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1. Introduction

In this paper, we denote by N,Z,R the set of all natural numbers, integers, and real numbers,
respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . .},Z(a, b) = {a, a + 1, . . . , b}when a ≤ b.

Consider the following boundary value problem (BVP):

Δ2
[
p(n − 1)Δ2u(n − 2)

]
+ Δ
[
q(n)Δu(n − 1)

]
= f(n, u(n)), n ∈ Z(1, k),

u(−1) = u(0) = 0 = u(k + 1) = u(k + 2).
(1.1)

Here, k ∈ N, p(n) is nonzero and real valued for each n ∈ Z(0, k + 1), q(n) is real valued for
each n ∈ Z(1, k + 1). f(n, u) is real-valued for each (n, u) ∈ Z(1, k) × R and continuous in the
second variable u. Δ is the forward difference operator defined by Δu(n) = u(n + 1) − u(n),
and Δ2u(n) = Δ(Δu(n)).

We may think of (1.1) as being a discrete analogue of the following boundary value
problem:

[
p(t)x′′(t)

]′′ + [q(t)x′(t)
]′ = f(t, x(t)), t ∈ [a, b],

x(a) = x′(a) = 0, x(b) = x′(b) = 0,
(1.2)
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which are used to describe the bending of an elastic beam; see, for example, [1–10] and
references therein. Owing to its importance in physics, many methods are applied to study
fourth-order boundary value problems by many authors. For example, fixed point theory
[1, 3, 5–7], the method of upper and lower solutions [8], and critical point theory [9, 10]
are widely used to deal with the existence of solutions for the boundary value problems of
fourth-order differential equations.

Because of applications in many areas for difference equations, in recent years, there
has been an increased interest in studying of fourth-order difference equation, which include
results on periodic solutions [11], results on oscillation [12–14], and results on boundary
value problems and other topics [15, 16]. Recently, a few authors have gradually paid
attention to applying critical point theory to deal with problems on discrete systems; for
example, Yu and Guo in [17] considered the existence of solutions for the following BVP:

Δ
[
p(n)Δu(n − 1)

]
+ q(n)u(n) = f(n, u(n)),

u(a) + αu(a + 1) = A, u(b + 2) + βu(b + 1) = B.
(1.3)

The papers [17–20] show that the critical point theory is an effective approach to the study of
the boundary value problems of difference equations. In this paper, we will use critical point
theory to establish some sufficient conditions on the nonexistence and existence of solutions
for the BVP (1.1).

Let

a(n) = q(n + 1) − 2
[
p(n) + p(n + 1)

]
,

b(n) = p(n − 1) + 4p(n) + p(n + 1) − q(n) − q(n + 1).
(1.4)

Then the BVP (1.1) becomes

Lu(n) = f(n, u(n)), n ∈ Z(1, k),

u(−1) = u(0) = 0 = u(k + 1) = u(k + 2),
(1.5)

where

Lu(n) = p(n + 1)u(n + 2) + a(n)u(n + 1) + b(n)u(n) + a(n − 1)u(n − 1)

+ p(n − 1)u(n − 2).
(1.6)

The remaining of this paper is organized as follows. First, in Section 2, we give some
preliminaries and establish the variational framework for BVP (1.5). Then, in Section 3, we
present a sufficient condition on the nonexistence of nontrivial solutions of BVP (1.5). Finally,
in Section 4, we provide various sets of sufficient conditions on the existence of solutions of
BVP (1.5)when f is superlinear, sublinear, and Lipschitz. Moreover, in a special case of f we
obtain a necessary and sufficient condition for the existence of unique solutions of BVP (1.5).

To conclude the introduction, we refer to [21, 22] for the general background on
difference equations.
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2. Preliminaries

In order to apply the critical point theory, we are going to establish the corresponding
variational framework of BVP (1.5). First we give some notations.

Let Rk be the real Euclidean space with dimension k. Define the inner product on R
k

as follows:

(u, v) =
k∑
j=1

u
(
j
)
v
(
j
)
, ∀u, v ∈ R

k, (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =

⎛
⎝

k∑
j=1

u2(j)

⎞
⎠

1/2

, ∀u ∈ R
k, (2.2)

For BVP (1.5), consider the functional J defined on R
k as follows:

J(u) =
1
2
(Mu,u) − F(u), ∀u = (u(1), u(2), . . . , u(k))T ∈ R

k, (2.3)

where T is the transpose of a vector in R
k:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1) a(1) p(2) 0 0 · · · 0 0 0

a(1) b(2) a(2) p(3) 0 · · · 0 0 0

p(2) a(2) b(3) a(3) p(4) · · · 0 0 0

0 p(3) a(3) b(4) a(4) · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · b(k − 2) a(k − 2) p(k − 1)

