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We study the existence of homoclinic solutions for semilinear p-Laplacian difference equations
with periodic coefficients. The proof of the main result is based on Brezis-Nirenberg’s Mountain
Pass Theorem. Several examples and remarks are given.

1. Introduction

This paper is concerned with the study of the existence of homoclinic solutions for the p-
Laplacian difference equation

Δ2
pu(k − 1) − V (k)u(k)|u(k)|q−2 + λf(k, u(k)) = 0, u(t) → 0, |t| → ∞,

(1.1)

where u(k), k ∈ � is a sequence or real numbers, Δ is the difference operator Δu(k) = u(k +
1) − u(k),

Δ2
pu(k − 1) = Δu(k)|Δu(k)|p−2 −Δu(k − 1)|Δu(k − 1)|p−2 (1.2)
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is referred to as the p-Laplacian difference operator, and functions V (k) and f(k, x) are T-
periodic in k and satisfy suitable conditions.

In the theory of differential equations, a trajectory x(t), which is asymptotic to a
constant as |t| → ∞ is called doubly asymptotic or homoclinic orbit. The notion of homoclinic
orbit is introduced by Poincaré [1] for continuous Hamiltonian systems.

Recently, there is a large literature on the use of variational methods to the existence of
homoclinic or heteroclinic orbits of Hamiltonian systems; see [2–7] and the references therein.

In the recent paper of Li [8] a unified approach to the existence of homoclinic orbits
for some classes of ODE’s with periodic potentials is presented. It is based on the Brezis and
Nirenberg’s mountain-pass theorem [9]. In this paper we extend this approach to homoclinic
orbits for discrete p-Laplacian type equations.

Discrete boundary value problems have been intensively studied in the last decade.
The studies of such kind of problems can be placed at the interface of certain mathematical
fields, such as nonlinear differential equations and numerical analysis. On the other hand,
they are strongly motivated by their applicability to mathematical physics and biology.

The variational approach to the study of various problems for difference equations has
been recently applied in, among others, the papers of Agarwal et al. [10], Cabada et al. [11],
Chen and Fang [12], Fang and Zhao [13], Jiang and Zhou [14], Ma and Guo [15], Mihăilescu
et al. [16], Kristály et al. [17].

Along the paper, given two integer numbers a < b, we will denote [a, b] = {a, . . . , b}.
Moreover, for every p > 1, we consider the following function

ϕp(t) = t|t|p−2, Φp(t) =
|t|p
p

. (1.3)

It is obvious that Φ′
p(t) = ϕp(t) for all t ∈ � and p /= 0. Moreover

Δ2
pu(k − 1) = Δ

(
ϕp(Δu(k − 1))

)
. (1.4)

Suppose that

V : � → � is aT-periodic positive potential (1.5)

0 < V0 = min{V (0), . . . , V (T − 1)} ≤ max{V (0), . . . , V (T − 1)} = V1. (1.6)

Denote

A(u) =
∑

k∈�
Φp(Δu(k − 1)) +

∑

k∈�
V (k)Φq(u(k)). (1.7)

Let us consider functions f satisfying the following assumptions.

(F1) The function f(k, t) is continuous in t ∈ � and T-periodic in k.
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(F2) The potential function F(k, t) of f(k, t)

F(k, t) =
∫ t

0
f(k, s)ds (1.8)

satisfies the Rabinowitz’s type condition:
There exist μ > p ≥ q > 1 and s > 0 such that

μF(k, t) ≤ tf(k, t), k ∈ �, t /= 0,

F(k, t) > 0, ∀k ∈ �, for t ≥ s > 0.
(1.9)

(F3) f(k, t) = o(|t|q−1) as |t| → 0.

Further we consider the semilinear eigenvalue p-Laplacian difference equation

Δ2
pu(k − 1) − V (k)u(k)|u(k)|q−2 + λf(k, u(k)) = 0, (1.10)

where λ > 0 and we are looking for its homoclinic solutions, that is, solutions of (1.10) such
that u(k) → 0 as |k| → ∞.

In order to obtain homoclinic solutions of (1.10), we will use variational approach and
Brezis-Nirenberg mountain pass theorem [9].

To this end, consider the functional J : �q → �, defined as

J(u) = A(u) − λ
∑

k∈�
F(k, u(k)). (1.11)

Our main result is the following.

