)

(
φp

(
uΔ∇

))∇
+ h(t) = 0, t ∈ [0, T]Tκ ,

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0, φp

(
uΔ∇(0)

)
=

m−2∑

i=1

ciφp

(
uΔ∇(ξi)

) (2.8)

has the unique solution

u(t) =
∫ t

0
(T − s)φq

(∫ s

0
h(r)∇r + C

)

∇s +

∑m−2
i=1 bi

∫ ξi
0 (T − s)φq

(∫s
0h(r)∇r + C

)∇s

1 −∑m−2
i=1 bi

, (2.9)

where C =
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 −∑m−2

i=1 ci).
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Proof. Integrating both sides of equation in (2.8) on [0, t], we have

φp

(
uΔ∇(t)

)
= φp

(
uΔ∇(0)

)
−
∫ t

0
h(r)∇r. (2.10)

So,

φp

(
uΔ∇(ξi)

)
= φp

(
uΔ∇(0)

)
−
∫ ξi

0
h(r)∇r. (2.11)

By boundary value condition φp(uΔ∇(0)) =
∑m−2

i=1 ciφp(uΔ∇(ξi)), we have

φp

(
uΔ∇(0)

)
= −

∑m−2
i=1 ci

∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 ci

. (2.12)

By (2.10) and (2.12)we know

uΔ∇(t) = −φq

⎛

⎝

∑m−2
i=1 ci

∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 ci

+
∫ t

0
h(r)∇r

⎞

⎠. (2.13)

This together with Lemma 2.5 implies that

u(t) =
∫ t

0
(T − s)φq

(∫s

0
h(r)∇r + C

)

∇s +

∑m−2
i=1 bi

∫ ξi
0 (T − s)φq

(∫s
0h(r)∇r + C

)∇s

1 −∑m−2
i=1 bi

, (2.14)

where C =
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 −∑m−2

i=1 ci). The proof is complete.

Lemma 2.7. Let condition (H1) holds If h ∈ Cld[0, T]Tκ and h(t) ≥ 0, then the unique solution u(t)
of (2.8) satisfies

u(t) ≥ 0, t ∈ [0, T]Tκ . (2.15)

Proof. By uΔ∇(t) = −φq(
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 − ∑m−2

i=1 ci) +
∫ t
0h(r)∇r) ≤ 0, we can know that

the graph of u(t) is concave down on (0, T)Tκ , and uΔ(t) is nonincreasing on [0, T]Tκ . This
together with the assumption that the boundary condition uΔ(T) = 0 implies that uΔ(t) ≥ 0
for t ∈ [0, T]Tκ . This implies that

min
t∈[0,T]Tκ

u(t) = u(0). (2.16)
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So we only prove u(0) ≥ 0. By condition (H1)we have

u(0) =

∑m−2
i=1 bi

∫ ξi
0 (T − s)φq

(∫s
0h(r)∇r + C

)∇s

1 −∑m−2
i=1 bi

≥ 0. (2.17)

The proof is completed.

Lemma 2.8. Let condition (H1) hold. If h ∈ Cld[0, T]Tκ and h(t) ≥ 0, then the unique positive
solution u(t) of (BVP) (2.8) satisfies

inf
t∈[0,T]Tκ

u(t) ≥ σ1‖u‖, (2.18)

where σ1 =
∑m−2

i=1 biξi/(T −∑m−2
i=1 bi(T − ξi)), ‖u‖ = supt∈[0,T]Tκ |u(t)|.

Proof. By uΔ∇(t) = −φq(
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 − ∑m−2

i=1 ci) +
∫ t
0h(r)∇r) ≤ 0, we can know that

the graph of u(t) is concave down on (0, T)Tκ , and uΔ(t) is nonincreasing on [0, T]Tκ . This
together with the assumption that the boundary condition uΔ(T) = 0 implies that uΔ(t) ≥ 0
for t ∈ [0, T]Tκ . This implies that

‖u‖ = u(T), min
t∈[0,T]Tκ

u(t) = u(0). (2.19)

For all i ∈ {1, 2, . . . , m − 2}, we have from the concavity of u that

u(ξi) − u(0)
ξi

≥ u(T) − u(0)
T

, (2.20)

that is,

u(ξi) − u(0) +
ξi
T
u(0) ≥ ξi

T
u(T). (2.21)

This together with the boundary condition u(0) =
∑m−2

i=1 biu(ξi) implies that

min
t∈[0,T]Tκ

u(t) ≥
∑m−2

i=1 biξi

T −∑m−2
i=1 bi(T − ξi)

u(T). (2.22)

This completes the proof.