0 0 0 0 0 · · · a(k − 2) b(k − 1) a(k − 1)

0 0 0 0 0 · · · p(k − 1) a(k − 1) b(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×k

, (2.4)

F(u) =
k∑
j=1

∫u(j)

0
f
(
j, s
)
ds. (2.5)

After a careful computation, we find that the Fréchet derivative of J is

J ′(u) = Mu − f(u), (2.6)

where f(u) is defined as f(u) = (f(1, u(1)), f(2, u(2)), . . . , f(k, u(k))T .
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Expanding out J ′(u), one can easily see that there is an one-to-one correspondence
between the critical point of functional J and the solution of BVP (1.5). Furthermore,
u = (u(1), u(2), . . . , u(k))T is a critical point of J if and only if {u(t)}k+2t=−1 =
(u(−1), u(0), u(1), . . . , u(k), u(k + 1), u(k + 2))T is a solution of BVP (1.5), where u(−1) =
u(0) = 0 = u(k + 1) = u(k + 2).

Therefore, we have reduced the problem of finding a solution of (1.5) to that of seeking
a critical point of the functional J defined on R

k.
In order to obtain the existence of critical points of J on R

k, for the convenience of
readers, we cite some basic notations and some known results from critical point theory.

Let H be a real Banach space, J ∈ C1(H,R), that is, J is a continuously Fréchet
differentiable functional defined on H, and J is said to satisfy the Palais-Smale condition
(P-S condition), if any sequence {xn} ⊂ H for which J(xn) is bounded and J ′(xn) → 0 as
n → ∞ possesses a convergent subsequence in H.

Let Br denote the open ball in H about 0 of radius r and let ∂Br denote its boundary.
The following lemmas are taken from [23, 24] and will play an important role in the proofs
of our main results.

Lemma 2.1 (Linking theorem). LetH be a real Banach space,H = H1
⊕

H2, whereH1 is a finite-
dimensional subspace of H. Assume that J ∈ C1(H,R) satisfies the P-S condition and the following.

(F1) There exist constants σ, ρ > 0 such that J |∂Bρ∩H2 ≥ σ.

(F2) There is an e ∈ ∂B1 ∩ H2 and a constant R0 > ρ such that J |∂Q ≤ 0 and Q = (BR0 ∩
H1)
⊕{re | 0 < r < R0}.

Then J possesses a critical value c ≥ σ, where

c = inf
h∈Γ

max
u∈Q

J(h(u)), (2.7)

and Γ = {h ∈ C(Q,H)|h|∂Q = id}, where id denotes the identity operator.

Lemma 2.2 (Saddle point theorem). LetH be a real Banach space,H = H1
⊕

H2,whereH1 /= {0}
and is finite-dimensional. Suppose that J ∈ C1(H,R) satisfies the P-S condition and the following.

(F3) There exist constants σ, ρ > 0 such that J |∂Bρ∩H1 ≤ σ.

(F4) There is e ∈ Bρ ∩H1 and a constant ω > σ such that J |e+H2 ≥ ω.

Then J possesses a critical value c ≥ ω, where

c = inf
h∈Γ

max
u∈Bρ∩H1

J(h(u)), (2.8)

and Γ = {h ∈ C(Bρ ∩H1,H)|h|∂Bρ∩H1
= id}, where id denotes the identity operator.

Lemma 2.3 (Clark theorem). Let H be a real Banach space, J ∈ C1(H,R), with J being even,
bounded from below, and satisfying P-S condition. Suppose J(θ) = 0, there is a set K ⊂ H such that
K is homeomorphic to Sj−1(j − 1 dimension unit sphere) by an odd map, and supKJ < 0. Then J has
at least j distinct pairs of nonzero critical points.
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3. Nonexistence of Nontrivial Solutions

In this section, we give a result of nonexistence of nontrivial solutions to BVP (1.5).

Theorem 3.1. Suppose that matrix M is negative semidefinite and for n = 1, 2, . . . , k,

zf(n, z) > 0, for z/= 0. (3.1)

Then BVP (1.5) has no nontrivial solutions.

Proof. Assume, for the sake of contradiction, that BVP (1.5) has a nontrivial solution. Then J
has a nonzero critical point u∗. Since

J ′(u) = Mu − f(u), (3.2)

we get

(
f(u∗), u∗) = (Mu∗, u∗) ≤ 0. (3.3)

On the other hand, it follows from (3.1) that

(
f(u∗), u∗) =

k∑
n=1

u∗(n)f(n, u∗(n)) > 0. (3.4)

This contradicts with (3.3) and hence the proof is complete.

