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difference equations.
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1. Introduction

Difference equations have been applied as models in vast areas such as finance insurance,
biological populations, disease control, genetic study, physical field, and computer applica-
tion technology. Because of their importance, many literature deals with its existence and
uniqueness problems. For example, see [1–10].

We notice that the existing results are usually obtained by various analytical
techniques, for example, the conical shell fixed point theorem [1, 6], Banach contraction
map method [7], Leray-Schauder fixed point theorem [2, 10], and the upper and lower
solution method [3]. It seems that the variational technique combining with the critical
point theory [11] developed in the recent decades is one of the effective ways to study the
boundary value problems of difference equations. However because the variational method
requires a “symmetrical” functional, it is hard for the odd-order difference equations to create
a functional satisfying the “symmetrical” property. Therefore, the even-order difference
equations have been investigated in most references.

Let a, b,N > 1, n ≥ 1, k be integers, and a < b, [a, b] := {a, a + 1, . . . , b} be a discrete
interval in Z. Inspired by [5, 8], in this paper, we try to investigate the following 2nth-order
boundary value problem (BVP) of difference equation via variational method combining
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with some traditional analytical skills:

Δn
(
pk−nΔnyk−n

)
+ (−1)n+1f(k, yk

)
= 0 k ∈ [1,N], (1.1)

y1−n = y2−n = · · · = y0 = 0, yN+1 = · · · = yN+n = 0, (1.2)

where Δnyk = Δn−1yk+1 − Δn−1yk (n � 1) is the forward difference operator; pk ∈ R for k ∈
[1−n,N] and f ∈ C([1,N]×R,R).A variational functional for BVP (1.1)-(1.2) is constructed
which transforms the existence of solutions of the boundary value problem (BVP) to the
existence of critical points of this functional. In order to prove the existence criteria of critical
points of the functional, some lemmas are given in Section 2. Two criteria for the existence of
at least one solution and two solutions for BVP (1.1)-(1.2) are established in Section 3 which
is the generalization for BVP of the even-order difference equations. The existence results
obtained in this paper are not found in the references, to the best of our knowledge.

For convenience, we will use the following notations in the following sections:

F(k, u) =
∫u

0
f(k, s)ds, p = max

k∈[1−n,N]

∣∣pk
∣∣, p = min

k∈[1−n,N]

∣∣pk
∣∣. (1.3)

2. Variational Structure and Preliminaries

We need two lemmas from [12] or [11].

Lemma 2.1. Let H be a real reflexive Banach space with a norm ‖ · ‖, and let φ be a weakly lower
(upper) semicontinuous functional, such that

lim
‖x‖→∞

φ(x) = +∞
(
or lim

‖x‖→∞
φ(x) = −∞

)
, (2.1)

then there exists x0 ∈ H such that

φ(x0) = inf
x∈H

φ(x0)

(

or φ(x0) = sup
x∈H

φ(x0)

)

. (2.2)

Furthermore, if φ has bounded linear Gâteaux derivative, then φ′(x0) = 0.

Lemma 2.2 (mountain-pass lemma). Let H be a real Banach space, and let φ : H →
R be continuously differential, satisfying the P-S condition. Assume that x0, x1 ∈ H and Ω
is an open neighborhood of x0, but x1 /∈Ω. If max{φ(x0), φ(x1)} < infx∈∂Ωφ(x), then c =
infh∈Γmaxt∈[0,1]φ(h(t)) is the critical value of φ, where

Γ = {h | h : [0, 1] −→ H, h is continuous, h(0) = x0, h(1) = x1}. (2.3)

This means that there exists x2 ∈ H, s.t. φ′(x2) = 0, φ(x2) = c.

The following lemma will be used in the proof of Lemma 2.4.



Advances in Difference Equations 3

Lemma 2.3. IfAm×m is a symmetric and positive-defined real matrix, Bm×n is a real matrix, BT is the
transposed matrix of B. Then BTAB is positive defined if and only if rankB = n.