Let E = Cld[0, T]Tκ be endowedwith the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, T]Tκ ,
and ‖u‖ = maxt∈[0,T]Tκ |u(t)| is defined as usual by maximum norm. Clearly, it follows that
(E, ‖u‖) is a Banach space.
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For the convenience, let

ψ(s) = φq

⎛

⎝
∫s

0
a(r)∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 ci

⎞

⎠. (2.23)

We define two cones by

P = {u : u ∈ E, u(t) ≥ 0, t ∈ (0, T)Tκ},

K =
{

u : u ∈ E, u(t) is concave, nonincreasing and nonnegative on (0, T)Tκ

min
t∈[0,T]Tκ

u(t) ≥ σ‖u‖
}

,

(2.24)

where σ = σ1σ2, σ1 is defined in Lemma 2.8 and

σ2 =

∑m−2
i=1 bi

∫ ξi
0 ψ(s)∇s

(
1 −∑m−2

i=1 bi
)(∫T

0 (T − s)ψ(T)∇s +
∑m−2

i=1 bi
∫ ξi
0 ψ(T)∇s/

(
1 −∑m−2

i=1 bi
)) . (2.25)

Define the operators F : P → E and S : K → E by setting

(Fu)(t) =
∫ t

0
(T − s)φq

(∫ s

0
a(r)f(r, u(r))∇r +A

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)φq

(∫s
0a(r)f(r, u(r))∇r +A

)∇s

1 −∑m−2
i=1 bi

,

(2.26)

where A =
∑m−2

i=1 ci
∫ ξi
0 a(r)f(r, u(r))∇r/(1 −∑m−2

i=1 ci),

(Su)(t) =
∫ t

0
(T − s)ϕ(s)∇s +

∑m−2
i=1 bi

∫ ξi
0 ϕ(s)∇s

1 −∑m−2
i=1 bi

, (2.27)

where ϕ(s) = φq(
∫s
0a(r)f

+(r, u(r))∇r + Ã), Ã =
∑m−2

i=1 ci
∫ ξi
0 a(r)f

+(r, u(r))∇r/(1−∑m−2
i=1 ci), and

f+(t, u(t)) = max{f(t, u(t)), 0}. Obviously, u is a solution of the BVP(1.6) if and only if u is a
fixed point of operator F.

Lemma 2.9. S : K → K is completely continuous.

Proof. It is easy to see that SK ⊂ K by f+ ≥ 0 and Lemma 2.8. By Arzela-Ascoli theorem and
Lebesgue dominated convergence theorem, we can easily prove that operator S is completely
continuous.
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Lemma 2.10 (see [20, 21]). Let K be a cone in a Banach space X. Let D be an open bounded subset
of X with DK = D ∩ K/= ∅ and DK /=K. Assume that A : DK → K is a compact map such that
x /=Ax for x ∈ ∂DK. Then the following results hold.

(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK, then iK(A,DK) = 1.

(2) If there exists x0 ∈ K \ {0} such that x /=Ax + λx0 for all x ∈ ∂DK and all λ > 0, then
iK(A,DK) = 0.

(3) LetU be open in X such thatU ⊂ DK. If iK(A,DK) = 1 and iK(A,UK) = 0, thenA has a
fixed point inDK \UK. The same result holds if iK(A,DK) = 0 and iK(A,UK) = 1, where
iK(A,DK) denotes fixed point index.

We define

Kρ =
{
u(t) ∈ K : ‖u‖ < ρ

}
, Ωρ =

{

u(t) ∈ K : min
t∈[0,T]Tκ

u(t) < σρ

}

. (2.28)

Lemma 2.11 (see [20]). Ωρ defined above has the following properties:

(a) Kσρ ⊂ Ωρ ⊂ Kρ;

(b) Ωρ is open relative to K;

(c) u ∈ ∂Ωρ if and only if mint∈[0,T]Tκ u(t) = σρ;

(d) if u ∈ ∂Ωρ, then σρ ≤ u(t) ≤ ρ for t ∈ [0, T]Tκ .

