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The authors employs a hybrid fixed point theorem involving the multiplication of two operators
for proving an existence result of locally attractive solutions of a nonlinear quadratic Volterra
integral equation of fractional (arbitrary) order. Investigations will be carried out in the Banach
space of real functions which are defined, continuous, and bounded on the real half axis �+ .

1. Introduction

The theory of differential and integral equations of fractional order has recently received a
lot of attention and now constitutes a significant branch of nonlinear analysis. Numerous
research papers and monographs have appeared devoted to differential and integral
equations of fractional order (cf., e.g., [1–6]). These papers contain various types of existence
results for equations of fractional order.

In this paper, we study the existence of locally attractive solutions of the following
nonlinear quadratic Volterra integral equation of fractional order:

x(t) =
[
f(t, x(t))

]
(

q(t) +
1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds

)

, (1.1)

for all t ∈ �+ and α ∈ (0, 1), in the space of real functions defined, continuous, and bounded
on an unbounded interval.
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It is worthwhile mentioning that up to now integral equations of fractional order have
only been studied in the space of real functions defined on a bounded interval. The result
obtained in this paper generalizes several ones obtained earlier by many authors.

In fact, our result in this paper is motivated by the extension of the work of Hu and
Yan [7]. Also, We proceed and generalize the results obtained in the papers [8, 9].

2. Notations, Definitions, and Auxiliary Facts

Denote by L1(a, b) the space of Lebesgue integrable functions on the interval (a, b), which
is equipped with the standard norm. Let x ∈ L1(a, b) and let α > 0 be a fixed number. The
Riemann-Liouville fractional integral of order α of the function x(t) is defined by the formula:

Iαx(t) =
1

Γ(α)

∫ t

0

x(s)

(t − s)1−α
ds, t ∈ (a, b), (2.1)

where Γ(α) denotes the gamma function.
It may be shown that the fractional integral operator, Iα transforms the space L1(a, b)

into itself and has some other properties (see [10–12]).
Let X = BC(�+) be the space of continuous and bounded real-valued functions on �+

and letΩ be a subset ofX. Let P : X → X be an operator and consider the following operator
equation in X, namely,

x(t) = (Px)(t), (2.2)

for all t ∈ �+ . Below we give different characterizations of the solutions for the operator
equation (2.2) on �+ . We need the following definitions in the sequel.

Definition 2.1. We say that solutions of (2.2) are locally attractive if there exists an x0 ∈ BC(�+ )
and an r > 0 such that for all solutions x = x(t) and y = y(t) of (2.2) belonging to Br(x0) ∩Ω
we have that:

lim
t→∞

(
x(t) − y(t)

)
= 0. (2.3)

Definition 2.2. An operator P : X → X is called Lipschitz if there exists a constant k such that
‖Px − Py‖ ≤ k‖x − y‖ for all x, y ∈ X. The constant k is called the Lipschitz constant of P on
X.

Definition 2.3 (Dugundji and Granas [13]). An operator P on a Banach space X into itself is
called compact if for any bounded subset S of X, P(S) is a relatively compact subset of X. If
P is continuous and compact, then it is called completely continuous on X.

We seek the solutions of (1.1) in the space BC(�+) of continuous and bounded real-
valued functions defined on �+ . Define a standard supremum norm ‖ · ‖ and a multiplication
“·” in BC(�+) by

‖x‖ = sup{|x(t)| : t ∈ �+},
(
xy

)
(t) = x(t)y(t), t ∈ �+ . (2.4)
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Clearly, BC(�+) becomes a Banach space with respect to the above norm and the
multiplication in it. By L1(�+ ) we denote the space of Lebesgue integrable functions on �+

with the norm ‖ · ‖L1 defined by

‖x‖L1 =
∫∞

0
|x(t)|dt. (2.5)

We employ a hybrid fixed point theorem of Dhage [14] for proving the existence result.

Theorem 2.4 (Dhage [14]). Let S be a closed-convex and bounded subset of the Banach spaceX and
let F,G : S → S be two operators satisfying:

(a) F is Lipschitz with the Lipschitz constant k,

(b) G is completely continuous,

(c) FxGx ∈ S for all x ∈ S, and

(d) Mk < 1 whereM = ‖G(S)‖ = sup{‖Gx‖ : x ∈ S}.
Then the operator equation

FxGx = x (2.6)

has a solution and the set of all solutions is compact in S.