Proof. Since A is positive defined, then

BTAB is positive-defined ⇐⇒ ∀x /= 0, xTBTABx > 0

⇐⇒ ∀x /= 0, (Bx)TA(Bx) > 0 ⇐⇒ ∀x /= 0, Bx /= 0 ⇐⇒ rankB = n.
(2.4)

Let H be a Hilbert space defined by

H �
{
y : [1 − n,N + n] −→ R | y1−n = y2−n = · · · = y0 = 0, yN+1 = · · · = yN+n = 0

}
(2.5)

with the norm

∥∥y
∥∥ =

√√√
√

N∑

k=1

y2
k
, y ∈ H. (2.6)

Hence H is an N-dimensional Hilbert space. For any q > 1, let ‖y‖q = (
∑N

k=1 y
2
k
)1/q, then one

can show that there exist constants q1, q2 > 0, s.t. q1‖y‖ � ‖y‖q � q2‖y‖; that is, ‖ · ‖q is an
equivalent norm of ‖ · ‖ (see [9, page 68]).

Lemma 2.4. There is

λ‖x‖2 �
N∑

k=1−n
(Δnxk)

2 � 4n‖x‖2, x ∈ H, where λ is a postive constant. (2.7)

Proof. Since x ∈ H, Δn−jxN+1 = Δn−jxj−n = 0, j = 1, 2, . . . , n. By using the inequality (a − b)2 �
2(a2 + b2), a, b ∈ R, we have

N∑

k=1−n
(Δnxk)

2 =
N∑

k=1−n
(Δn−1xk+1 −Δn−1xk)

2 ≤ 2
N∑

k=1−n

[(
Δn−1xk+1

)2
+ (Δn−1xk)

2
]

= 2

[
N+1∑

k=2−n

(
Δn−1xk

)2
+

N∑

k=2−n

(
Δn−1xk

)2
]

= 4
N∑

k=2−n
(Δn−1xk)

2

≤ 4 × 2

[
N∑

k=2−n

(
Δn−2xk+1

)2
+

N∑

k=2−n
(Δn−2xk)

2
]

= 4 × 2

[
N+1∑

k=3−n

(
Δn−2xk

)2
+

N∑

k=2−n

(
Δn−2xk

)2
]

= 42
N∑

k=3−n
(Δn−2xk)

2
.

(2.8)
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Repeating the above process, we obtain

N∑

k=1−n
(Δnxk)

2 � 4n
N∑

k=1

(xk)
2 = 4n‖x‖2. (2.9)

On the other hand, define bk � Δnxk =
∑n

j=0(−1)jCj
nxk+n−j , k ∈ [1 − n,N], where Cj

n is

the combination number, then we can rewrite {bk}N1−n in a vector form, that is, b = Bx, where
b = (b1−n, b2−n, . . . , bN)T , x = (x1, x2, . . . , xN)T , and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

c1 1

...
...

. . .

cn cn−1 · · · 1

cn · · · c1 1

. . .
...

...
. . .

cn cn−1 · · · 1

cn · · · c1 1

. . .
...

...

cn cn−1

cn

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(N+n)×N

, (2.10)

where ci = (−1)iCi
n. Hence rankB = N. Note that

N∑

k=1−n
(Δnxk)

2 = bTb = (Bx)TBx = xTBTBx, (2.11)

and by Lemma 2.3 with Am×m = I(N+n)×(N+n), we know that BTB is positive defined. Hence
all eigenvalues of BTB are real and positive. Let λ be the minimal eigenvalue of these N
eigenvalues, then λ > 0. Therefore xTBTBx � λxTx, that is,

∑N
1−n(Δ

nxk)
2 � λ‖x‖2.

However, how to find the λ in Lemma 2.4 is a skillful and challenging task. The
following lemma from [13] offers some help for the estimation of λ.