Theorem 1.1. Suppose that the function V : � → � is positive and T-periodic and the functions
f(k, ·) : � × � → � satisfy assumptions (F1)–(F3). Then, for each λ > 0, (1.10) has a nonzero
homoclinic solution u ∈ �q, which is a critical point of the functional J : �q → �.

Moreover, given a nontrivial solution u of problem (1.10), there exist k± two integer numbers
such that for all k > k+ and k < k−, the sequence u(k) is strictly monotone.

The paper is organized as follows. In Section 2, we present the proof of the main result
and discuss the optimality of the condition (F2). In Section 3, we give some examples of
equations modeled by this kind of problems and present some additional remarks.
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2. Proof of the Main Result

Let u = {u(k) : k ∈ �} be a sequence, q > 1 and

�q =

{

u : |u|qq =
∑

k∈�
|u(k)|q < ∞

}

,

�∞ =

{

u : |u|∞ = sup
k∈�

|u(k)| < ∞
}

.

(2.1)

It is well known that if 0 < q ≤ p, then �q ⊆ �p. Indeed, if
∑

k∈�|u(k)|q < ∞, there exists
a positive integer number R, such that for all k satisfying |k| > R it is verified that |u(k)|q < 1
and, as consequence, |u(k)|p ≤ |u(k)|q and the series

∑
k∈�|u(k)|p is convergent too.

Consider now the functional J : �q → �, defined as

J(u) = A(u) − λ
∑

k∈�
F(k, u(k)), (2.2)

with A given in (1.7) and F defined in (1.8).
We have the following result.

Lemma 2.1. The functional J : �q → � is well defined, C1-differentiable, and its critical points are
solutions of (1.10).

Proof. By using the inequality for nonnegative a and b and p > 1

(
a + b

2

)p

≤ ap + bp

2
, (2.3)

and the inclusion �q ⊆ �p for 1 < q ≤ p, it follows that

∑

k∈�
|Δu(k − 1)|p ≤ 2p−1

∑

k∈�

(|u(k)|p + |u(k − 1)|p) = 2p
∑

k∈�
|u(k)|p < ∞. (2.4)

Now, let us see that the series
∑

k∈�F(k, u(k)) is convergent: by using (F3), it follows
that there exist δ ∈ (0, 1) and sufficiently largeN such that

F(k, u(k)) < |u(k)|q for |u(k)|q < δ < 1, |k| > N. (2.5)

Then, the series
∑

k∈�F(k, u(k)) is convergent and the functional J is well defined on
�q.



Advances in Difference Equations 5

It is Gâteaux differentiable and for v ∈ �q:

〈
J ′(u), v

〉
= lim

t→ 0

J(u + tv) − J(u)
t

=
∑

k∈�
Δu(k − 1)|Δu(k − 1)|p−2Δv(k − 1)

+
∑

k∈�
V (k)u(k)|u(k)|q−2v(k) − λ

∑

k∈�
f(k, u(k))v(k)

(2.6)

and partial derivatives

∂J(u)
∂u(k)

= −Δ2
pu(k − 1) + V (k)u(k)|u(k)|q−2 − λf(k, u(k)), (2.7)

are continuous functions.
Moreover the functional J is continuously Fréchet-differentiable in �q. It is clear, by

(2.7), that the critical points of J are solutions of (1.10).
To obtain homoclinic solutions of (1.10) we will use mountain-pass theorem of Brezis

andNirenberg [9]. Recall its statement. LetX be a Banach spacewith norm ‖·‖, and I : X → �

be a C1-functional. I satisfies the (PS)c condition if every sequence (xk) of X such that

I(xk) −→ c , I ′(xk) −→ 0, (2.8)

has a convergent subsequence. A sequence (xk) ⊂ X such that (2.8) holds is referred to as
(PS)c-sequence.

Theorem 2.2 (mountain-pass theorem, Brezis and Nirenberg [9]). LetX be a Banach space with
norm ‖ · ‖, I ∈ C1(X,�) and suppose that there exist r > 0, α > 0 and e ∈ X such that ‖e‖ > r

(i) I(x) ≥ α if ‖x‖ = r,

(ii) I(e) < 0.