For the convenience, we introduce the following notations:

1
m

=
∫T

0
(T − s)ψ(T)∇s +

∑m−2
i=1 bi

∫ ξi
0 ψ(T)∇s

1 −∑m−2
i=1 bi

,
1
M

=

∑m−2
i=1 bi

∫ ξi
0 ψ(s)∇s

1 −∑m−2
i=1 bi

. (2.29)

Remark 2.12. By (H1)we can know that 0 < m,M < +∞,Mσ = Mσ1σ2 = mσ1 < m.

Lemma 2.13. If f satisfies the following condition :

f(t, u) ≤ φp

(
mρ

)
, (t, u) ∈ [0, T]Tκ × [

0, ρ
]
, u /=Su, u ∈ ∂Kρ, (2.30)

then

iK
(
S,Kρ

)
= 1. (2.31)

Proof. For u ∈ ∂Kρ, then from (2.30)we have

∫ s

0
a(r)f+(r, u(r))∇r + Ã =

∫ s

0
a(r)f+(r, u(r))∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)f

+(r, u(r))∇r

1 −∑m−2
i=1 ci

≤ φp

(
mρ

)
⎛

⎝
∫T

0
a(r)∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 ci

⎞

⎠.

(2.32)
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So that

ϕ(s) = φq

(∫s

0
a(r)f+(r, u(r))∇r + Ã

)

≤ mρψ(T). (2.33)

Therefore,

Su(t) ≤
∫T

0
(T − s)ϕ(s)∇s +

∑m−2
i=1 bi

∫ ξi
0 ϕ(s)∇s

1 −∑m−2
i=1 bi

≤ mρ

⎛

⎝
∫T

0
(T − s)ψ(T)∇s +

∑m−2
i=1 bi

∫ ξi
0 ψ(T)∇s

1 −∑m−2
i=1 bi

⎞

⎠ = ρ.

(2.34)

This implies that ‖Su‖ ≤ ‖u‖ for u ∈ ∂Kρ. Hence by Lemma 2.10(1) it follows that iK(S,Kρ) =
1.

Lemma 2.14. If f satisfies the following condition:

f(t, u) ≥ φp

(
Mσρ

)
, (t, u) ∈ [0, T]Tκ × [

σρ, ρ
]
, u /=Su, u ∈ ∂Ωρ, (2.35)

then

iK
(
S,Ωρ

)
= 0. (2.36)

Proof. Let e(t) ≡ 1 for t ∈ [0, T]Tκ . Then e ∈ ∂K1. We claim that

u/=Su + λe, u ∈ ∂Ωρ, λ > 0. (2.37)

In fact, if not, there exist u0 ∈ ∂Ωρ and λ0 > 0 such that u0 = Su0 +λ0e. By f(t, u0) ≥ φp(Mσρ),
we have

∫ s

0
a(r)f+(r, u0(r))∇r + Ã =

∫s

0
a(r)f+(r, u0(r))∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)f

+(r, u0(r))∇r

1 −∑m−2
i=1 ci

≥ φp

(
Mσρ

)
⎛

⎝
∫ s

0
a(r)∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 ci

⎞

⎠.

(2.38)
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So that

ϕ(s) = φq

(∫s

0
a(r)f+(r, u0(r))∇r + Ã

)

≥ Mσρφq

⎛

⎝
∫ s

0
a(r)∇r +

∑m−2
i=1 ci

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 ci

⎞

⎠

= Mσρψ(s).

(2.39)

For t ∈ [0, T]Tκ , then

u0(t) = Su0(t) + λ0e(t)

≥ Su0(0) + λ0

=

∑m−2
i=1 bi

∫ ξi
0 ϕ(s)∇s

1 −∑m−2
i=1 bi

+ λ0

≥ Mσρ

1 −∑m−2
i=1 bi

m−2∑

i=1

bi

∫ ξi

0
ψ(s)∇s + λ0

= σρ + λ0.

(2.40)

This together with Lemma 2.11(c) implies that

σρ ≥ σρ + λ0, (2.41)

a contradiction. Hence by Lemma 2.10(2) it follows that iK(S,Ωρ) = 0.

3. Main Results

We now give our results on the existence of positive solutions of BVP (1.6).

Theorem 3.1. Suppose that conditions (H1) and (H2) hold, and assume that one of the following
conditions holds.

(H3) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < σρ2 such that

(i) f(t, u) ≤ φp(mρ1), (t, u) ∈ [0, T]Tκ × [0, ρ1];
(ii) f(t, u) ≥ 0, (t, u) ∈ [0, T]Tκ × [σρ1, ρ2], moreover f(t, u) ≥ φp(Mσρ2), (t, u) ∈

[0, T]Tκ × [σρ2, ρ2].