Lemma 2.5 (Brualdi [13]). IfA = [aij] ∈ MN is weak irreducible, then each eigenvalue is contained
in the set

⋃

γ∈C(A)

⎧
⎨

⎩
z ∈ C :

∏

Pi∈γ
|z − aii| �

∏

Pi∈γ
R′

i

⎫
⎬

⎭
. (2.12)
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In Lemma 2.5, C is the complex number set, and the denotations C(A), γ , Pi, R′
i can

be found in [13]. Since BTB is positive defined, all eigenvalues are positive real numbers.
Therefore, by Lemma 2.5, let

B =
⋃

γ∈C(BTB)

⎧
⎨

⎩
z ∈ R :

∏

Pi∈γ
|z − bii| �

∏

Pi∈γ
R′

i

⎫
⎬

⎭
, (2.13)

where BTB = [bij]. B is a subset of R and can be calculated directly from BTB. Define λ =
max{0,min{B}}. If λ > 0, we can use this λ as λ in Lemma 2.4. If λ = 0, then one needs to
calculate the eigenvalues directly.

Define the functional φ on H by

φ
(
y
)

�
N∑

k=1−n

[
1
2
pk(Δnyk)

2 − F
(
k, yk

)
]
. (2.14)

Then φ is C1 with

(
φ′(y

)
, x
)
=

N∑

k=1−n

[
pk
(
Δnyk

)
(Δnxk) − xkf

(
k, yk

)]
, (2.15)

where x = {xk}N+n
k=1−n ∈ H and (·, ·) is the inner product inH. In fact, we have

φ
(
y + x

) − φ
(
y
)
=

N∑

k=1−n

1
2
pk
[(
Δnyk + Δnxk

)2 − (Δnyk)
2
]
− [F(k, yk + xk

) − F
(
k, yk

)]

=
N∑

k=1−n

[
pk
(
Δnyk

)
(Δnxk) +

1
2
pk(Δnxk)

2 − f
(
k, yk + θxk

)
xk

]
, θ ∈ (0, 1).

(2.16)

The continuity of f and the right-hand side of the inequality in Lemma 2.4 lead to (2.15).
Furthermore, for any x ∈ H,we have Δn−jxN+1 = Δn−jx1−n = 0, j = 1, 2, . . . , n. By using

the following formula (e.g., see [14, page 28]):

n2∑

k=n1

[
gkΔfk + fk+1Δgk

]
=
(
fkgk

)∣∣n2+1
n1

, (2.17)
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we have

N∑

1−n
pk
(
Δnyk

)
(Δnxk) = pk−1

(
Δnyk−1

)(
Δn−1xk

)∣∣
∣
N+1

1−n
−

N∑

1−n
Δ
(
pk−1Δnyk−1

)
Δn−1xk

= −
N∑

1−n
Δ
(
pk−1Δnyk−1

)
Δn−1xk

= −Δ(pk−2Δnyk−2
)
Δn−2xk

∣
∣
∣
N+1

1−n
+

N∑

1−n
Δ2(pk−2Δnyk−2

)
Δn−2xk

=
N∑

1−n
Δ2(pk−2Δnyk−2

)
Δn−2xk.

(2.18)

Repeating the above process, we obtain

N∑

1−n
pk
(
Δnyk

)
(Δnxk) = (−1)n

N∑

1−n
Δn(pk−nΔnyk−n

)
xk. (2.19)

Let (φ′(y), x) = 0, that is,

N∑

1−n

[
(−1)nΔn(pk−nΔnyk−n

) − f
(
k, yk

)]
xk

= (−1)n
N∑

1−n

[
Δn(pk−nΔnyk−n

)
+ (−1)n+1f(k, yk

)]
xk

= 0.

(2.20)

Since x ∈ H is arbitrary, we know that the solution of BVP (1.1)-(1.2) corresponds to the
critical point of φ.

3. Main Results

Now we present our main results of this paper.

Theorem 3.1. If there existM1 > 0, a1 > 0, a2 ∈ R, and σ > 2 s.t.

F(k, u) � a1|u|σ + a2, ∀ |u| > M1, (3.1)

then BVP (1.1)-(1.2) has at least one solution.