In the existing literature, results on the nonexistence of solutions of discrete boundary
value problems are scarce. Hence Theorem 3.1 complements existing ones.

4. Existence of Solutions

Theorem 3.1 gives a set of sufficient conditions on the nonexistence of solutions of BVP
(1.5). In this section, with part of the conditions being violated, we establish the existence
of solutions of BVP (1.5) by distinguishing three cases: f is superlinear, f is sublinear, and f
is Lipschitzian.

4.1. The Superlinear Case

In this subsection, we need the following conditions.

(P1) For any (n, z) ∈ Z(1, k) × R,
∫z
0f(n, s)ds ≥ 0, and

∫z
0f(n, s)ds = o(|z|2), as z → 0.

(P2) There exist constants a1 > 0, a2 > 0 and β > 2 such that

∫z

0
f(n, s)ds ≥ a1|z|β − a2, ∀(n, z) ∈ Z(1, k) × R. (4.1)
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(P3) Matrix M exists at least one positive eigenvalue.

(P4) f(n, z) is odd for the second variable z, namely,

f(n,−z) = −f(n, z), ∀(n, z) ∈ Z(1, k) × R. (4.2)

Theorem 4.1. Suppose that f(n, z) satisfies (P2). Then BVP (1.5) possesses at least one solution.

Proof. For any u = (u(1), u(2), . . . , u(k))T ∈ R
k, we have

F(u) =
k∑
j=1

∫u(j)

0
f
(
j, s
)
ds ≥ a1

⎛
⎝

k∑
j=1

∣∣u(j)∣∣β
⎞
⎠ − a2k

≥ a1

⎛
⎝k(2−β)/β

k∑
j=1

∣∣u(j)∣∣2
⎞
⎠

β/2

− a2k = a1k(2−β)/2‖u‖β − a2k.

(4.3)

Let A1 = a1k(2−β)/2, A2 = a2k. We have, for any u = (u(1), u(2), . . . , u(k))T ∈ R
k,

F(u) ≥ A1‖u‖β −A2. (4.4)

Since matrixM is symmetric, its all eigenvalues are real. We denote by λ1, λ2, . . . , λk its
eigenvalues. Set λmax = max{|λ1|, |λ2|, . . . , |λk|}. Thus for any u = (u(1), u(2), . . . , u(k))T ∈ R

k,

J(u) =
1
2
(Mu,u) − F(u)

≤ 1
2
λmax‖u‖2 −A1‖u‖β +A2

−→ −∞ (as ‖u‖ −→ ∞).

(4.5)

The above inequality means that −J(u) is coercive. By the continuity of J(u), J attains
its maximum at some point, and we denote it by ũ, that is, J(ũ) = cmax, where cmax =
supu∈Rk(J(u)). Clearly, ũ is a critical point of J . This completes the proof of Theorem 4.1.

Theorem 4.2. Suppose that f(n, z) satisfies the assumptions (P1), (P2), and (P3). Then BVP (1.5)
possesses at least two nontrivial solutions.

To prove Theorem 4.2, we need the following lemma.

Lemma 4.3. Assume that (P2) holds, then the functional J satisfies the P-S condition.
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Proof. Assume that {u(n)} ⊂ R
k is a P-S sequence. Then there exists a constant c1 such that for

any n ∈ Z(1), |J(u(n))| ≤ c1 and J ′(u(n)) → 0 as n → ∞. By (4.5) we have

−c1 ≤ J
(
u(n)
)
=

1
2

(
Mu(n), u(n)

)
− F
(
u(n)
)

≤ 1
2
λmax

∥∥∥u(n)
∥∥∥
2 −A1

∥∥∥u(n)
∥∥∥
β
+A2,

(4.6)

and so

A1

∥∥∥u(n)
∥∥∥
β − 1

2
λmax

∥∥∥u(n)
∥∥∥
2 ≤ c1 +A2. (4.7)

Due to β > 2, the above inequality means {u(n)} is bounded. Since R
k is a finite-dimensional

Hilbert space, there must exist a subsequence of {u(n)} which is convergent in R
k. Therefore,

P-S condition is satisfied.