Let c = infγ∈Γ{max0≤t≤1 I(γ(t))} ≥ α, where

Γ =
{
γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e

}
. (2.9)

Then, there exists a (PS)c sequence for I. Moreover, if I satisfies the (PS)c condition, then c is a
critical value of I, that is, there exists u0 ∈ X such that I(u0) = c and I ′(u0) = 0.

Note that, by assumption (1.5), the norm | · |q in �q is equivalent to

‖u‖qq =
1
q

∑

k∈�
V (k)|u(k)|q. (2.10)
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Lemma 2.3. Suppose that (F1)–(F3) hold, then there exist ρ > 0, α > 0 and e ∈ �q such that ‖e‖q > ρ
and

(1) J(u) ≥ α if ‖u‖q = ρ,

(2) J(e) < 0.

Proof. By (F3), there exists δ ∈ (0, 1) such that

F(k, t) ≤ V0

2qλ
|t|q if |t| ≤ δ. (2.11)

Let ρ = (V0/q)
1/qδ (V0 defined in (1.6)), then, for u, ‖u‖q = ρ,

V0

q
δq = ρq = ‖u‖qq =

1
q

∑

k∈�
V (k)|u(k)|q

≥ V0

q
|u(k)|q for all k ∈ �,

(2.12)

which implies that |u(k)| ≤ δ for all k ∈ �.
Hence, by (2.11)

∑

k∈�
F(k, u(k)) ≤ V0

2qλ

∑

k∈�
|u(k)|q

≤ 1
2qλ

∑

k∈�
V (k)|u(k)|q = 1

2λ
‖u‖qq

J(u) = A(u) − λ
∑

k∈�
F(k, u(k))

≥ ‖u‖qq −
1
2
‖u‖qq =

1
2
‖u‖qq =

ρq

2
> 0.

(2.13)

By (F2), there exist c1, c2 > 0 such that F(k, t) ≥ c1 tμ − c2 for all t > 0 and k ∈ �.
Take v ∈ �q, v(0) = a > 0, v(k) = 0 if k /= 0. Then, since μ > p ≥ q

J(κv) = A(κv) − λ
∑

k∈�
F(k, κv(k))

≤ 2
p
κpap + V (0)

κqaq

q
− λ(c1κμaμ − c2)

< 0,

(2.14)

if κ is sufficiently large.
Then, we can take κ large enough, such that for e = κv, ‖e‖qq = V (0)(κq aq/q) > ρq and

(2.14) holds.
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Lemma 2.4. Suppose that the assumptions of Lemma 2.3 hold. Then, there exists c > 0 and a �q-
bounded (PS)c sequence for J .

Proof. By Lemma 2.3 and Theorem 2.2 there exists a sequence (um) ⊂ �q such that

J(um) −→ c , J ′(um) −→ 0, (2.15)

where

c = inf
γ∈Γ

{
max
t∈[0,1]

J
(
γ(t)

)
}
,

Γ =
{
γ ∈ C([0, 1], �q) : γ(0) = 0, γ(1) = e

}
,

(2.16)

and e is defined in the proof of Lemma 2.3.
We will prove that the sequence (um) is bounded in �q. We have for μ > p ≥ q

〈
J ′(um), um

〉
=
∑

k∈�
|Δum(k − 1)|p

+
∑

k∈�
V (k)|um(k)|q − λ

∑

k∈�
f(k, um(k))um(k),

(2.17)

and, by (F2),

μJ(um) −
〈
J ′(um), um

〉

=
(
μ

p
− 1

)∑

k∈�
|Δum(k − 1)|p +

(
μ

q
− 1

)∑

k∈�
V (k)|um(k)|q

− λ
∑

k∈�

(
μF(k, um(k)) − f(k, um(k))um(k)

)

≥
(
μ

q
− 1

)
q‖um‖qq =

(
μ − q

)‖um‖qq,

(2.18)

which implies that the sequence um is bounded in �q.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. For any m ∈ �, the sequence {|um (k)|, k ∈ Z}, given in Lemma 2.4, is
bounded in �q and, in consequence, |um(k)| → 0 as |k| → ∞. Let |um(k)| takes its maximum
at km ∈ �. There exists a unique jm ∈ �, such that jmT ≤ km < (jm + 1)T and let wm(k) =
um(k+jmT). Then |wm(k)| takes its maximum at im = km−jmT ∈ [0, T−1]. By the T-periodicity
of V and f(·, t), it follows that