Proof. In fact, we can choose a suitable a2 < 0 such that

F(k, u) � a1|u|σ + a2, ∀u ∈ R. (3.2)
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Since there exists σ1 > 0 with σ1‖y‖ � ‖y‖σ,we have

N∑

1−n
F
(
k, yk

)
� a1

N∑

1

∣
∣yk

∣
∣σ + a2(N + n) � a1σ

σ
1

∥
∥y
∥
∥σ + a2(N + n). (3.3)

Then by Lemma 2.4, we obtain

φ
(
y
)

� p

2
4n
∥
∥y
∥
∥2 − a1σ

σ
1

∥
∥y
∥
∥σ − a2(N + n). (3.4)

Noticing that σ > 2, we have lim‖y‖→+∞φ(y) = −∞. From Lemma 2.1, the conclusion of this
lemma follows.

Corollary 3.2. If there existsM2 > 0 s.t. uf(k, u) > 0 for all |u| > M2, and

inf
k∈[1−n,N]

lim
u→∞

∣∣f(k, u)
∣∣

|u|r � r1, (3.5)

where r, r1 satisfy either r = 1, r1 > 4np or r > 1, r1 > 0, then BVP (1.1)-(1.2) has at least one
solution.

Proof. Assume that r = 1, r1 > 4np. Then for ε1 = (r1 − 4np)/2 > 0, there exists M3 > M2,
such that |f(k, y)| � (r1 − ε1)|y| as |y| > M3. We have from the continuity of f(k, u) that there
is a K > 0 such that −K ≤ f(k, u) ≤ K for all k ∈ [1,N], |u| ≤ M3. When y > 0, one has
f(k, y) � (r1 − ε1)y > 0 for y ∈ (M3,+∞), then

∫y

0
f(k, s)ds =

∫M3

0
f(k, s)ds +

∫y

M3

f(k, s)ds � −KM3 +
r1 − ε1

2
y2 − r1 − ε1

2
M2

3; (3.6)

when y < 0, one has f(k, y) � (r1 − ε1)y < 0 for y ∈ (−∞,−M3), then

∫y

0
f(k, s)ds =

∫−M3

0
f(k, s)ds +

∫y

−M3

f(k, s)ds � −KM3 +
r1 − ε1

2
y2 − r1 − ε1

2
M2

3. (3.7)

Let c := −KM3 − ((r1 − ε1)/2)M2
3, then we have

∫y
0f(k, s)ds � ((r1 − ε1)/2)y2 + c for y ∈ R.

Therefore, we have

φ
(
y
)

� p

2
4n
∥∥y
∥∥2 − r1 − ε1

2

N∑

1

∣∣yk

∣∣2 − c =
4np − r1 + ε1

2
∥∥y
∥∥2 − c = −ε1

2
∥∥y
∥∥2 − c, (3.8)

which implies lim‖y‖→+∞φ(y) = −∞, and by Lemma 2.1, the conclusion of this lemma follows.
Assume that r > 1, r1 > 0. Then for ε2 = r1/2 > 0, there exists M4 > M2, such

that |f(k, y)| � (r1/2)|y| as |y| > M4. We have from the continuity of f(k, u) that there is
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a K > 0 such that −K ≤ f(k, u) ≤ K for all k ∈ [1,N], |u| ≤ M4. When y > 0, one has
f(k, y) � (r1/2)yr > 0, y ∈ (M4,+∞), then we have

∫y

0
f(k, s)ds =

∫M4

0
f(k, s)ds +

∫y

M4

f(k, s)ds

� −KM4 +
r1

2(r + 1)
yr+1 − r1

2(r + 1)
Mr+1

4 ,

(3.9)

when y < 0, one has f(k, y) � −(r1/2)|y|r = −(r1/2)(−y)r < 0, y ∈ (−∞,−M4), then we have

∫y

0
f(k, s)ds =

∫−M4

0
f(k, s)ds +

∫y

−M4

f(k, s)ds

� −KM4 +
r1
2

∫y

−M4

(−s)rd(−s)

= −KM4 +
r1

2(r + 1)

∣∣y
∣∣r+1 − r1

2(r + 1)
(M4)

r+1.

(3.10)

Let d := −KM4 − (r1/2(r + 1))Mr+1
4 , then we have

∫y
0f(k, s)ds � (r1/2(r + 1))|y|r+1 + d for

|y| > M4. Therefore, by Theorem 3.1, the conclusion of this lemma follows.