Proof of Theorem 4.2. Let λi, 1 ≤ i ≤ l, −μj , 1 ≤ j ≤ m be the positive eigenvalues and the
negative eigenvalues, where 0 < λ1 ≤ λ2 ≤ · · · ≤ λl, 0 > −μ1 ≥ −μ2 ≥ · · · ≥ −μm. Let ξi be an
eigenvector ofM corresponding to the eigenvalue λi, 1 ≤ i ≤ l, and let ηj be an eigenvector of
M corresponding to the eigenvalue −μj , 1 ≤ j ≤ m, such that

(
ξi, ξj
)
=

⎧
⎨
⎩
0, as i /= j,

1, as i = j,

(
ηi, ηj

)
=

⎧
⎨
⎩
0, as i /= j,

1, as i = j,

(
ξi, ηj

)
= 0, for any 1 ≤ i ≤ l, 1 ≤ j ≤ m.

(4.8)

Let E+, E0, and E− be subspaces of Rk defined as follows:

E+ = span{ξi, 1 ≤ i ≤ l}, E− = span
{
ηj , 1 ≤ i ≤ m

}
,

E0 =
(
E+
⊕

E−
)⊥

.
(4.9)

For any u ∈ R
k, u = u+ + u0 + u−, where u+ ∈ E+, u0 ∈ E0, u− ∈ E−. Then

λ1‖u+‖2 ≤ (Mu+, u+) ≤ λl‖u+‖2, −μm

∥∥u−∥∥2 ≤ (Mu−, u−) ≤ −μ1
∥∥u−∥∥2. (4.10)

Let X1 = E−⊕E0, X2 = E+, then R
k has the following decomposition of direct sum:

R
k = X1

⊕
X2. (4.11)
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By assumption (P1), there exists a constant ρ > 0, such that for any n ∈ Z(1, k), z ∈ Bρ,∫z
0f(n, s)ds ≤ (1/4)λ1z2. So for any u ∈ ∂Bρ ∩X2, n ∈ Z(1, k),

J(u) =
1
2
(Mu,u) − F(u)

≥ 1
2
λ1‖u‖2 − 1

4
λ1‖u‖2 = 1

4
λ1ρ

2.

(4.12)

Denote σ = (1/4)λ1ρ2. Then

J(u) ≥ σ, ∀u ∈ ∂Bρ ∩X2. (4.13)

That is to say, J satisfies assumption (F1) of Linking theorem.
Take e ∈ ∂B1 ∩ X2. For any ω ∈ X1, r ∈ R, let u = re + ω, because ω = ω0 + ω−, where

ω0 ∈ E0, ω− ∈ E−. Then

J(u) =
1
2
(M(re +ω), re +ω) − F(re +ω)

=
1
2
(Mre, re) +

1
2
(
Mω−, ω−) −

k∑
j=1

∫ re(j)+ω(j)

0
f
(
j, s
)
ds

≤ 1
2
λlr

2 − 1
2
μ1
∥∥ω−∥∥2 − a1

⎛
⎝

k∑
j=1

∣∣re(j) +ω
(
j
)∣∣β
⎞
⎠ + a2k

≤ 1
2
λlr

2 − 1
2
μ1
∥∥ω−∥∥2 − a1

⎛
⎝k(2−β)/β

k∑
j=1

∣∣re(j) +ω(j)
∣∣2
⎞
⎠

β/2

+ a2k

=
1
2
λlr

2 − 1
2
μ1
∥∥ω−∥∥2 − a1k(2−β)/2

⎛
⎝

k∑
j=1

(
r2e2(j) +ω2(j)

)
⎞
⎠

β/2

+ a2k

≤ 1
2
λlr

2 − a1k(2−β)/2rβ − a1k(2−β)/2‖ω‖β + a2k.

(4.14)

Set g1(r) = (1/2)λlr2 − a1k(2−β)/2rβ and g2(τ) = −a1k(2−β)/2τβ + a2k. Then
limr→+∞g1(r) = −∞, limτ →+∞g2(τ) = −∞. Furthermore, g1(r) and g2(τ) are bounded from
above. Accordingly, there is some R0 > ρ, such that for any u ∈ ∂Q, J(u) ≤ 0, where
Q = (BR0 ∩X1)

⊕{re | 0 < r < R0}. By Linking theorem, J possesses a critical value c ≥ σ > 0,
where

c = inf
h∈Γ

max
u∈Q

J(h(u)), Γ =
{
h ∈ C

(
Q,Rk

)
|h|∂Q = id

}
. (4.15)
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Let u ∈ R
k be a critical point corresponding to the critical value c of J , that is, J(u) = c.