‖um‖q = ‖wm‖q,

J(um) = J(wm).
(2.19)
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Since (um) is bounded in �q, there exists w ∈ �q, such that wm ⇀ w weakly in �q. The weak
convergence in �q implies that wm(k) → w(k) for every k ∈ �. Indeed, if we take a test
function vk ∈ �q, vk(k) = 1, vk(j) = 0 if j /= k, then

wm(k) = 〈wm, vk〉 −→ 〈w, vk〉 = w(k). (2.20)

Moreover, for any v ∈ �q

∣
∣〈J ′(wm), v

〉∣∣ =
∣
∣〈J ′(um), v

(· + jmT
)〉∣∣

≤ ∥∥J ′(um)
∥∥
∗
∥∥v

(· + jmT
)∥∥

q

=
∥∥J ′(um)

∥∥
∗‖v‖q −→ 0,

(2.21)

which implies that J ′(wm) → 0, which means that for every v ∈ �q,

∑

k∈�
ϕp(Δwm(k − 1))Δv(k − 1) +

∑

k∈�
V (k)ϕq(wm(k))v(k)

− λ
∑

k∈�
f(k,wm(k))v(k) −→ 0, ∀k ∈ �, as m −→ ∞.

(2.22)

Let us take v ∈ �q with compact support, that is, there exist a, b ∈ �, a < b such that
v(k) = 0 if k ∈ �\[a, b] and v(k)/= 0 if k ∈ {a+1, b−1}. The set of such elements �q0 is dense in
�q because if v ∈ �q and vk ∈ �

q
0 is such that vk(j) = 0 if |j| ≥ k + 1, vk(j) = v(j) if |j| ≤ k, then

‖v − vk‖q → 0 as k → ∞. Taking v ∈ �
q

0 in (2.22), due to the finite sums and the continuity
of functions f(k, ·), we obtain, passing to a limit, that

∑

k∈�
ϕp(Δw(k − 1))Δv(k − 1) +

∑

k∈�
V (k)ϕq(w(k))v(k)

− λ
∑

k∈�
f(k,w(k))v(k) = 0, ∀v ∈ l

q

0 .
(2.23)

From the density of lq0 in �q, we deduce that the previous equality is fulfilled for all
v ∈ �q and, in consequence, w is a critical point of the functional J , that is, w is a solution of
(1.10).

It remains to show thatw/= 0.
Assuming, on the contrary, that w = 0, we conclude that

|um|∞ = |wm|∞ = max{|wm(k)| : k ∈ �} −→ 0, as m −→ ∞. (2.24)

By (F3), for a given ε > 0, there exists δ > 0, such that if |x| < δ then, for every
k ∈ [0, T − 1], the following inequalities holds:

|F(k, x)| ≤ ε|x|q,
∣
∣f(k, x)x

∣
∣ ≤ ε|x|q.

(2.25)
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By (2.24), for every k ∈ [0, T − 1], there exists a positive integer Mk such that for
all m > Mk it follows that |wm(k)| < δ. Since the maximum value of |wm| is attained at
im ∈ [0, T − 1], it follows that form > M = max{Mk : k ∈ [0, T − 1]} and every k ∈ �

|wm(k)| ≤ |wm(im)| ≤ δ. (2.26)

Then, by (2.25), for m > M and every k ∈ �:

|F(k,wm(k))| ≤ ε|wm(k)|q,
∣∣f(k,wm(k))wm(k)

∣∣ ≤ ε|wm(k)|q,
(2.27)

which implies that

0 ≤ qJ(wm) =
q

p

∑

k∈�
|Δwm(k − 1)|p +

∑

k∈�
V (k)|wm(k)|q − λ

∑

k∈�
qF(k,wm(k))

≤
∑

k∈�
|Δwm(k − 1)|p +

∑

k∈�
V (k)|wm(k)|q − λ

∑

k∈�
f(k,wm(k))wm(k)

− λ
∑

k∈�

(
qF(k,wm(k)) − f(k,wm(k))wm(k)

)

≤ 〈
J ′(wm), wm

〉
+ λ

(
qε|wm|qq + ε|wm|qq

)

≤ ∥∥J ′(wm)
∥∥
∗‖wm‖q + λε

q + 1
V0

‖wm‖qq.

(2.28)

Since ‖wm‖ is bounded in �q, J ′(wm) → 0 and ε is arbitrary, by (2.28) we obtain a
contradiction with J(wm) = J(um) → c > 0. The proof of the first part is complete.