Theorem 3.3. Assume that pk > 0, k = 1 − n, . . . ,N, and

(i) supk∈[1−n,N]limu→ 0(f(k, u)/u) � r2 < pλ, λ > 0 is defined in Lemma 2.4;

(ii) F satisfies (3.1) in Theorem 3.1 or f satisfies the assumptions in Corollary 3.2.

Then BVP (1.1)-(1.2) has at least two solutions.

Proof. We first show that φ satisfies the P-S condition. Let {y(m)}∞m=1 ⊂ H satisfy that {φ(y(m))}
is bounded and limm→∞φ′(y(m)) = 0. If {y(m)} is unbounded, it possesses a divergent
subseries, say y(mk) → +∞ as k → ∞. However from (ii), we get (3.4) or (3.8), hence
φ(y(mk)) → −∞ as k → ∞, which is contradictory to the the fact that {φ(y(m))} is bounded.

Next we use the mountain-pass lemma to finish the proof. By (i), for ε3 = (pλ− r2)/2 >

0, there exists R1 > 0 such that f(k, y)/y � r2 + ε3 for |y| � R1. Then
∫y
0f(k, s)ds � ((r2 +

ε3)/2)y2 for |y| � R1. Now together with Lemma 2.3,we have

φ
(
y
)

�
p

2
λ
∥∥y
∥∥2 − r2 + ε3

2

N∑

1−n
|yk|2 =

∥∥y
∥∥2
(

pλ − r2 − ε3

2

)

=
ε3
2
∥∥y
∥∥2 > 0 for

∣∣y
∣∣ � R1,

(3.11)

which implies that

φ
(
y
)

� ε3
2
R2

1 > 0 = φ(θ), y ∈ ∂Ω, (3.12)

where θ is the zero element in H, and Ω = {y ∈ H | ‖y‖ < R1}. Since we have from (3.4)
or (3.8) that lim‖y‖→+∞φ(y) = −∞, there exists y1 ∈ H with ‖y1‖ > R1, that is, y1 /∈Ω, but
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φ(y1) < φ(θ) = 0. Using Lemma 2.2, we have shown that ξ = infh∈Γmaxt∈[0,1]φ(h(t)) is the
critical value of φ,with Γ defined as

Γ =
{
h | h : [0, 1] −→ H,h is continuous, h(0) = θ, h(1) = y1

}
. (3.13)

We denote y as its corresponding critical point.
On the other hand, by Theorem 3.1 or Corollary 3.2, we know that there exists y∗ ∈ H,

s.t. φ(y∗) = supy∈Hφ(y). If y∗ /=y, the theorem is proved. If on the contrary, y∗ = y, that
is, supy∈Hφ(y) = infh∈Γmaxt∈[0,1]φ(h(t)), that implies for any h ∈ Γ, maxt∈[0,1]φ(h(t)) =
supy∈Hφ(y). Taking h1 /=h2 in Γ with maxt∈[0,1]φ(h1(t)) = maxt∈[0,1]φ(h2(t)) = supy∈Hφ(y),
by the continuity of φ(h(t)), there exist t1, t2 ∈ (0, 1) s.t. φ(h1(t1)) = maxt∈[0,1]φ(h1(t)),
φ(h2(t2)) = maxt∈[0,1]φ(h2(t)). Hence h1(t1), h2(t2) are two different critical points of φ, that
is, BVP (1.1)-(1.2) has at least two different solutions.

4. An Example

Consider the 6th-order boundary value problem for difference equation

Δ6yk−3 + y3
ke

y2
k
−9 = 0, k ∈ [1, 300],

y−2 = y−1 = y0 = 0, y301 = y302 = y303 = 0.
(4.1)

Let f(k, u) = u3eu
2−9, we have limu→ 0(f(k, u)/u) = 0, limu→∞(f(k, u)/u) = +∞. Hence

f(k, u) satisfies the conditions in Theorem 3.3, the boundary value problem (4.1) has at least
two solutions.
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