Clearly, u/= 0 since c > 0. On the other hand, by Theorem 4.1, J has a critical point ũ satisfying
J(ũ) = supu∈Rk(J(u)) ≥ c. If u/= ũ, then Theorem 4.2 holds. Otherwise, u = ũ. Then cmax =
J(ũ) = J(u) = c, which is the same as supu∈Rk J(u) = infh∈Γsupu∈QJ(h(u)).

Choosing h = id, we have supu∈QJ(u) = cmax. Because the choice of e ∈ ∂B1 ∩X2 ∈ Q =

(BR0 ∩X1)
⊕{re | 0 < r < R0} is arbitrary, we can take −e ∈ ∂B1 ∩X2. Similarly, there exists a

positive number R1 > ρ, for any u ∈ ∂Q1, J(u) ≤ 0, whereQ1 = (BR1∩X1)
⊕{−re | 0 < r < R1}.

Again, by the Linking theorem, J possesses a critical value c0 ≥ σ > 0, where

c0 = inf
h∈Γ1

max
u∈Q1

J(h(u)), Γ1 =
{
h ∈ C

(
Q1,R

k
)
|h|∂Q1

= id
}
. (4.16)

If c0 /= cmax, then the proof is complete. Otherwise c0 = cmax, supu∈Q1
J(u) = cmax. Because

J |∂Q ≤ 0 and J |∂Q1 ≤ 0, then J attains its maximum at some point in the interior of sets Q and
Q1. But Q ∩Q1 ⊂ X1, and J(u) ≤ 0 for u ∈ X1. Thus there is a critical point û ∈ R

k satisfying
û /= ũ, J(û) = c0 = cmax.

The proof of Theorem 4.2 is now complete.

Theorem 4.4. Suppose that f(n, z) satisfies the assumptions (P1), (P2), (P3), and (P4). Then BVP
(1.5) possesses at least l distinct pairs of nontrivial solutions, where l is the dimension of the space
spanned by the eigenvectors corresponding to the positive eigenvalues ofM.

Proof. From the proof of Theorem 4.2, it is easy to know that J is bounded from above and
satisfies the P-S condition. It is clear that J is even and J(0) = 0, and we should find a set K
and an odd map such that K is homeomorphic to Sl−1 by an odd map.

We take K = ∂Bρ ∩ X2, where ρ and X2 are defined as in the proof of Theorem 4.2. It
is clear that K is homeomorphic to Sl−1(l − 1 dimension unit sphere) by an odd map. With
(4.13), we get supK(−J) < 0. Thus all the conditions of Lemma 2.3 are satisfied, and J has
at least l distinct pairs of nonzero critical points. Consequently, BVP (1.5) possesses at least l
distinct pairs nontrivial solutions. The proof of Theorem 4.4 is complete.

4.2. The Sublinear Case

In this subsection, we will consider the case where f is sublinear. First, we assume the
following.

(P5) There exist constants a1 > 0, a2 > 0, R > 0 and 1 < α < 2 such that

F(u) ≤ a1‖u‖α + a2, ∀u = (u(1), u(2), . . . , u(k))T ∈ R
k, ‖u‖ ≥ R. (4.17)

The first result is as follows.

Theorem 4.5. Suppose that (P5) is satisfied and that matrix M is positive definite. Then BVP (1.5)
possesses at least one solution.
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Proof. The proof will be finished when the existence of one critical point of functional J
defined as in (2.3) is proved.

Assume that matrix M is positive definite. We denote by λ1, λ2, . . . , λk its eigenvalues,
where 0 < λ1 ≤ λ2 ≤ · · · ≤ λk. Then for any u = (u(1), u(2), . . . , u(k))T ∈ R

k, ‖u‖ ≥ R, followed
by (P5)we have

J(u) =
1
2
(Mu,u) − F(u)

≤ λ1‖u‖2 − a1‖u‖α − a2

−→ +∞ (as ‖u‖ −→ ∞).

(4.18)

By the continuity of J on R
k, the above inequality means that there exists a lower

bound of values of functional J . Classical calculus shows that J attains its minimal value at
some point, and then there exist u′ such that J(u′) = min{J(u) | u ∈ R

k}. Clearly, u′ is a critical
point of the functional J .

Corollary 4.6. Suppose that matrix M is positive definite, and f(n, z) satisfies that there exist
constants a1 > 0, a2 > 0 and 1 < α < 2 such that

∫z

0
f(n, s)ds ≤ a1|z|α + a2, ∀(n, z) ∈ Z(1, k) × R. (4.19)

Then BVP (1.5) possesses at least one solution.