Now, let u be a nonzero homoclinic solution of problem (1.10). Assume that it attains
positive local maximums and/or negative local minimums at infinitely many points kn. In
particular we can assume that {|kn|} → ∞. In consequenceΔ2

pu(kn−1)u(kn) ≤ 0 and u(kn) →
0.

From this, multiplying in (1.10) by u(kn)/|u(kn)|q, we have

λ
f(kn, u(kn))u(kn)

|u(kn)|q
≥
Δ2

pu(kn − 1)u(kn)

|u(kn)|q
+ λ

f(kn, u(kn))u(kn)
|u(kn)|q

= V (kn) ≥ V0 > 0. (2.29)

By means of condition (F3) we arrive at the following contradiction:

0 = λ lim
n→∞

f(kn, u(kn))u(kn)
|u(kn)|q

≥ V0 > 0. (2.30)

Suppose now that function u vanishes at infinitely many points ln. From condition
(F3) we conclude that Δ2

pu(ln − 1) = 0 and, in consequence, u(ln − 1)u(ln + 1) < 0. Therefore
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it has an unbounded sequence of positive local maximums and negative local minimums, in
contradiction with the previous assertion.

As a direct consequence of the two previous properties, we deduce that, for |k| large
enough, function u has constant sign and it is strictly monotone.

To illustrate the optimality of the obtained results, we present in the sequel an example
in which it is pointed out that condition (F2) cannot be removed to deduce the existence result
proved in Theorem 1.1.

Example 2.5. Let W(k) > 0 be a T-periodic sequence, W1 = max{W(k) : k ∈ [0, T − 1]},
p ≥ q > 1 and r > q be fixed. Consider problem (1.10) with

f(k, t) =

⎧
⎨

⎩

W(k)ϕr(t) if |t| ≤ 1,

W(k)ϕq(t) if |t| ≥ 1.
(2.31)

It is obvious that condition (F1) holds. Since r > q we have that condition (F3) is
trivially fulfilled. Concerning to condition (F2), we have that

F(k, t) =

⎧
⎪⎪⎨

⎪⎪⎩

W(k)
|t|r
r

if |t| ≤ 1,

W(k)
( |t|q

q
+
q − r

qr

)
if |t| ≥ 1.

(2.32)

It is clear that F(k, t) > 0 for all t /= 0 and that μF(k, t) ≤ t f(k, t) for all t ∈ [−1, 1] if and
only if 0 < μ ≤ r.

When |t| ≥ 1, the inequality μF(k, t) ≤ tf(k, t) holds if and only if either μ = q or μ > q
and

|t|q ≤ μ
(
r − q

)

r
(
μ − q

) < ∞. (2.33)

As consequence, the inequality μF(k, t) ≤ tf(k, t) for all t /= 0 is satisfied if and only if
μ = q, that is, condition (F2) does not hold.

Let us see that this problem has only the trivial solution for small values of the
parameter λ.

Since r > q, it is not difficult to verify that, for 0 < λ < (q− 1)V0/(r − 1)W1, the function
λf(k, t) − V (k)ϕq(t) is strictly decreasing for every integer k. So, for λ in that situation, we
have that

(
λf(k, t) − V (k)ϕq(t)

)
t < 0 for all t /= 0 and all k ∈ �. (2.34)

Suppose that there is a nontrivial solution u of the considered problem, and moreover
it takes some positive values. Let k0 be such that u(k0) = max{u(k); k ∈ �} > 0. In such a case
we deduce the following contradiction:

0 = Δ2
pu(k0 − 1) − V (k0)ϕq(u(k0)) + λf(k0, u(k0)) < Δ2

pu(k0 − 1) ≤ 0. (2.35)
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Analogously it can be verified that the solution u has no negative values on �.