3. Existence Result

We consider the following set of hypotheses in the sequel.

(H1) The function f : �+ × � → � is continuous, and there exists a bounded function
l : �+ → �+ with bound L satisfying

∣∣f(t, x) − f
(
t, y

)∣∣ ≤ l(t)
∣∣x − y

∣∣ (3.1)

for all t ∈ �+ and x, y ∈ �.
(H2) The function f1 : �+ → � defined by f1 = |f(t, 0)| is bounded with

f0 = sup
{
f1(t) : t ∈ �+

}
. (3.2)

(H3) The function q : �+ → �+ is continuous and limt→∞q(t) = 0.

(H4) The function g : �+ × �+ × � → � is continuous. Moreover, there exist a function
m : �+ → �+ being continuous on �+ and a function h : �+ → �+ being continuous
on �+ with h(0) = 0 and such that

∣
∣g(t, s, x) − g

(
t, s, y

)∣∣ ≤ m(t)h
(∣∣x − y

∣
∣) (3.3)

for all t, s ∈ �+ such that s ≤ t and for all x, y ∈ �.
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For further purposes let us define the function g1 : �+ → �+ by putting

g1(t) = max
{∣∣g(t, s, 0)

∣
∣ : 0 ≤ s ≤ t

}
. (3.4)

Obviously the function g1 is continuous on �+ .
In what follows we will assume additionally that the following conditions are

satisfied.

(H5) The functions a, b : �+ → �+ defined by the formulas

a(t) = m(t)tα, b(t) = g1(t)tα, (3.5)

are bounded on �+ and vanish at infinity, that is, limt→∞a(t) = limt→∞b(t) = 0.

Remark 3.1. Note that if the hypotheses (H3) and (H5) hold, then there exist constantsK1 > 0
and K2 > 0 such that:

K1 = sup
{
q(t) : t ∈ �+

}
, K2 = sup

{
a(t)h(r) + b(t)

Γ(α + 1)
: t, r ∈ �+

}
. (3.6)

Theorem 3.2. Assume that the hypotheses (H1)–(H5) hold. Furthermore, if L(K1 +K2) < 1, where
K1 and K2 are defined in Remark 3.1, then (1.1) has at least one solution in the space BC(�+ ).
Moreover, solutions of (1.1) are locally attractive on �+ .

Proof. Set X = BC(�+ ,�). Consider the closed ball Br(0) in X centered at origin 0 and of
radius r, where r = f0(K1 +K2)/(1 − L(K1 +K2)) > 0.

Let us define two operators F and G on Br(0) by

Fx(t) = f(t, x(t)),

Gx(t) = q(t) +
1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds,

(3.7)

for all t ∈ �+ .
According to the hypothesis (H1), the operator F is well defined and the function

Fx is continuous and bounded on �+ . Also, since the function q is continuous on �+ , the
functionGx is continuous and bounded in view of hypothesis (H4). ThereforeF andG define
the operators F,G : Br(0) → X. We will show that F and G satisfy the requirements of
Theorem 2.4 on Br(0).

The operator F is a Lipschitz operator on Br(0). In fact, let x, y ∈ Br(0) be arbitrary.
Then by hypothesis (H1), we get

∣
∣Fx(t) − Fy(t)

∣
∣ =

∣
∣f(t, x(t)) − f

(
t, y(t)

)∣∣ ≤ l(t)
∣
∣x(t) − y(t)

∣
∣ ≤ L

∥
∥x − y

∥
∥, (3.8)
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for all t ∈ �+ . Taking the supremum over t,

∥
∥Fx − Fy

∥
∥ ≤ L

∥
∥x − y

∥
∥, (3.9)

for all x, y ∈ Br(0). This shows that F is a Lipschitz on Br(0)with the Lipschitz constant L.
Next, we show that G is a continuous and compact operator on Br(0). First we show

that G is continuous on Br(0). To do this, let us fix arbitrary ε > 0 and take x, y ∈ Br(0) such
that ‖x − y‖ ≤ ε. Then we get

∣
∣(Gx)(t) − (

Gy
)
(t)

∣
∣ ≤ 1

Γ(α)

∫ t

0

∣∣g(t, s, x(s)) − g
(
t, s, y(s)

)∣∣

(t − s)1−α
ds

≤ 1
Γ(α)

∫ t

0

m(t)h
(∣∣x(s) − y(s)

∣∣)

(t − s)1−α
ds

≤ m(t)tα

Γ(α + 1)
h(r)

≤ a(t)
Γ(α + 1)

h(r).