Corollary 4.7. Suppose that matrix M is positive definite, and f(n, z) satisfies the following.
(P6) There exists a constant t0 > 0 such that for any (n, z) ∈ Z(1, k) × R, |f(n, z) |≤ t0.
Then BVP (1.5) possesses at least one solution.

Proof. Assume that matrix M is positive definite. In this case, for any u =
(u(1), u(2), . . . , u(k))T ∈ R

k,

|F(u)| ≤
k∑
j=1

∣∣∣∣∣
∫u(j)

0
f
(
j, s
)
ds

∣∣∣∣∣ ≤
k∑
j=1

t0
∣∣u(j)∣∣ ≤ t0

√
k‖u‖. (4.20)

Since the rest of the proof is similar to Theorem 4.5, we do not repeat them here.

When M is neither positive definite nor negative definite, we now assume that M is
nonsingular, and we have the following result.

Theorem 4.8. Suppose that M is nonsingular, f(n, z) satisfies (P6). Then BVP (1.5) possesses at
least one solution.

Proof. We may assume that M is neither positive definite nor negative definite. Let
λ−l, λ−l+1, . . . , λ−1, λ1, λ2, . . . , λm denote all eigenvalues of M, where λ−l ≤ λ−l+1 ≤ · · · ≤ λ−1 <
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0 < λ1 ≤ λ2 ≤ · · · ≤ λm and l +m = k. For any j ∈ Z(−l,−1) ∪ Z(1, m), let ξj be an eigenvector
ofM corresponding to the eigenvalue λj , j = −l, −l + 1, . . . ,−1, 1, 2, . . . , m, such that

(
ξi, ξj
)
=

⎧
⎨
⎩
0, as i /= j,

1, as i = j,
(4.21)

Let X1 and X2 be subspaces of Rk defined as follows:

X1 = span{ξi, i ∈ Z(1, m)}, X2 = span
{
ξj , j ∈ Z(−l,−1)}. (4.22)

Then R
k has the following decomposition of direct sum:

R
k = X1

⊕
X2. (4.23)

Let J(u) be defined as in (2.3). Then J ∈ C1(Rk,R). By (4.20),

|F(u)| ≤ t0
√
k‖u‖, ∀u ∈ R

k. (4.24)

Suppose that {u(n)} ⊂ R
k is a P-S sequence. Then there exists a constant t1 such that for

any n ∈ Z(1), |(J(u(n)))| ≤ t1 and J ′(u(n)) → 0 as n → ∞. Thus, for sufficiently large n and
for any u ∈ R

k, we have |(J ′(u(n)), u)| ≤ ‖u‖.
Let u(n) = x(n) + y(n) ∈ X1

⊕
X2. We have, by (2.6), for any u = (u(1), u(2), . . . , u(k))T ∈

R
k,

(
J ′
(
u(n)
)
, u
)
=
(
Mu(n), u

)
−

k∑
j=1

f
(
j, u(n)(j)

)
· u(j). (4.25)

Thus for sufficiently large n, we get

(
Mu(n), x(n)

)
≤

k∑
j=1

f
(
j, u(n)(j)

)
· x(n)(j) +

∥∥∥x(n)
∥∥∥

≤ t0
k∑
j=1

∣∣∣x(n)(j)
∣∣∣ +
∥∥∥x(n)

∥∥∥

≤
(
t0
√
k + 1

)∥∥∥x(n)
∥∥∥,

(
Mu(n), x(n)

)
=
(
Mx(n), x(n)

)
≥ λ1
∥∥∥x(n)

∥∥∥
2
.

(4.26)
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Thus,

λ1
∥∥∥x(n)

∥∥∥
2 ≤
(
t0
√
k + 1

)∥∥∥x(n)
∥∥∥, (4.27)

which implies that {x(n)} is bounded.
Now we are going to prove that {y(n)} is also bounded. By (4.25),

(
Mu(n), y(n)

)
≥

k∑
j=1

f
(
j, u(n)(j)

)
· y(n)(j) −

∥∥∥y(n)
∥∥∥

≥ −
(
t0
√
k + 1

)∥∥∥y(n)
∥∥∥,

(
Mu(n), y(n)

)
=
(
My(n), y(n)

)
≤ λ−1

∥∥∥y(n)
∥∥∥
2
.