3. Remarks and Examples

In this section we will consider some examples and remarks on applications and extensions
of Theorem 1.1 to the existence of homoclinic solutions of difference equations of following
types:

(A) Second-order discrete p-Laplacian equations of the form

Δ2
pu(k − 1) − V (k)u(k)|u(k)|q−2 + λb(k)u(k)|u(k)|r−2 = 0, (3.1)

with r > p ≥ q > 1.
(B) Higher even-order difference equations. A model equation is the fourth-order

extended Fisher-Kolmogorov equation

Δ4u(k − 2) − aΔ2u(k − 1) + V (k)u(k)|u(k)|q−2 − λb(k)u(k)|u(k)|r−2 = 0, (3.2)

with r > q > 1.
(C) Second-order difference equations with cubic and quintic nonlinearities of the

forms

Δ2u(k − 1) − V (k)u(k) + λ
(
b(k)u3(k) + c(k)u5(k)

)
= 0, (3.3)

Δ2
pu(k − 1) − a(k)u(k) + λ

(
b(k)u2(k) + c(k)u3(k)

)
= 0, (3.4)

arising in mathematical physics and biology.

(A) Second-Order Discrete p -Laplacian Equations.

The spectrum of the Dirichlet problem (DN) for (3.1), subject to Dirichlet boundary
conditions

u(0) = u(N + 1) = 0, (3.5)

is studied in [17]. It is proved that if 2 < r < q, N ≥ 2 and b : [1,N] → (0,∞) is a given
function, then there exist two positive constants λ0(N) and λ1(N) with λ0(N) ≤ λ1(N) such
that no λ ∈ (0, λ0(N)) is an eigenvalue of problem (DN) while any λ ∈ [λ1(N),∞) is an
eigenvalue of problem (DN). Moreover, we have

λ1(N) ≤ r

2
λ0(N),

4

(N + 1)2|b|∞
≤ λ0(N) ≤ λ1(N) ≤ B

(
r, q, b,N

)
, (3.6)
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where B(r, q, b,N) = r(q − 2)/((q − r)
∑N

k=1 b(k))(N(q − r)/(q(r − 2)))(r−2)/(q−2) and |b|∞ =
maxk∈[1,N]b(k). Note that if b(k) is positive and b(k) ≥ b > 0 then

B
(
r, q, b,N

) ≤ KN(r−q)/(q−2), (3.7)

where K is a constant depending on p, q, b, which implies that λ0(N) → 0 and λ1(N) → 0
as N → ∞. It implies that for a given ε > 0, there exists N0 such that for any N > N0, the
problem (DN) has a solution for every λ > ε > 0.

We extend this phenomenon, looking for homoclinic solutions of (3.1). Applying
Theorem 1.1 with f(k, t) = b(k)ϕr(t), F(k, t) = b(k)Φr(t) and μ = r > p ≥ q > 1, we obtain the
following.

Corollary 3.1. Suppose that the function V : � → � is positive and T-periodic and r > p ≥ q > 1.
Then, for each λ > 0, (3.1) has a nonzero homoclinic solution.

Moreover, given a nontrivial solution u of problem (3.1), there exist k± two integer numbers
such that for all k > k+ and k < k−, the sequence u(k) is strictly monotone.

(B) Higher Even-Order Difference Equations.

The statement of Theorem 1.1 can be extended to higher even-order difference equations. For
simplicity we consider the fourth-order difference equations of the form

Δ2
(
ϕp2

(
Δ2u(k − 2)

))
− aΔ

(
ϕp1(Δu(k − 1))

)
+ V (k)ϕq(u(k)) − λf(k, u(k)) = 0, (3.8)

where f(k, ·) ∈ C(�,�) for each k ∈ �, satisfy the assumptions (F1)−(F3).
We consider the functional J1 : �q → �,

J1(u) = A1(u) − λ
∑

k∈�
F(k, u(k)), (3.9)

where

A1(u) =
∑

k∈�
Φp2

(
Δ2u(k − 2)

)
+ aΦp1(Δu(k − 1)) + V (k)Φq(u(k)), (3.10)

which is well defined for μ > pj ≥ q > 1, j = 1, 2.
Note that the series

∑
k∈�Φp2(Δ

2u(k − 2)) is convergent because

Φp2

(
Δ2u(k − 2)

)
= Φp2(u(k) − 2u(k − 1) + u(k − 2))

≤ 2.3p2−1

p2

(|u(k)|p2 + |u(k − 1)|p2 + |u(k − 2)|p2),

∑

k∈�
Φp2

(
Δ2u(k − 2)

)
≤ 2.3p2

p2

∑

k∈�
|u(k)|p2 ,

(3.11)

while
∑

k∈�|u(k)|p2 is convergent since q ≤ p2.
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Now following the steps of the proof of Theorem 1.1 one can prove the following.