(3.10)

Since h(r) is continuous on �+ , then it is bounded on �+ , and there exists a nonnegative
constant, say h∗, such that h∗ = sup{h(r) : r > 0}. Hence, in view of hypothesis (H5), we
infer that there exists T > 0 such that a(t) ≤ Γ(α + 1)ε/h∗ for t > T . Thus, for t > T we derive
that

∣∣(Gx)(t) − (
Gy

)
(t)

∣∣ ≤ ε. (3.11)

Furthermore, let us assume that t ∈ [0, T]. Then, evaluating similarly to the above we obtain
the following estimate:

∣
∣(Gx)(t) − (

Gy
)
(t)

∣
∣ ≤ 1

Γ(α)

∫ t

0

∣∣g(t, s, x(s)) − g
(
t, s, y(s)

)∣∣

(t − s)1−α
ds ≤ Tα

Γ(α + 1)
ωT

r

(
g, ε

)
, (3.12)

where ωT
r (g, ε) = sup{|g(t, s, x) − g(t, s, y)| : t, s ∈ [0, T], x, y ∈ [−r, r], |x − y| ≤ ε}.

Therefore, from the uniform continuity of the function g(t, s, x) on the set [0, T] ×
[0, T] × [−r, r] we derive that ωT

r (g, ε) → 0 as ε → 0. Hence, from the above-
established facts we conclude that the operator G maps the ball Br(0) continuously into
itself.
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Now, we show that G is compact on Br(0). It is enough to show that every sequence
{Gxn} in G(Br(0)) has a Cauchy subsequence. In view of hypotheses (H3) and (H4), we
infer that:

|Gxn(t)| ≤
∣∣q(t)

∣∣ +
1

Γ(α)

∫ t

0

∣∣g(t, s, xn(s))
∣∣

(t − s)1−α
ds

≤ ∣∣q(t)
∣∣ +

1
Γ(α)

∫ t

0

∣∣g(t, s, xn(s)) − g(t, s, 0)
∣∣

(t − s)1−α
ds +

1
Γ(α)

∫ t

0

∣∣g(t, s, 0)
∣∣

(t − s)1−α
ds

≤ ∣
∣q(t)

∣
∣ +

1
Γ(α)

∫ t

0

m(t)h(|xn(s)|)
(t − s)1−α

ds +
1

Γ(α)

∫ t

0

g1(t)

(t − s)1−α
ds

≤ ∣∣q(t)
∣∣ +

m(t)tα

Γ(α + 1)
h(r) +

g1(t)tα

Γ(α + 1)

≤ ∣∣q(t)
∣∣ +

a(t)h(r) + b(t)
Γ(α + 1)

≤ K1 +K2,

(3.13)

for all t ∈ �+ . Taking the supremum over t, we obtain ‖Gxn‖ ≤ K1 + K2 for all n ∈ �. This
shows that {Gxn} is a uniformly bounded sequence in G(Br(0)). We show that it is also
equicontinuous. Let ε > 0 be given. Since limt→∞q(t) = 0, there is constant T > 0 such that
|q(t)| < ε/2 for all t ≥ T .