(4.28)

Thus we have

λ−1
∥∥∥y(n)

∥∥∥
2 ≥ −

(
t0
√
k + 1

)∥∥∥y(n)
∥∥∥. (4.29)

And so

−λ−1
∥∥∥y(n)

∥∥∥
2 −
(
t0
√
k + 1

)∥∥∥y(n)
∥∥∥ ≤ 0. (4.30)

Due to λ−1 < 0, {y(n)} is bounded. Then {u(n)} is bounded. Since R
k is a finite-

dimensional Hilbert space, there must exist a subsequence of {u(n)} which is convergent in
R

k. Therefore, P-S condition is satisfied.
In order to apply the saddle point theorem to prove the conclusion, we consider the

functional −J and verify the conditions of Lemma 2.2.
For any y ∈ X2, y = (y(1), y(2), . . . , y(k))T , we have

−J(y) = −1
2
(
My,y

)
+ F
(
y
)

≥ −1
2
λ−1
∥∥y∥∥2 − t0

√
k
∥∥y∥∥

≥ 1
2λ−1

(
t0
√
k
)2
.

(4.31)

This implies that (F4) is true.
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For any x ∈ X1, x = (x(1), x(2), . . . , x(k))T ,

−J(x) = −1
2
(Mx,x) + F(x)

≤ −1
2
λ1‖x‖2 + t0

√
k‖x‖

−→ −∞ (as ‖x‖ −→ +∞).

(4.32)

This implies that (F3) is true.
So far we have verified all the assumptions of Lemma 2.2 and hence −J has at least a

critical point in R
k. This completes the proof.

Consider the following special case

Δ4u(n − 2) = f(n, u(n)), n ∈ Z(1, k),

u(−1) = u(0) = 0 = u(k + 1) = u(k + 2).
(4.33)

Here,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 0 · · · 0 0 0

−4 6 −4 1 · · · 0 0 0

1 −4 6 −4 · · · 0 0 0

0 1 −4 6 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · · · · −4 1

0 0 0 0 · · · −4 6 −4
0 0 0 0 · · · 1 −4 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×k

. (4.34)

It can be verified that M is positive definite, then we have the following corollaries.

Corollary 4.9. Suppose that there exist constants a1 > 0, a2 > 0 and 1 < α < 2 such that

∫z

0
f(n, s)ds ≤ a1|z|α + a2, ∀(n, z) ∈ Z(1, k) × R. (4.35)

Then BVP (4.33) possesses at least one solution.

Corollary 4.10. Suppose that f(n, z) satisfies (P6). Then BVP (4.33) possesses at least one solution.
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4.3. The Lipschitz Case

In this subsection, we suppose the following.
(P7) Assume that there exist positive constants L,K such that for any (n, z) ∈ Z(1, k)×

R,

∣∣f(n, z)∣∣ ≤ L|z| +K. (4.36)

When f(n, z) is Lipschitzian in the second variable z, namely, there exists a constant
L > 0 such that for any n ∈ Z(1, k), z1, z2 ∈ R,

∣∣f(n, z1) − f(n, z2)
∣∣ ≤ L|z1 − z2|, (4.37)

then condition (4.36) is satisfied.

Theorem 4.11. Suppose that (P7) is satisfied and M is nonsingular. If L < λmin = min{λ1,−λ−1},
where λ1 and λ−1 are the minimal positive eigenvalue and maximal negative eigenvalue of M,
respectively, then BVP (1.5) possesses at least one solution.

Proof. Assume that {u(n)} ⊂ R
k is a P-S sequence. Then J ′(u(n)) → 0 as n → +∞. Thus for

sufficiently large n, we get ‖J ′(u(n))‖ ≤ 1. Since J ′(u(n)) = Mu(n) − f(u(n)), then for sufficiently
large n,

∥∥∥Mu(n)
∥∥∥ ≤
∥∥∥f
(
u(n)
)∥∥∥ + 1. (4.38)

In view of (4.36), we have

∥∥∥f
(
u(n)
)∥∥∥

2
=

k∑
j=1

f2
(
j, u(n)(j)

)
≤

k∑
j=1

(
L
∣∣∣u(n)(j)

∣∣∣ +K
)2

= L2
k∑
j=1

∣∣∣u(n)(j)
∣∣∣
2
+ 2LK

k∑
j=1

∣∣∣u(n)(j)
∣∣∣ +K2k.