Theorem 3.2. Suppose that a > 0, the function V : � → � is positive and T-periodic and the
functions f(k, ·) : �×� → � satisfy assumptions (F1)–(F3) and μ > pj ≥ q > 1, j = 1, 2. Then, for
each λ > 0, (3.8) has a nonzero homoclinic solution u ∈ �q, which is a critical point of the functional
J1 : �q → �.

A typical example of (3.8) is (3.2), which is a discretization of a fourth-order extended
Fisher-Kolmogorov equation. Homoclinic solutions for fourth-order ODEs are studied in [7]
using variational approach and concentration-compactness arguments. As a consequence of
Theorem 3.2 we obtain the following corollary.

Corollary 3.3. Suppose that a > 0, the function V : � → � is positive and T-periodic and r > q > 1.
Then, for each λ > 0, (3.2) has a nonzero homoclinic solution u ∈ �q.

(C) Second-Order Difference Equations with Cubic and Quintic Nonlinearities.

Our next example is (3.3), known as stationary Ginzubrg-Landau equation with cubic-quintic
nonlinearity. We refer to [18, 19] and references therein. From physical point of view it is
interesting the case b(k) = b, c(k) = c, bc < 0. Theorem 1.1 can be applied for f(k, t) =
b(k)t3+c(k)t5 with b(k), c(k), T-periodic, and c(k) positive. Then f(k, t) satisfies assumptions
(F1)–(F3) with μ = 4 and as a consequence we have the following corollary.

Corollary 3.4. Suppose that the functions V : � → �, b : � → � and c : � → � are T-periodic
and V and c are positive. Then, for each λ > 0, (3.3) has a nonzero homoclinic solution u ∈ �2.

Moreover, given a nontrivial solution u of problem (1.10), there exist k± two integer numbers
such that for all k > k+ and k < k−, the sequence u(k) is strictly monotone.

Moreover, we can prove that if in addition to conditions (F1)–(F3) the following
condition holds:

(F4) f(k, t) > 0 for all t < 0 and all k ∈ �,

the homoclinic solution of (1.10) is positive.
Indeed, let u be a homoclinic solution of (1.10) and assume that (F4) holds. Suppose

that there exists k0 such that u(k0) < 0 and let k1 be such that u(k1) = min{u(k), k ∈ �} < 0.
In consequence Δ2

pu(k1 − 1) ≥ 0, which implies that

λf(k1, u(k1)) = −Δ2
pu(k1 − 1) + V (k1)ϕq(u(k1)) < 0, (3.12)

in contradiction with (F4). Then u(k) ≥ 0 for every k ∈ �.
If u(k2) = 0 for some k2 ∈ �, we know that Δpu(k2 − 1) = 0 and, in consequence,

u(k2 − 1)u(k2 + 1) < 0, and we arrive at a contradiction as in the previous case.
We summarize above observations in the following.

Theorem 3.5. Suppose that the function V : � → � is positive and T-periodic and the functions
f(k, ·) : � × � → � satisfy assumptions (F1), (F2), and (F3). Then, for each λ > 0, (1.10) has a
nonzero homoclinic solution u ∈ �q. If moreover (F4) holds, u is a positive solution on� that is strictly
monotone for |k| large enough.
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In the case q = 2 we can estimate the maximum of the solution u, provided the
additional assumption

(F5) Assume that for all t > 0 and k ∈ � function f(k, ·) has the form f(k, t) = tg(k, t),
where g(k, t) is T-periodic in k, g(k, 0) = 0 and for each k, g(k, t) is increasing in t
for t > 0.

Let g−1(k, t) be the inverse function of g(k, t) for t > 0. We have that g−1(k, t) is
increasing in t for t > 0. Let u be a positive homoclinic solution of (1.10) in view of last
theorem and u(k0) > 0 is its maximum. Note that, in view of the periodicity of coefficients,
if u(·) is a solution of (1.10), then u(· + jT), j ∈ � is also a solution of (1.10). Hence, we may
assume that k0 ∈ [0, T − 1]. Then Δ2

pu(k0 − 1) ≤ 0 and

λu(k1)g(k1, u(k1)) − V (k1)u(k1) ≥ 0, (3.13)

and hence by properties of g and V

u(k1) ≥ g−1
(
k1,

V0

λ

)
. (3.14)

Thus

max{u(k) : k ∈ [0, T − 1]} ≥ min
{
g−1

(
k,

V0

λ

)
: k ∈ [0, T − 1]

}
. (3.15)

We summarize above observation in the following.