Let t1, t2 ∈ �+ be arbitrary. If t1, t2 ∈ [0, T], then we have

|Gxn(t2) −Gxn(t1)|

≤ ∣∣q(t2) − q(t1)
∣∣ +

1
Γ(α)

∣∣∣
∣∣

∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds −

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣
∣∣

≤ ∣
∣q(t2) − q(t1)

∣
∣ +

1
Γ(α)

∣
∣∣∣
∣

∫ t1

0

g(t2, s, xn(s))

(t2 − s)1−α
ds +

∫ t2

t1

g(t2, s, xn(s))

(t2 − s)1−α
ds +

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣
∣∣∣
∣

≤ ∣
∣q(t2) − q(t1)

∣
∣

+
1

Γ(α)

(∫ t1

0

∣∣∣
∣∣
g(t2, s, xn(s))

(t2 − s)1−α
− g(t1, s, xn(s))

(t2 − s)1−α

∣∣∣
∣∣
ds

+
∫ t1

0

∣∣
∣∣∣
g(t1, s, xn(s))

(t2 − s)1−α
− g(t1, s, xn(s))

(t1 − s)1−α

∣∣
∣∣∣
ds +

∫ t2

t1

∣∣g(t2, s, xn(s))
∣∣

(t2 − s)1−α
ds

)



Advances in Difference Equations 7

≤ ∣
∣q(t2) − q(t1)

∣
∣

+
1

Γ(α)

(∫ t1

0

∣∣g(t2, s, xn(s)) − g(t1, s, xn(s))
∣∣

(t2 − s)1−α
ds

+
∫ t1

0

∣∣g(t1, s, xn(s))
∣∣
[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds +
∫ t2

t1

∣
∣g(t2, s, xn(s))

∣
∣

(t2 − s)1−α
ds

)

≤ ∣
∣q(t2) − q(t1)

∣
∣

+
1

Γ(α)

(∫ t1

0

[∣∣g(t2, s, xn(s)) − g(t1, s, xn(s))
∣
∣] 1

(t2 − s)1−α
ds

+
∫ t1

0

(∣∣g(t1, s, xn(s)) − g(t1, s, 0)
∣∣ +

∣∣g(t1, s, 0)
∣∣)
[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds

+
∫ t2

t1

∣
∣g(t2, s, xn(s)) − g(t2, s, 0)

∣
∣ +

∣
∣g(t2, s, 0)

∣
∣

(t2 − s)1−α
ds

)

≤ ∣
∣q(t2) − q(t1)

∣
∣

+
1

Γ(α)

(∫ t1

0

[∣∣g(t2, s, xn(s)) − g(t1, s, xn(s))
∣∣] 1

(t2 − s)1−α
ds

+
∫ t1

0

[
m(t1)h(|xn(s)|) + g1(t1)

]
[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds

+
∫ t2

t1

m(t2)h(|xn(s)|) + g1(t2)

(t2 − s)1−α
ds

)

≤ ∣∣q(t2) − q(t1)
∣∣ +

1
Γ(α)

∫ t1

0

[∣∣g(t2, s, xn(s)) − g(t1, s, xn(s))
∣∣] 1

(t2 − s)1−α
ds

+
m(t1)h(r) + g1(t1)

Γ(α + 1)
[
tα1 − tα2 + (t2 − t1)α

]
+
m(t2)h(r) + g1(t2)

Γ(α + 1)
(t2 − t1)α.

(3.14)

From the uniform continuity of the function q(t) on [0, T] and the function g in [0, T]×
[0, T] × [−r, r], we get |Gxn(t2) −Gxn(t1)| → 0 as t1 → t2.

If t1, t2 ≥ T , then we have

|Gxn(t2) −Gxn(t1)| ≤
∣∣q(t2) − q(t1)

∣∣ +
1

Γ(α)

∣∣∣
∣∣

∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds −

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣
∣∣

≤ ∣
∣q(t1)

∣
∣ +

∣
∣q(t2)

∣
∣ +

1
Γ(α)

∣
∣∣∣
∣

∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds −

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣
∣∣∣
∣

< ε,

(3.15)

as t1 → t2.
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Similarly, if t1, t2 ∈ �+ with t1 < T < t2, then we have

|Gxn(t2) −Gxn(t1)| ≤ |Gxn(t2) −Gxn(T)| + |Gxn(T) −Gxn(t1)|. (3.16)

Note that if t1 → t2, then T → t2 and t1 → T . Therefore from the above obtained estimates,
it follows that:

|Gxn(t2) −Gxn(T)| −→ 0, |Gxn(T) −Gxn(t1)| −→ 0, as t1 −→ t2. (3.17)

As a result, |Gxn(t2) − Gxn(T)| → 0 as t1 → t2. Hence {Gxn} is an equicontinuous sequence
of functions in X. Now an application of the Arzelá-Ascoli theorem yields that {Gxn} has
a uniformly convergent subsequence on the compact subset [0, T] of �. Without loss of
generality, call the subsequence of the sequence itself.