(4.39)

It follows, by using the inequality
√
a + b + c ≤ √

a +
√
b +

√
c for a ≥ 0, b ≥ 0, c ≥ 0 and

Hölder’s inequality, that

∥∥∥f
(
u(n)
)∥∥∥ ≤ L

∥∥∥u(n)
∥∥∥ + (2LK)1/2k1/4

∥∥∥u(n)
∥∥∥
1/2

+Kk1/2. (4.40)

By a similar argument to the proof of Theorem 4.8, we can decompose R
k into the

following form of direct sum:

R
k = X1

⊕
X2, (4.41)



Advances in Difference Equations 15

where X1 and X2 can be referred to (4.22). Thus u(n) can be expressed by

u(n) = x(n) + y(n), (4.42)

and ‖Mu(n)‖2 = ‖Mx(n)‖2 + ‖My(n)‖2, where x(n) ∈ X1, y
(n) ∈ X2. Therefore,

√
λ21
∥∥x(n)

∥∥2 + λ2−1
∥∥y(n)

∥∥2 ≤
∥∥∥Mu(n)

∥∥∥ ≤ 1 + L
∥∥∥u(n)

∥∥∥ + (2LK)1/2k1/4
∥∥∥u(n)

∥∥∥
1/2

+Kk1/2. (4.43)

Hence,

(λmin − L)
∥∥∥u(n)

∥∥∥ ≤ 1 + (2LK)1/2k1/4
∥∥∥u(n)

∥∥∥
1/2

+Kk1/2. (4.44)

By the fact that L < λmin, we know that the sequence {u(n)} is bounded and therefore
the P-S condition is verified.

Nowwe are going to check conditions (F3) and (F4) for functional −J . In fact, by (4.36),
we have for any u ∈ R

k,

|F(u)| ≤
k∑
j=1

∣∣∣∣∣
∫u(j)

0

∣∣f(j, s)∣∣ds
∣∣∣∣∣ ≤

1
2
L‖u‖2 +K

√
k‖u‖. (4.45)

Thus, for any y ∈ X2, y = (y(1), y(2), . . . , y(k))T ,

−J(y) = −1
2
(
My,y

)
+ F
(
y
)

≥ −1
2
λ−1
∥∥y∥∥2 − 1

2
L
∥∥y∥∥2 −K

√
k
∥∥y∥∥

=
1
2
(−λ−1 − L)

∥∥y∥∥2 −K
√
k
∥∥y∥∥ ≥ ω,

(4.46)

for some positive constant ω.
For any x ∈ X1, x = (x(1), x(2), . . . , x(k))T , we have

−J(x) = −1
2
(Mx,x) + F(x)

≤ −1
2
λ1‖x‖2 + 1

2
L‖x‖2 +K

√
k‖x‖

= −1
2
(λ1 − L)‖x‖2 +K

√
k‖x‖ −→ −∞ (as ‖x‖ −→ +∞).

(4.47)

Until now, we have verified all the assumptions of Lemma 2.2 and hence −J has at least a
critical point in R

k. This completes the proof.
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Finally, we consider the special case that f(n, z) is independent of the second variable
z; that is, f(n, z) ≡ g(n) for any (n, z) ∈ Z(1, k) × R, the BVP (1.1) becomes

Δ2
[
p(n − 1)Δ2u(n − 2)

]
+ Δ
[
q(n)Δu(n − 1)

]
= g(n), n ∈ Z(1, k),

u(−1) = u(0) = 0 = u(k + 1) = u(k + 2).
(4.48)

As in Section 2, we reduce the existence of solutions of BVP (4.48) to the existence of
critical points of a functional J1 defined on R

k as follows:

J1(u) =
1
2
(Mu,u) − (G, u), ∀u = (u(1), u(2), . . . , u(k))T ∈ R

k, (4.49)

where M is defined as in (2.4), and G = (g(1), g(2), . . . , g(k))T . Then we can see that the
critical point of J1 is just the solution to the following system of linear algebraic equations:

Mu −G = 0. (4.50)

By using the theory of linear algebra, we have the next necessary and sufficient
conditions.

Theorem 4.12. (i) BVP (4.48) has at least one solution if and only if r(M) = r((M,G)), where
r(M) denotes the rank of matrix M and (M,G) is the augmented matrix defined as follows:

(M,G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1) a(1) p(2) 0 · · · 0 0 0
... g(1)

a(1) b(2) a(2) p(3) · · · 0 0 0
... g(2)

p(2) a(2) b(3) a(3) · · · 0 0 0
... g(3)

0 p(3) a(3) b(4) · · · 0 0 0
... · · ·

· · · · · · · · · · · · 0 · · · · · · · · · ... · · ·

0 0 0 0 · · · · · · a(k − 2) p(k − 1)
... g(k − 2)

0 0 0 0 · · · a(k − 2) b(k − 1) a(k − 1)
... g(k − 1)

0 0 0 0 · · · p(k − 1) a(k − 1) b(k)
... g(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×(k+1)

.

(4.51)

(ii) BVP (4.48) has a unique solution if and only if r(M) = k.
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