Corollary 3.6. Let q = 2 and suppose that the functions V : � → � and f : � → � satisfy
assumptions of Theorem 3.5. Then, if in addition, f satisfies condition (F5), the positive homoclinic
solution of the equation

Δ2
pu(k − 1) − V (k)u(k) + λu(k)g(k, u(k)) = 0, (3.16)

satisfies the estimate (3.15).

Our next example, concerning Theorem 3.5, are (3.4) and

Δ2
pu(k − 1) − a(k)u(k) + λ

(
b(k)u2(k) + c(k)u3

+(k)
)
= 0, (3.17)

where u+ = max{u, 0}.
Positive homoclinic solutions of corresponding differential equation are studied in [3]

and periodic solutions in [20]. We suppose that the coefficients a(k), b(k), and c(k) are T-
periodic and there are constants a, b, B, c, and C such that

0 < a ≤ a(k), 0 ≤ b ≤ b(k) ≤ B, 0 < c ≤ c(k) ≤ C, ∀k ∈ [0, T − 1]. (3.18)
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By Theorem 3.5, (3.17) has a positive solution u, which is a critical point of the functional
I : l2 → �,

I(u) =
∑

k∈�
Φp(Δu(k − 1)) +

1
2

∑

k∈�
a(k)u2(k) − λ

∑

k∈�

(
1
3
b(k)u3(k) +

1
4
c(k)u4

+(k)
)
. (3.19)

Clearly, the positive solution of (3.17) is a positive solution of (3.4) too.
Further, let u take its positive maximum at k1 ∈ [0, T − 1], then Δ2

pu(k1 − 1) ≤ 0 and,
since u(k1) > 0, we have from (3.4) that

−a(k1) + λ
(
b(k1)u(k1) + c(k1)u2(k1)

)
≥ 0. (3.20)

In view of (3.18), the last inequality implies

u(k1) ≥
−λb(k1) +

√
λ2b(k1)2 + 4λa(k1)c(k1)

2λc(k1)
, (3.21)

or

max{u(k) : k ∈ [0, T − 1]} ≥ −λB +
√
λ2b2 + 4λac
2λC

=
−B +

√
b2 + 4ac/λ
2C

. (3.22)

We obtain a positive lower bound for max{u(k) : k ∈ [0, T − 1]} in the case

0 < λ <
4ac

B2 − b2
(3.23)

and (3.22) shows that max{u(k) : k ∈ [0, T − 1]} blows up, that is, tends to +∞ as λ → 0.
We summarize above facts in the following.

Corollary 3.7. Let p > 1, λ > 0 and a(k), b(k) and c(k) be T-periodic sequences.
Assume that there are constants a, b, B, c, and C such that (3.18) holds. Then,

Δ2
pu(k − 1) − a(k)u(k) + λ

(
b(k)u2(k) + c(k)u3(k)

)
= 0, (3.24)

has a positive homoclinic solution and for 0 < λ < 4ac/(B2 − b2),

max{u(k) : k ∈ [0, T − 1]} ≥ −B +
√
b2 + 4ac/λ
2C

> 0. (3.25)

Let λm → 0. By the last statement, if um is the solution of the equation

Δ2
pu(k − 1) − a(k)u(k) + λm

(
b(k)u2(k) + c(k)u3(k)

)
= 0, (3.26)
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then

lim
m→∞

max{um(k) : k ∈ [0, T − 1]} = +∞. (3.27)

Let km ∈ [0, T − 1] be such that um(km) = max{um(k) : k ∈ [0, T − 1]}. Since km is an
infinite sequence of integers, by Dirichlet principle, there exists a fixed k∗ ∈ [0, T − 1] and a
subsequence of um, still denoted by um, such that um(km) = um(k∗) and limm→∞um(k∗) = +∞.
Note that if T = 2, then k∗ = 0 or k∗ = 1.
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[16] M. Mihăilescu, V. Rădulescu, and S. Tersian, “Eigenvalue problems for anisotropic discrete boundary
value problems,” Journal of Difference Equations and Applications, vol. 15, no. 6, pp. 557–567, 2009.
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