(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

(i) f(t, u) ≤ φp(mρ2), (t, u) ∈ [0, T]Tκ × [0, ρ2];
(ii) f(t, u) ≥ φp(Mσρ1), (t, u) ∈ [0, T]Tκ × [σ2ρ1, ρ2].

Then, the BVP (1.6) has at least one positive solution.
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Proof. Assume that (H3) holds, we show that S has a fixed point u1 in Ωρ2 \Kρ1 . By f(t, u) ≤
φp(mρ1) and Lemma 2.13, we have that

iK
(
S,Kρ1

)
= 1. (3.1)

By f(t, u) ≥ φp(Mσρ2) and Lemma 2.14, we have that

iK
(
S,Ωρ2

)
= 0. (3.2)

By Lemma 2.11(a) and ρ1 < σρ2, we have Kρ1 ⊂ Kσρ2 ⊂ Ωρ2 . It follows from Lemma 2.10(3)
that S has a fixed point u1 in Ωρ2 \Kρ1 . Clearly,

‖u1‖ > ρ1, min
t∈[0,T]Tκ

u1(t) ≥ σ‖u1‖ > σρ1, (3.3)

which implies that σρ1 ≤ u1(t) ≤ ρ2, t ∈ [0, T]Tκ . By condition (H3)(ii), we have f(t, u1(t)) ≥ 0,
t ∈ [0, T]Tκ , that is, f+(t, u1(t)) = f(t, u1(t)). Hence,

Fu1 = Su1. (3.4)

This means that u1 is a fixed point of operator F.
When condition (H4) holds, by f(t, u) ≤ φp(mρ2) and Lemma 2.13, we have that

iK
(
S,Kρ2

)
= 1. (3.5)

By f(t, u) ≥ φp(Mσρ1) and Lemma 2.14, we have that

iK
(
S,Ωρ1

)
= 0. (3.6)

By Lemma 2.11(a) and ρ1 < ρ2, we have Kσρ1 ⊂ Ωρ1 ⊂ Kρ2 . It follows from Lemma 2.10(3)
that S has a fixed point u2 in Kρ2 \Ωρ1 . Obviously,

‖u2‖ > σρ1, min
t∈[0,T]Tκ

u2(t) ≥ σ‖u2‖ > σ2ρ1, (3.7)

which implies that σ2ρ1 ≤ u2(t) ≤ ρ2, t ∈ [0, T]Tκ . By condition (H4)(ii), we have f(t, u2(t)) ≥
0, t ∈ [0, T]Tκ , that is, f+(t, u2(t)) = f(t, u2(t)). Hence,

Fu2 = Su2. (3.8)

This means that u2 is a fixed point of operator F. Therefore, the BVP (1.6) has at least one
positive solution.
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Theorem 3.2. Assume that conditions (H1) and (H2) hold, and suppose that one of the following
conditions holds.

(H5) There exist ρ1, ρ2, and ρ3 ∈ (0,+∞) with ρ1 < σρ2, and ρ2 < ρ3 such that

(i) f(t, u) ≤ φp(mρ1), (t, u) ∈ [0, T]Tκ × [0, ρ1];
(ii) f(t, u) ≥ 0, (t, u) ∈ [0, T]Tκ × [σρ1, ρ3], moreover f(t, u) ≥ φp(Mσρ2), (t, u) ∈

[0, T]Tκ × [σρ2, ρ2], u/=Su, ∀u ∈ ∂Ωρ2 ;
(iii) f(t, u) ≤ φp(mρ3), (t, u) ∈ [0, T]Tκ × [0, ρ3].

(H6) There exist ρ1, ρ2, and ρ3 ∈ (0,+∞) with ρ1 < ρ2 < σρ3 such that

(i) f(t, u) ≥ φp(Mσρ1), (t, u) ∈ [0, T]Tκ × [σ2ρ1, ρ2];
(ii) f(t, u) ≤ φp(m1ρ2), (t, u) ∈ [0, T]Tκ × [0, ρ2], u/=Su, ∀u ∈ ∂Kρ2 ;
(iii) f(t, u) ≥ 0, (t, u) ∈ [0, T]Tκ × [σρ2, ρ3], moreover, f(t, u) ≥ φp(Mσρ3), (t, u) ∈

[0, T]Tκ × [σρ3, ρ3].

Then, the BVP (1.6) has at least two positive solutions.