We show that {Gxn} is Cauchy sequence in X. Now |Gxn(t) − Gx(t)| → 0 as n → ∞
for all t ∈ [0, T]. Then for given ε > 0 there exists an n0 ∈ � such that for m,n ≥ n0, then we
have

|Gxm(t) −Gxn(t)| = 1
Γ(α)

∣
∣∣∣
∣

∫ t

0

g(t, s, xm(s)) − g(t, s, xn(t))

(t − s)1−α
ds

∣
∣∣∣
∣

≤ 1
Γ(α)

∫ t

0

∣∣g(t, s, xm(s)) − g(t, s, xn(t))
∣∣

(t − s)1−α
ds

≤ 1
Γ(α)

∫ t

0

m(t)h(|xm(s) − xn(s)|)
(t − s)1−α

ds

≤ m(t)tαh(r)
Γ(α + 1)

≤ a(t)h∗

Γ(α + 1)

< ε.

(3.18)

This shows that {Gxn} ⊂ G(Br(0)) ⊂ X is Cauchy. Since X is complete, then {Gxn} converges
to a point in X. As G(Br(0)) is closed, {Gxn} converges to a point in G(Br(0)). Hence,
G(Br(0)) is relatively compact and consequently G is a continuous and compact operator on
Br(0).
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Next, we show that FxGx ∈ Br(0) for all x ∈ Br(0). Let x ∈ Br(0) be arbitrary, then

|Fx(t)Gx(t)| ≤ |Fx(t)||Gx(t)|

≤ ∣∣f(t, x(t))
∣∣
(
∣∣q(t)

∣∣ +
1

Γ(α)

∫ t

0

∣
∣g(t, s, x(s))

∣
∣

(t − s)1−α
ds

)

≤ [∣∣f(t, x(t)) − f(t, 0)
∣∣ +

∣∣f(t, 0)
∣∣]

+

(
∣∣q(t)

∣∣ +
1

Γ(α)

∫ t

0

∣
∣g(t, s, x(s)) − g(t, s, 0)

∣
∣ +

∣
∣g(t, s, 0)

∣
∣

(t − s)1−α
ds

)

≤ [
l(t)|x(t)| + f1(t)

]
+

(
∣
∣q(t)

∣
∣ +

1
Γ(α)

∫ t

0

m(t)h(|x(t)|) + g1(t)

(t − s)1−α
ds

)

≤ [
L‖x‖ + f0

]
+
(∣
∣q(t)

∣
∣ +

m(t)tαh(r) + g1(t)tα

Γ(α + 1)

)

≤ [
L‖x‖ + f0

]
+
(∣∣q(t)

∣∣ +
a(t)h(r) + b(t)

Γ(α + 1)

)

≤ [
L‖x‖ + f0

]
+ (K1 +K2)

≤ L(K1 +K2)‖x‖ + f0(K1 +K2)

=
f0(K1 +K2)

1 − L(K1 +K2)

= r,

(3.19)

for all t ∈ �+ . Taking the supremum over t, we obtain ‖FxGx‖ ≤ r for all x ∈ Br(0). Hence
hypothesis (c) of Theorem 2.4 holds.

Also we have

M = ‖G(Br(0))‖
= sup{‖Gx‖ : x ∈ Br(0)}

= sup

{

sup
t≥0

{
∣
∣q(t)

∣
∣ +

1
Γ(α)

∫ t

0

∣∣g(t, s, x(s))
∣∣

(t − s)1−α
ds

}

: x ∈ Br(0)

}

≤ sup
t≥0

∣∣q(t)
∣∣ + sup

t≥0

[
a(t)h(r) + b(t)

Γ(α + 1)

]

≤ K1 +K2,

(3.20)

and therefore Mk = L(K1 + K2) < 1. Now we apply Theorem 2.4 to conclude that (1.1) has
a solution on �+
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Finally, we show the local attractivity of the solutions for (1.1). Let x and y be any two
solutions of (1.1) in Br(0) defined on �+ , then we get