Proof. Assume that condition (H5) holds, we show that S has a fixed point u1 either in ∂Kρ1

or in Ωρ2 \Kρ1 . If u/=Su for u ∈ ∂Kρ1 ∪ ∂Kρ3 . by Lemmas 2.13 and 2.14, we have that

iK
(
S,Kρ1

)
= 1,

iK
(
S,Kρ3

)
= 1,

iK
(
S,Ωρ2

)
= 0.

(3.9)

By Lemma 2.11(a) and ρ1 < σρ2, we have Kρ1 ⊂ Kσρ2 ⊂ Ωρ2 . It follows from Lemma 2.10(3)
that S has a fixed point u1 in Ωρ2 \Kρ1 . Similarly, S has a fixed point u2 in Kρ3 \Ωρ2 . Clearly,

‖u1‖ > ρ1, min
t∈[0,T]Tκ

u1(t) ≥ σ‖u1‖ > σρ1, (3.10)

which implies that σρ1 ≤ u1(t) ≤ ρ2, t ∈ [0, T]Tκ . By condition (H5)(ii), we have f(t, u1(t)) ≥ 0,
t ∈ [0, T]Tκ , that is, f+(t, u1(t)) = f(t, u1(t)). Hence,

Fu1 = Su1. (3.11)

This means that u1 is a fixed point of operator F. On the other hand, from u2 ∈ Kρ3 \Ωρ2 , ρ2 <
ρ3 and Lemma 2.11(a), we have Kσρ2 ⊂ Ωρ2 ⊂ Kρ3 . Clearly,

‖u2‖ > σρ2, min
t∈[0,T]Tκ

u2(t) ≥ σ‖u2‖ > σ2ρ2, (3.12)

which implies that σ2ρ2 ≤ u2(t) ≤ ρ3, t ∈ [0, T]Tκ . By ρ1 < σρ2 and condition (H5)(ii), we
have f(t, u2(t)) ≥ 0, t ∈ [0, T]Tκ , that is, f+(t, u2(t)) = f(t, u2(t)). Hence,

Fu2 = Su2. (3.13)
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This means that u2 is a fixed point of operator F. Then, the BVP (1.6) has at least two positive
solutions.

When condition (H6) holds, the proof is similar to the above, and so we omit it here.

4. An Example

In the section, we present some simple examples to explain our results.

Example 4.1. Let T = [0, 1/2]
⋃{1}, T = 1. Consider the following three-point boundary value

problem with p-Laplacian

(
φp(uΔ∇)

)∇
+ a(t)f(t, u) = 0, 0 < t < 1,

u(0) =
1
3
u

(
1
2

)

, uΔ(1) = 0, φp

(
uΔ∇(0)

)
=

1
4
φp

(

uΔ∇
(
1
2

))

,

(4.1)

where a(t) ≡ 1, b1 = 1/3, c1 = 1/4, ξ1 = 1/2, p = q = 2.
By computing, we can know σ1 = 1/5, σ2 = 1/7, M = 48/5, m = 48/35. Obviously,

σ = σ1σ2 = 1/35, Mσ = 48/5 × 1/35 < 48/35 = m.
Let ρ1 = 1, ρ2 = 78, then σρ1 < ρ1 < σρ2 < ρ2. We define a sign changing nonlinearity

as follows:

f(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

48t3

35

(

u − 1
35

)3

, 0 < t < 1, u ∈
[

0,
1
35

]

,

48t3

35
sin

(
35
34

π

2
u − 1

34
π

2

)

, 0 < t < 1, u ∈
[
1
35

, 1
]

,

48t3

35
(2 − u) +

3744
175

(u − 1), 0 < t < 1, u ∈ [1, 2],

3744
175

+ t3(u − 2)2, 0 < t < 1, u ∈ [2, 78],

3744
175

+ t3(78 − 2)2[1 + (u − 78)], 0 < t < 1, u ∈ [78,+∞].

(4.2)

Then, by the definition of f we have

(i) f(t, u) ≤ φp(mρ1) = 48/35, (t, u) ∈ [0, 1] × [0, ρ1];

(ii) f(t, u) ≥ 0, (t, u) ∈ [0, 1] × [σρ1, ρ2], moreover f(t, u) ≥ φp(Mσρ2) = 3744/175,
(t, u) ∈ [0, 1] × [σρ2, ρ2].

So condition (H3) holds, and by Theorem 3.1, BVP (4.1) has at least one positive
solution.
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