∣∣x(t) − y(t)
∣∣ ≤

∣∣
∣∣∣
f(t, x(t))

(

q(t) +
1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds

)∣∣
∣∣∣

+

∣
∣∣∣
∣
f
(
t, y(t)

)
(

q(t) +
1

Γ(α)

∫ t

0

g
(
t, s, y(s)

)

(t − s)1−α
ds

)∣
∣∣∣
∣

≤ ∣∣f(t, x(t))
∣∣
(
∣∣q(t)

∣∣ +
1

Γ(α)

∫ t

0

∣∣g(t, s, x(s))
∣∣

(t − s)1−α
ds

)

+
∣∣f
(
t, y(t)

)∣∣
(
∣∣q(t)

∣∣ +
1

Γ(α)

∫ t

0

∣
∣g
(
t, s, y(s)

)∣∣

(t − s)1−α
ds

)

≤ 2
(
Lr + f0

)(∣∣q(t)
∣∣ +

a(t)h(r) + b(t)
Γ(α + 1)

)
,

(3.21)

for all t ∈ �+ . Since limt→∞q(t) = 0, limt→∞a(t) = 0 and limt→∞b(t) = 0, for ε > 0, there are
real numbers T ′ > 0, T ′′ > 0 and T ′′′ > 0 such that |q(t)| < ε for t ≥ T ′, a(t) < h∗ε/Γ(α + 1) for
all t ≥ T ′′ and b(t) < ε/Γ(α+ 1) for all t ≥ T ′′′. If we choose T∗ = max{T ′, T ′′, T ′′′}, then from the
above inequality it follows that |x(t) − y(t)| ≤ ε∗ for t ≥ T∗, where ε∗ = 6(Lr + f0)ε > 0. This
completes the proof.

4. An Example

In this section we provide an example illustrating the main existence result contained in
Theorem 3.2.

Example 4.1. Consider the following quadratic Volterra integral equation of fractional order:

x(t) =
[
t + t2x(t)

](

te−t
2/2 +

1
Γ(2/3)

∫ t

0

x2/3(s)e−(3t+s) + 1/
(
10t8/3 + 1

)

(t − s)1/3
ds

)

, (4.1)

where t ∈ �+ .
Observe that the above equation is a special case of (1.1). Indeed, if we put α = 2/3

and

f(t, x) = t + t2x,

q(t) = te−t
2/2,

g(t, s, x) = x2/3(s)e−(3t+s) +
1

10t8/3 + 1
.

(4.2)

Then we can easily check that the assumptions of Theorem 3.2 are satisfied. In fact, we
have that the function f(t, x) is continuous and satisfies assumption (H1), where l(t) = t2
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and ‖f(t, 0)‖ = f(t, 0) = t = f1 as in assumption (H2). We have that the function q(t) is
continuous and it is easily seen that q(t) → 0 as t → ∞, thus assumption (H3) is satisfied.
Next, let us notice that the function g(t, s, x) satisfies assumption (H4), where m(t) = e−3t,
h(r) = r2/3 and g(t, s, 0) = 1/(10t8/3 + 1). Thus g1 = g(t, s, 0). To check that assumption (H5)
is satisfied let us observe that the functions a, b appearing in that assumption take the form:

a(t) = t2/3e−3t, b(t) =
t2/3

10t8/3 + 1
. (4.3)

Thus it is easily seen that a(t), b(t) → 0 as t → ∞. Finally, let us note that in Remark 3.1
there are two constants K1, K2 > 0 such that L(K1 + K2) < 1. It is also easy to check that
K1 = q(1) = e−1/2 = 0.60653 . . ., K2 = (e−3 + 0.1)/0.8856 = 0.16913 . . . and L = 1. Then
L(K1 + K2) = 0.77566 . . . < 1. Hence, taking into account that Γ(5/3) > 0.8856 (cf. [4]), all
the assumptions of Theorem 3.2 are satisfied and (4.1) has a solution in the space BC(�+ ).
Moreover, solutions of (4.1) are uniformly locally attractive in the sense of Definition 2.1.
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